Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Size: px
Start display at page:

Download "Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie"

Transcription

1 Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group :

2 ., 60.,,.,,.,,.,,..,., gas-starved accretion disk model) Canup and Ward 2006) A common mass scaling for satellite systems of gaseous planets,., Canup and Ward 2006). Canup and Ward 2006),,. Canup and Ward 2006)

3 i

4 ii Canup and Ward Lubow et al., 1999) Canup and Ward, 2002)

5 iii 3, Canup and Ward, 2002)

6 ,,,,,,.., Mosqueira and Estrada 2003),,.,,,. T 1/r.,,,,.,,.., Canup and Ward 2006), gas-starved accretion disk model)., ).,,,,,,..,,,

7 1 2. T T F 1/4 in, F in, ),,.,,..,, Canup and Ward 2006),. 1.2,,,, 2 ). Canup and Ward 2006) 3 ), 4 ). Canup and Ward 2006) 5 ).

8 2 3 2.,. Canup and Ward 2006),. Hayashi et al., 1985)., Canup and Ward 2006). 2.1.,.,. ),.,,.,,..., 10., Hayashi et al., 1985).,, H 2 O,..,,,.

9 2 4,.,.,,, Lubow et al. 1999) 2. 1.,.... 1,,..,.,.,,.,.,,.,,.,.

10 2 5 1 Lubow et al., 1999).,,..,,.

11 ,.,.,.,,,.,,,.,.,,.,,.,,.,,,,.,.,,.,,.,.,.,,..

12 2 7,. 2., Type I migration)., Type I migration,.,. Type I migration.,. 2.4,.,,,,.,,.. Canup and Ward 2006) M T M P M T /M P ,. 3.7 ) ),, T F 1/4 in Canup and Ward, 2002).,.,

13 Canup and Ward 2006) N, )..,.,,.,.,,.

14 3 9 3,,, Canup and Ward 2006),. 3.1,., -, 3. 3, ρ v t ρ t + ρv) = 0, 1) + v )v = p, 2) p = ρk BT µm u. 3)., k B, µ, m u, v, ρ, p. v = vx, t),ρ = ρx, t), p = px, t)., v 0 = 0, ρ = ρ 0, p = p 0. v = v 1 x, t), ρ = ρ 1 x, t), p = p 1 x, t), v = v 0 + v 1, ρ = ρ 0 + ρ 1, p = p 0 + p 1. 1),2), t ρ 0 + ρ 1 ) + x ρ 1v 1 + ρ 0 v 1 ) = 0, 4) ρ 0 + ρ 1 ) v ) 1 t + v 1 v 1 = x x ρ 0 + ρ 1 ). 5) 2. ρ 0 / t = 0,, ρ 0 / x =

15 , ρ 1 t + ρ v 1 0 x 6) 7) t, x, = 0, 6) ρ 0 v 1 t = p 1 x. 7) 2 ρ 1 t 2 + ρ 2 v 1 0 = 0, 8) t x ρ 0 2 v 1 x t = 2 p 1 x 2. 9) 2 ρ 1 t 2 = 2 p 1 x 2. 10). 10) 3),,, 11), 2 ρ 1 t 2 = k BT µm u 2 ρ 1 x 2. 11) ) 1/2 kb t c s =. 12) µm u 2 ρ t 2. c s. = c s 2 2 ρ x 2. 13). z, z. z, P z = GM Sunρ z r 2 r. 14), M Sun, G, ρ. P = ρk BT µm u, ρ z = GM Sunρ z r 2 r ρ ρ = GM Sun r 3 µm u k B T, 15) µm u z z. k B T 16)

16 3 11 z. z = 0 ρ = ρ0),, ρz) = ρ0) exp GM Sun µm u z 2 ) a 3. 17) k B T 2 H. 2k B T a H = 3 k B T τ K = µm u GM Sun 2µm u π. 18) τ K. 17) ) z 2 ρ = ρ0) exp. 19) H 2. z = H, ρ = ρ0) e 1/e.. 3.2,,,.., 10.,,,, 2007 ).. M c P, T, ρ.,. r F, r, r l., F σ SB [T 4 r) T 4 r + l)] 4σ SB T 3 dt l. 20) dr, σ SB., κ, ρ, l 1/κρ, 20). F 4σ SBT 3 κρ dt dr. 21)

17 3 12 F,,, 4/3,. F 16σ SBT 3 3κρ dt dr. 22),, 16σ SB T 3 dt 3κρ dr = L 4πr 2. 23), L r,.,, M c,. L GM cm c. 24) R c M c, R c,,, M atm., M r. dp dr = GM ρ, r2 25) P = ρk BT. µm u 26) R out,, T out, P out. M c M atm ). T T out, P P out, κ, 23), T = 26), ) 1/4 3κρL. 27) 64πσ SB r P = ρk ) 1/4 B 3κρL. 28) µm u 64πσ SB r

18 ), [ dp dr = d ) ] 1/4 ρk B 3κρL dr µm u 64πσ SB r = GM ρ. 29) r2, GMµmu ρ = k B ) 4 πσ SB 12κL. 30), M atm. M atm = 4πr 2 GMµmu ρdr = R c k B Rout ) 4 π 2 σ SB 3κL ln R out R c. 31) M atm M c, M M c. M M c )., 31) M M = M c + M atm. M c M atm, M atm, M atm., M c M atm, M c, M atm. M c.,,,., M = M atm + M c, dm atm /dm c =. 31) M = M atm + M c, 24) 31), GMatm + M c )µm u M atm = k B ρ c = M c / 4 3 πr c 3, ) 4 π 2 σ SB 3κ R c ln R out. 32) GM c M c R c ) M atm = M atm + M c ) 4 µmu π 2 ) 1/3 σ SB 3Mc G 3 ln R out, 33) k B 3κ 4πρ c M c R c, M atm. M c M atm = β M atm + M c ) 4. 34) M c 2/3

19 3 14, β. β = σ SB κ M c ) 4 µmu π G 3 5 k B 36ρ c ) 1/3 ln R out R c. 35) 34) M c, dm atm /dm c =, M c,crit, M c,crit = ) 3/7 27 M c β M /10 6 yr, lnr out /R c ) 0.5. ) 3/7 κ 1cm 2 g 1 ) 3/7 M. 36),.. Ikoma et al., 2000). ) ) M c fd,atm M c,crit = 10 M /10 6 M. 37) yr f g,atm, , 2, r c. 2. r, r d.,, F in, Ṁ, Ṁ = πr 2 c F in.,, 2., ν = αc s H Shakura and Sunyaev, 1973). ν, α. ν,,.

20 Canup and Ward, 2002), Canup and Ward 2002)., 2,.,.,.,., σ G / t = 0., σ G t = 1 Ṁ 2πr r + F in = 0, 38), σ G, Ṁ r = 2πrF in. 39) Ṁ r, Ṁ = 2πrσ G v r. v r. 1,, 2,.,, v j t + v v i j = 1 P + 1 p ij + x i ρ g x i ρ g x j x j GM r ). 40)

21 3 16, M, p ij. p ij = 2ρ g ν e ij 13 ) e kkδ ij, e ij = 1 vi + v ) j. 41) 2 x j x i 1, 2, 3. 40) r, φ, z). φ, v φ ρ v r r + v φ 1 r v φ φ + v v φ z = ρν 2 v φ + ρν 2 v r r 2 φ ρν 1 r 2 v φ + ν ρ r z + 1 r v φv r vφ r v φ r ) ). 42), v φ., 2 2 = 2 / r 2 + /r r+ 2 /r 2 φ / z 2., φ,,. z,., v z = 0, / φ = 0. z, σ G v r r r2 Ω) r = r r 3 σ G ν Ω ). 43) r, Ω, Ω = v φ /r. Ω Ω K Ω K ), Ω = GM /r 3 43), g r = Ṁ h r. 44) g, g = 3πσ G hν. h, h = rω 2. 38), 44). r r c, Ṁ r c < r < r d, r < r c, r = r c, Ṁ., r c < r < r d. r > r c,, F in = 0., Ṁ,,, Ṁ, Ṁ = Ṁ0 = const. 44) r c r d, Ṁ 0 h h d ) = g g d ) = g. 45), r = r d, g = g d, r = r d, g d = 0.

22 3 17 r < r c. r < r c,, Ṁ r. Ṁdh/dr = dṁh)/dr hdṁ/dr 44), h r 1/2, hṁr) + gr) = 4 5 πf inrch 2 c rph 2 p ) + A. 46), h c = r c 2 Ω c, h d = r d 2 Ω d, r P. A. r = r P, gr P ) = 0., A = Ṁph p 4 5 πf inr 2 ph p., Ṁ P. r = r c., Ṁ = Ṁ0, r = r c, h c Ṁ 0 + Ṁ0h d h c ) = 4 5 πr c 2 h c F in + Ṁph p 4 5 πf inr p 2 h p, 47) Ṁ 0 h d Ṁph p = 4 5 πf inr c 2 h c r p 2 h p ). 48),,,.,, r d,., 48), 49), Ṁp + Ṁ0 = Ṁ πf inr p 2. 49) Ṁ 0 h d πf in r c 2 πf in r p 2 + Ṁ0)h p = 4 5 πf inr c 2 h c r p 2 h p ). 50), h p = r p 2 Ω p,, Ω d = GM GM r 3 d, Ω c = r 3 c, Ω p = GM r 3 p, Ṁ 0 r 1/2 d r 1/2 p ) = πf in r 2 c r 1/2 p πf inr 5/2 p πf inr 5/2 c, 51) [ ) 1/2 2 4 rc Ṁ 0 = πf in r c + 1 ) ] [ 2 rd ) ] 1/2 1 rp ) 5 5 r p r c r p

23 3 18 Ṁ 0, Ṁr > r c), Ṁr < r c ). Ṁr > r c ) = Ṁ0, = πf in r c 2 [ 4 5 rc r p ) 1/ rp r c ) ] [ 2 rd ) ] 1/ r p 53) rc Ṁr < r c) = 2πrF in dr Ṁ0, 54) r [ ) ] 2 2 r = πf in r c 1 4/5)r c/r p ) 1/2 + 1/5)r p /r c ) ) r d /r p ) 1/2 1 r c,, r p /r c ) 2 1, r d /r p ) 1/2 1., [ ) ] 1/2 4 rc Ṁr > r c ) = Ṁ0 Ṁ, 56) 5 r d [ ) 2 r Ṁr < r c ) Ṁ 1 4 ) ] 1/2 rc. 57) 5,. r c r d r > r c ), r < r c ), [ σ G r) 4Ṁ rc 15πν r σ G r) 4Ṁ 15πν rc r d ]. 58) [ 5 4 rc 1 ) ] 2 r. 59) r d 4 r c

24 ,,,,.,.,.. r,, GM P Ṁ/r) r GM P Ṁ r 2 r. 60),, Ėν,,, Ė ν = 9 4 νω2 σ G 2πr r. 61) Ė rad = 2σ SB T d 4 2πr r. 62), T d., T d, 9 4 νω2 σ G 2πr r = 2σ SB T 4 d 2πr r, 63) [ T 4 d 9Ω2 νσ G = 3Ω2 r 2 c F in 1 4 rc 1 ) ] 2 r. 64) 8σ SB 5 r d 5 8σ SB T d F in 1/4, α σ G. r c.,,.,

25 3 20,. Canup and Ward, 2002). [ ) ] 4 T 4 c T 4 d Tneb T d τt d 4. 65) τ.,, T d T c. 3) Canup and Ward 2002).,. 25R J 1000K,, r 20R J 200K,.

26 3 21 3, Canup and Ward, 2002) T d, T c. 4. τ G τ G ) τ G = 10 4 yr, τ G = yr,.

27 , r. r 2πr r/f. f -., m s. τ acc = fm s 2πr rf in. 66) r e, r/r 2e.,,,.,,,.,,. e τ col, τ drag, τ dw., e τ relax, e τ col = τ relax, τ drag = τ relax, τ dw = τ relax., e, τ dw = τ relax., τ dw = τ relax e. Ward 1988), τ dw = 1 ) ) M M c ) 4. 67) C e Ω M σ G r 2 rω,, τ relax = 0.73 ) ) M M v ) 4 [ln 2Λ] 1 Ω M σ S r 2. 68) rω, σ S, v,. τ dw = τ relax,, v

28 3 23 v dw, 67) 68), ) ) 1 M M c ) = C e Ω M σ G r 2 rω Ω v dw = c σs σ G M ) ) vdw M ) 4 [ln 2Λ] 1 M σ S r 2, 69) rω ) 1/4. 70), e. v dw v K σs Γ σ G ) 1/4 ) H e. 71) r Γ 1. r m s, σ S σ S = m s /2πr r., ) 1/4 ) m s H e, 72) 2πr rσ G r ) 1/4 ) H 4πr 2 e 5/4, 73) σ G r ) 1/5 ms. 74) ms e H r 4πrHσ G 74) 66), τ acc fσ G F in ms 4πrHσ G ) 4/5. 75),..,. τ 1. τ 1 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H. 76) r C a 1. 76), H/r) c/rω) 0.1.,.

29 τ acc, Type I migration., τ acc τ 1 m s,, m c., m crit /M P. 75) 76), fσ G F in mc 4πrHσ G ) 4/5 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H. 77) r, F in F in = M P /τ G πr c 2., τ G = M P dm/dt) 1. 77), fσ G M P πr c 2 τ G mc 4πrHσ G ) 4/5 = 1 C a MP m c ) MP r 2 σ G ) ) 2 H. 78) r, σ G r < r c,. [ σ G = 4F 5 15πν 4 rc 1 ) ] 1/2 r, 79) r d 4 r c 0.2 ) Fin r ) 2 rc ) 2. 80) α Ω H r, ν = αch, H/r c/rω, r/r c = 0.5, r/r d = 0.2., 78), f M P 3 0.2Fin αω ) 6/5 r H ) 12/5 rc ) ) 12/5 4/5 1 2 πrc τ G m 9/5 c = H2 r 4πrH C a r 4. 81), mc M P ) ) 5/9 ) 26/9 ) 10/9 ) 2/3 π H r α 5.4 Ωτ G f) 1/9 82) C a r r C f ) 5/9 ) 26/9 ) 10/9 ) 2/3 3.5 H/r r/rc α/f χ ) C a χ χ [1week/2 /Ω))f/10 2 )τ G /10 7 yr)] 1/9, m crit /M P, 1. H/r), r

30 3 25, H/r) 0.1. r c, r/r c ), 1. m c /M P, α, f. α,..,. - f. 3.7 r. 1 R P < r < r c. MT M P ) = rc m crit/m P ) R P r dr. 84) r, r/r e. e, 74), F in = M P /τ G πr c 2, σ G 80), r H 84), MT M P ) = mc ) 1/5 α 4πrH 0.2 rc R P rc 1 R P r m c 1 M P H 1 C a ) 1/5 πrc 2 τ G Ω M P ) 1/5 ) 2/5 ) 2/5 H r. 85) r r c mc απr 2 ) 1/5 ) 2/5 ) 2/5 c τ G Ω H r dr, 0.8πrHM P r r c 86) ) 4/9 ) 10/9 ) 8/9 ) 1/3 H r α 1 dr. r r c f 1/9 Ωτ G f) 87), H/r, f,, r c R P,. MT M P ) C a χ ) 4/9 ) 10/9 ) 1/3 H α 1 r f ) 4/9 3.5 H/r 0.1 1, α/f). C a. 88) 1/9 Ωτ G f) ) 1/3. 89) ) 10/9 α/f

31 3 26 α.,, α 10 4 < α < 10 2., α 3, M T /M P 1. M T /M P.

32 Canup and Ward 2006)..,,.,, Type I migration.,,,.,,,.,,,,.,,. Canup and Ward 2006),,.,.

33 5 Canup and Ward Canup and Ward 2006 Canup and Ward 2006) A common mass scaling for satellite systems of gaseous planets ) ,,,,, 10,,.,,. )..

34 5 Canup and Ward ,. M T M P, M T /M P ,., ) H + He).,M T /M P ) 10 4 ). M T /M P ) = M T /M P ) ,,,,.,,.,.,,. 10 4,.,,,. 5.3,, ,, ),

35 5 Canup and Ward , Fig ).,.,,,.,.,,.,,...

36 5 Canup and Ward a, ).. b,. F in 1/r) γ in r γ in ), r in r c ). F in f. ν r 2 /ν, ν = αch ). α 1 c H. ν F in / F in in, σ G. γ in = 0, r r c, σ G 0.3F in r c 2 /ν)[1.2 r c /r d r/r C ) 2 /4] 0.21/α) F in Ω 1 )r/h) 2 r c /r) 2 r/r c ) = 0.5, r c /r d ) = 0.2 ref.9 ). r d,ω r. r c 10R P.,,., 10 4 < α < 0.1,r r c 30R P τ ν 1/α).,,,,. f 10 2., f 3 30.,, f.,,, f.

37 5 Canup and Ward ,,. m s /M p ), m s /M p ) 2. m s..,, 1,. e) a) τ e,τ 1, τ e = e/ ė, τ 1 = a/ ȧ. τ 1 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H = C e τ e r C a H/r) 2. 5.A.1) C a C e 1. σ G. Ω = GM p /r 3 ) 1/2 r. H, c, H/r) c/rω) 0.1.,., 1.. m s τ acc τ acc fm s /2πr rf in ). F in, f -, 2πr r. e ). r/r 2e, e H/r)m s /4πrHσ G ) 1/5,,. r, τ acc fσ G /F in )m s /4πrHσ G ) 4/5. m crit, 5.A.1) τ acc = 1,m S = m crit., G,. α.

38 5 Canup and Ward G F i n/α).fig.1 ) r c,., F in M P / r C 2 G )., G M P dm/dt 1 M P. ), ) ) 5/9 ) 26/9 ) 10/9 ) 2/3 mc π H r α 5.4 Ωτ G f) 1/9, 5.A.2) M P C a r r C f ) 5/9 ) 26/9 ) 10/9 ) 2/3 3.5 H/r r/rc α/f χ A.3). C a,χ [1week/2 /Ω))f/10 2 )τ G /10 7 yr)] 1/9 1. m crit /M P ) χ G ) 1/9.,. H/r), r, H/r) 0.1. r c,, r/r c ), 1. 5.A.3). α - f.,., 1., f.,. m crit., 1 m crit., 1 acc ).,, m crit,m T. H/r), f,, ) rc MT m crit/m P ) = dr, 5.A.4) M P R P r ) 4/9 ) 10/9 ) 1/3 1 H α C a r f Ωτ G f), 5.A.5) 1/ ) 4/9 ) 10/9 ) 1/3 3.5 H/r α/f χ A.6) C a

39 5 Canup and Ward r C R P. R P. M T /M P ) χ, r c, α/f). 5.5 N,.. F in /f).. 4 α/f). 1. M T /M P ) 5.A.6) M T,, 5.A.3) 5.A.6)., f = 10 2 ) 10, M T /M P =

40 5 Canup and Ward M T, M P τ G M P /dm/dt) 1, dm/dt. τ G = yr, r C = 30R P, γ in = 0. α/f) = 10 6, , ,,. M T m crit 5.A.3) )., M T., m crit,. M T /M P ) α/f) 1/3, α/f) 500, 10. M T /M P ), m crit. α/f), τ G.. M T /M P ). 5.A.3) 5.A.6),..., 5.A.3), 5.A.6) M T /M P ).

41 5 Canup and Ward a. b c m s M P ). b c γ in = 0, r c = 30R P, 1.7 < M in /M T < 10 M in ), τ G, yr yr τ G M in /M T )... b α/f) = , α = 0.05, M T /M P ) = c39 ).,α/f = 10 6 ), α = 10 4 M T /M P ) = α/f) = , α = M T /M P ) = c20 )., α/f) = , α = M T /M P ) = 10 4 c64 ). M T /M P ) = c17 ), α/f) = , α = R P M P, R P C C 7). ). α/f) = c60 ), M T /M P ) = M T,

42 5 Canup and Ward c b M T /M P ). 7 F in t) = F in 0) exp t/τ in ) σ G t) = σ G 0) exp t/τ in ). τ in 10 5 τ in years) ) t = 0., r C /R P = 25, 30, 44).,,,,. a α/f),. b α/f),. 4 ). a,b, r/r c ) = 0.5, c/rω) = 0.1, τ in = 10 6 yr, τ G = τ G,last τ in M P /M T )/f 5.A.3), 5.A.6).. α T P = 500K K = 0.1. ) T P K ). 1,. 1,. 5/2 m Gap /M P C v αh/r). Cv C v = 3, m Gap, < m lgst /m Gap >= , m Gap, τ v τ i n ). 1 M T m S.

43 5 Canup and Ward ,,.,,...,,,, r c ).,,.. α) - f ). M T /M P ) α/f) 1/3 α/f)., α/f) 10 6 < α/f) < ,,. α, f, b c20 ),,.. 75 N = 7.,., N.,

44 5 Canup and Ward m s /M P ) 10 5 N lg = 4. < C lg > 17). r c 25R P r C 44R P 20 < a max /R P < 60). r c a max 2. r c, R H ) j, 3. j j = Ω P R 2/5 H Ω P, R H = a P M P /3M ) 1/3, a P, M ), r r = j 2 /GM P,,,,r /R P r c 1.6r, r c < j >= GM P r.. T eff F 1/4 in,ref.9 )., τ G ), 5.A.3) 5.A.6) f ).,., τ in = 10 6 yr ), 15R P 200K α 10 3, K = O10 1 )cm 2 g 1, 500 K,ref.9 ),.,,,. 7 c17 1),.,,. τ in = 10 6 yr,m T /M P ) O10 4 ) 10, 2,3.

45 5 Canup and Ward ),., 98.,. ),. 27.,....., M T riton /M P ,.,., ).,. ),,. M T riton,, M T /M Neptune O10 4 ).

46 5 Canup and Ward ,3,..,., years ), 10 4 M P, -.

47 5 Canup and Ward ,,...,..

48 43 [1] Canup, Robin M., Ward, William R. : A common mass scaling for satellite systems of gaseous planets. Nature, Volume 441, Issue 7095, pp ). [2] Canup, Robin M., Ward, William R. : Formation of the Galilean Satellites: Conditions of Accretion. The Astronomical Journal, Volume 124, Issue 6, pp ). [3] Ikoma, Masahiro; Nakazawa, Kiyoshi; Emori, Hiroyuki., Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity., The Astrophysical Journal, Volume 537, Issue 2, pp ). [4] Hayashi, C., Nakazawa, K., Nakagawa, Y. : Formation of the solar system. IN: Protostars and planets II A ). Tucson, AZ, University of Arizona Press, pp ). [5] Mosqueira, Ignacio., Estrada, Paul R. : Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, Volume 163, Issue 1, pp ). [6] Lubow, S. H., Seibert, M., Artymowicz, P., Disk Accretion onto High-Mass Planets., The Astrophysical Journal, Volume 526, Issue 2, pp ) [7] Shakura, N. I., Sunyaev, R. A. : Black holes in binary systems. Observational appearance. Astron. Astrophys., Vol. 24, pp ) [8], :.. pp ) [9], : ) [10], : )

Hidetaka Okada Department of Cosmosciences, Graduate School of Science, Hokkaido University

Hidetaka Okada Department of Cosmosciences, Graduate School of Science, Hokkaido University Hidetaka Okada 21372 Department of Cosmosciences, Graduate School of Science, Hokkaido University 212 2 28 , N 2.,.,.,. N 2, Ar. Ar, N 2, NH 3 N 2.. Kuramoto and Matsui (1994),,., 1 5, 5 K,,., Ar, Ar.,,

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P

Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary Physics Laboratory 2009 4 24 , Hayashi et

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Formation of hot jupiters by slingshot model Naoya Okazawa 22070283 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group 2011 4 18 1,.,,.,.,.,..,.,.,,.,.,,,.,.,.,.,,,..

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

1. : 1.5 2. ( ): 2.5 3. : 1 ( ) / minimum solar nebula model ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif ( ) SDSS : d 2 r i dt 2 ÿ j i

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information