4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

Size: px
Start display at page:

Download "4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code"

Transcription

1 MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code MIMO 7-2 MIMO 7-3 MIMO MIMO 7-4 MIMO c /(18)

2 MIMO s 1 (i) #1 #1 y 1 (i) #Nt #Nr s Nt (i) y Nt (i) 7 1 MIMO 7 1 N t N r MIMO T it k (1 k N t ) s k (i) l (1 l N r ) k h lk l y l (i) N t y l (i) = h lk s k (i) + n l (i) k=1 (7 1) n l (i) l N r Y(i) Y H (i) = [ y 1 (i) y 2 (i) y N r (i) ] H Y(i) (7 1) (7 2) Y(i) = HS(i) + n(i) (7 3) H h lk N r N t H = [ h 1 h 2 h Nt ] h H k = [ h 1k h 2k h N rk ] (7 4) (7 5) S(i) n(i) N t N r S H (i) = [ s 1 (i) s 2 (i) s N t (i) ] n H (i) = [ n 1 (i) n 2 (i) n N r (i) ] (7 6) (7 7) c /(18)

3 S(i) N t 0 Nt R s = S(i)S H (i) n(i) 0 Nr R n = n(i)n H (i) Y(i) 0 Nr R y (7 3) R y = Y(i)Y H (i) = H S(i)S H (i) H H + n(i)n H (i) = HR s H H + R n (7 8) S(i) n(i) MIMO I[S(i), Y(i)] I[S(i), Y(i)] = dy { } pys [Y(i), S(i)] ds p ys [Y(i), S(i)] log 2 p y [Y(i)]p s [S(i)] 1) p ys [Y(i), S(i)] Y(i) S(i) p y [Y(i)] p s [S(i)] Y(i) S(i) I[S(i), Y(i)] (7 9) S(i) p s [S(i)] MIMO C (7 9) C = max I[S(i), Y(i)] p s[s(i)] (7 10) 1) W Hz WC (7 10) C (7 9) I[S(i), Y(i)] = dy p y [Y(i)] log 2 p y [Y(i)] + ds p s [S(i)] dy p ys [Y(i) S(i)] log 2 p ys [Y(i) S(i)] (7 11) p ys [Y(i) S(i)] S(i) Y(i) p ys [Y(i) S(i)] n (i) (7 3) p ys [Y(i) S(i)] = 1 π Nr detr n exp { [Y(i) HS(i)] H R 1 n [Y(i) HS(i)] } (7 12) c /(18)

4 det( ) (7 11) ds p s [S(i)] dy p ys [Y(i) S(i)] log 2 p ys [Y(i) S(i)] = { ( ) ds p s [S(i)] log 2 π N r 1 detr n log 2 tr } [Y(i) HS(i)][Y(i) HS(i)] H R 1 n = log 2 ( π N r detr n ) N r log 2 (7 13) p s [S(i)] tr( ) (7 11) Y(i) Y(i) p y [Y(i)] p y [Y(i)] = 1 π Nr detr y exp [ Y(i) H R 1 y Y(i) ] (7 14) S(i) Y(i) (7 11) (7 13) ( ) dy p y [Y(i)] log 2 p y [Y(i)] = log 2 π N r N r detr y + (7 15) log 2 (7 13) (7 10) MIMO C C = log 2 det ( R 1 n R y ) = log2 det ( I Nr + R 1 n HR s H H) (7 16) (7 8) I N r N r s k (i) S(i) R s N r R s = P t N t I Nt (7 17) P t n(i) R n = σ 2 ni Nr (7 18) σ 2 n (7 16) C ( C = log 2 det I Nr + P ) t HH H N t σ 2 n (7 19) HH H N r N r Q Q min(n t, N r ) HH H N r N r U c /(18)

5 HH H = UDU H D = diag[λ 1, λ 2,..., λ Q, 0,..., 0] (7 20) (7 21) D N r N r diag[ ] λ q (1 q Q) HH H (7 20) (7 19) [ ( C = log 2 det U I Nr + ( = log 2 det I Nr + = log 2 Q = Q q=1 q=1 ( 1 + P tλ q N t σ 2 n P t N t σ 2 n P ) t D N t σ 2 n ) ( log P ) tλ q N t σ 2 n ) ] D U H (7 22) MIMO Q q SNR P tλ q N t σ 2 n N t = N r = N H 0 1 H C P t 2, N 3) W W C 1) ) G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Technical Journal, vol.1, no.2, pp.41-59, ) G.J. Foschini and M.J. Gans, On limits of wireless communications in a fading environment when using multi-element antennas, Wireless Personal Communications, vol.6, no.3, pp , c /(18)

6 STC: Space-Time Code STC STBC: Space-Time Block Code STTC: Space-Time Trellis Code 2 STC 2 STBC W-CDMA STBC STBC N = 2 STBC 1) STBC X 1 X 2 1, 2 X 1, X X 2 2 X 1 STBC 1 1 STBC M 2M M = 1 1, 2 H 1, H 2 STBC 2 2 Y 1, Y 2 STBC X 1 = H 1 Y 1 + H 2 Y 2 (7 23) X 2 = H 2 Y 1 H 1 Y 2. (7 24) STBC N = 1 M = 2 MRC 3 db STBC STBC N > 2 Tarokh 3) Ganesan 4, 5) PAM STBC 3) STBC N = 2, 4, 8 c /(18)

7 3) N > 2 STBC 1/2 R 3/4 STBC Jafarkhani 6) STBC STBC Jafarkhani STBC partial diversity ML STTC STTC N M STTC QPSK, 4 STTC t U t = (U t,1, U t,2 ) G modulo 4 (X t,1,., X t,n ) N QPSK 1 S k 0 00,01,02, ,11,12, ,21,22,23 30,31,32, QPSK, 4 STTC 2) 7 2 QPSK 2) QPSK, 4 STTC QPSK, 4 STTC 2) G G = (7 25) S k 0, 1, 2, c /(18)

8 1) S. Alamouti, Space block coding: A simple transmitter diversity technique for wireless communications, IEEE J. Select. Areas. Commun., vol.16, no.5, pp , Oct ) V. Tarokh, N. Seshadri, and A.R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. Inform. Theory, vol.44, pp , March ) V. Tarokh, H. Jafarkhani, and A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inform. Theory, vol.45, no.4, pp , July ) G. Ganesan and P. Stoica, Space-time diversity using orthogonal and amicable orthogonal designs, Wireless Personal Commun., vol.18, pp , Aug ) G. Ganesan and P. Stoica, Space-time block codes: A maximum SNR approach, IEEE Trans. Inform. Theory, vol.47, no.4, pp , May ) H. Jafarkhani, A quasi-orthogonal space-time block code, IEEE Trans. Commun.,, vol.49, no.1, pp.1-4, Jan c /(18)

9 MIMO MIMO M 1 m (1 m M) N rm N t N r N r = M m=1 N rm m it (7 2) N rm Y m (i) Y m (i) = H m S(i) + n m (i) (7 26) H m n m (i) N rm N t N rm S(i) (7 6) N t M S(i) = F m d m (i) m=1 (7 27) d m (i) m p m p m (1 p m N rm ) m F m d m (i) N t p m (7 27) S(i) S(i) = Fd(i) F = [F 1 F 2 F M ] d H (i) = [d H 1 (i) dh 2 (i) dh M (i)] (7 28) (7 29) (7 30) F d(i) (7 29) (7 30) N t P P P = M m=1 p m (7 26) Y m (i) N r Y(i) Y H (i) = [Y H 1 (i) YH 2 (i) YH M (i)] (7 31) Y(i) = HS(i) + n(i) (7 32) c /(18)

10 H n(i) N r N t N r H H = [H H 1 HH 2 HH M ] n H (i) = [n H 1 (i) nh 2 (i) nh M (i)] (7 33) (7 34) P N t (7 29) F m N rm = 1 p m = 1 P = N r N r N t 1) 1 Channel Inversion HH H N r N r 0 F H H H (HH H ) 1 F = 1 ξ H H (HH H ) 1 (7 35) S(i) = 1 ξ H H (HH H ) 1 d(i) (7 36) ξ S H (i)s(i) = P t ξ = 1 P t d H (i)(hh H ) 1 d(i) (7 37) (7 32) (7 36) Y(i) = 1 ξ d(i) + n(i) (7 38) 0 HH H ill condition (7 37) ξ SNR F F = 1 ξ H H (HH H + ζi Nr ) 1 (7 39) ζ ξ F 0 ζ = M/P t SINR 2) c /(18)

11 2 Sphere Decoding d(i) τd H -1 S(i) H n(i) y 1 (i) mod τ Encoding Fading channel y M (i) mod τ (a) Modulo vector precoding d(i) d 1 d 2 d K -r 21 /r 22 Q H mod τ mod τ S(i) H Fading channel n(i) y 1 (i) mod τ y M (i) mod τ (b) QR-based, successive precoding 7 3 Sphere decoding (7 35) F HH H SNR modulo vector precoding 3) 7 3(a) d(i) d d(i) d(i) + τ d d = a + jb (7 40) (7 41) j τ a b N r (7 41) d ξ d = arg min d [d(i) + τ d] H (HH H ) 1 [d(i) + τ d] (7 42) (7 32) Y(i) = 1 ξ [d(i) + τ d] + n(i) (7 43) Y(i) modulo τ/ ξ τ d/ ξ f τ [Y(i)] = 1 ξ d(i) + n(i) (7 44) f τ [ ] modulo c /(18)

12 τ τ = 2(d max + /2) (7 45) d max (7 42) d N r N r = N t QR-based successive precoding 4) 7 3(b) H QR H = RQ (7 46) R N r N r Q N r N r N r S(i) S(i) = Q H S(i) r 11 s 1 HS(i) = R S(i) = r 21 s 1 + r 22 s 2 = Dd(i) (7 47). r pq R (p, q) s p S(i) p D N r N r D = diag[r 11 r 22 r NrN r ] (7 48) (7 47) S(i) s 1 = d 1 (i) s 2 = d 2 (i) r 21 s 1 r 22 s 3 = d 3 (i) r 31 s 1 r 32 s 2 r 33 r 33. d p (i) d(i) p S(i) modulo s 1 = d 1 (i) [ s 2 = f τ d 2 (i) r ] 21 s 1 = d 2 (i) r 21 r 22 ] s 3 = f τ [ d 3 (i) r 31 r 33 s 1 r 32 r 33 s 2. r 22 s 1 + τ d 2 = d 3 (i) r 31 r 33 s 1 r 32 r 33 s 2 + τ d 3 (7 49) c /(18)

13 d p modulo DPC Dirty Paper Coding (7 47) S(i) S(i) = R 1 D[d(i) + τ d] (7 50) d d p N r S(i) S(i) = Q H R 1 D[d(i) + τ d] (7 51) τ d (7 49) modulo (7 42) ) 1 Channel Block Diagonalization channel block diagonalization HF H 1 0 HF =... (7 52) 0 H M H m N rm p m 0 0 F (N r N rm ) N t H m H m = [H H 1 HH m 1 HH m+1 HH M ]H (7 53) H m Q m H m = Ũ m Σ m [Ṽ 1 m Ṽ0 m] H (7 54) Ũ m (N r N rm ) (N r N rm ) Σ m Q m 0 0 (N r N rm ) N t Ṽ 1 m Q m N t N t Q m Ṽ 0 m 0 N t N t (N t Q m ) Ṽ 0 m H m H m (m m) c /(18)

14 m N rm (N t Q m ) H m Ṽ 0 m Q m H m Ṽ 0 m = U m Σ m [V 1 m V 0 m] H (7 55) U m N rm N rm Σ m Q m 0 0 N rm (N t Q m ) V 1 m Q m (N t Q m ) (N t Q m ) Q m V 0 m 0 (N t Q m ) (N t Q m ) (N t Q m Q m ) p m Q m p m (N t Q m ) V 1 m (N t Q m ) p m V 1 m p m > Q m Q m m p m = Q m V 1 m V1 m V 1 m Ṽ0 m F F = [Ṽ 0 1V 1 1 Ṽ 0 MV 1 M ]Λ1/2 (7 56) Λ P P P t 5) 2 1 m p m = 1 m N rm w m 7 4 w 1 HH 1 w M HH M -1 Channel 1 H 1 n 1 y 1 Receiver 1 w 1 x 1 d S(i) Channel M Receiver M Precoder H M n M y M w K x M 7 4 m x m (i) (7 26) x m (i) = w H my m (i) = ( w H mh m ) S(i) + w H m n m (i) (7 57) c /(18)

15 x m (i) M X(i) X(i) = [x 1 (i) x 2 (i) x M (i)]h (7 58) Y(i) X(i) H m w H mh m F channel inversion F w m MMSE w m w m = Y m (i)y H m(i) 1 Y m (i)d m(i) = [ H m F d(i)d H (i) F H H H m + n m (i)n H m(i) ] 1 [ Hm F d(i)d m(i) ] = ( H m FF H H H m + σ 2 ni Nr ) 1 Hm F m (7 59) σ 2 n n m (i)n H m(i) = σ 2 ni Nr (7 60) d(i)d H (i) = I Nr (7 61) {w m 1 m M} F {w m 1 m M} F 1) D. Gerlach and A. Paulraj, Adaptive transmitting antenna arrays with feedback, IEEE Signal Processing Letters, vol.1, no.10, pp , Oct ) C.B. Peel, B.M. Hochwald, and A.L. Swindlehurst, A vector-perturbation technique for near-capacity multi-antenna multiuser communication - Part I: channel inversion and regularization, IEEE trans. Commun., vol.53, no.1, pp , Jan ) B.M. Hochwald and C.B. Peel, Vector precoding for the multi-antenna, multi-user channel, in Proceedings Allerton Conference on Communication, Control, and Computing, Monticello, LI, Oct ) R. Fischer, C. Windpassinger, A. Lampre, and J. Huber, MIMO precoding for decentralized receivers, in Proceedings IEEE International Symposium on Information Theory, Lausanne, Switzerland, p.496, June/July ) Q.H. Spencer, A.L. Swindlehurst, and M. Haardt, Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels, IEEE Trans. Signal Processing, vol.52, no.2, pp , Feb c /(18)

16 SVD-MIMO N M MIMO MIMO H L MIMO L H SVD: Singular Value Decomposition H = V L ΣU H L (7 62) U L H H H N U 1 L N L H H H = UΛU H (7 63) Λ diag(λ 1,, λ L, 0,, 0) N λ j HH H j λ j λ 1 λ 2... λ L > λ L+1 =... = λ N = 0 (7 64) V L HH H M V 1 L M L HH H = VΛ V H (7 65) Λ diag(λ 1,, L λ, 0,, 0) M H H H Σ diag( λ 1,, λl ) H L = min(m, N) (7 5) SVD MIMO 7 5 L SVD λi λ i MIMO L SM multiplexing gain SVD MIMO L c /(18)

17 7 5 MIMO H H H L U L = (u 1 u L ) L HH H L V L = (v 1 v L ) VL H H e V H L HU L V H L V LΣU H L U L Σ (7 66) L E-SDM: Eigenbeam Eigenmode -SDM Water Filling i P i P total P N P total P i J = N ( Pi λ ) i N log 2σ + 1 a 2 P i P total i=1 i=1 (7 67) J/ P i = 0 P i 0 P i ( ) 1 P i = max a 2σ2, 0 (7 68) λ i c /(18)

18 a N P i = P total i=1 (7 69) 7 6 SN 2σ 2 /λ i 2σ 2 /λ i 1/a i 7 6 1), ), 2006 c /(18)

ohgane

ohgane Signal Detection Based on Belief Propagation in a Massive MIMO System Takeo Ohgane Hokkaido University, Japan 28 October 2013 Background (1) 2 Massive MIMO An order of 100 antenna elements channel capacity

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

1

1 5-3 Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems LI Keren, MATSUI Toshiaki, and IZUTSU Masayuki In this paper, we presented our recent works on development of

More information

RCS 5 5G 28 10 19 1 1 2 3 2.1........................................ 3 2.2............................... 3 2.3.............................. 10 3 17 3.1...................................... 17 3.2

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation

More information

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twitter Ustream 1 Graduate School of Information Science and Technology, Osaka University, Japan 2 Cybermedia Center, Osaka University,

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー IEEE 802.11ax 6 Wi-Fi 1 6 Wi-Fi IEEE 802.11ax 802.11ac IEEE 802.11ax LTE IEEE 802.11ax LAN WLAN Wi-Fi IEEE 802.11ax LAN 4K Ultra HD Internet of Things IoT 802.11ac IoT IEEE 802.11ax 3 1024 QAM 35% OFDMA

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

050920_society_kmiz.odp

050920_society_kmiz.odp 1 リアルタイム伝搬測定にもとづく MIMO 固有モード間相関解析 Correlation Analysis of MIMO Eigenmodes Based on Real-Time Channel Measurement 水谷慶阪口啓高田潤一荒木純道 Kei Mizutani Kei Sakaguchi Jun-ichi Takada Kiyomichi Araki 東京工業大学 発表内容 研究背景

More information

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of IEEE802.11 [1]Bluetooth [2] 1 1 (1) [6] Ack (Ack) BEC FEC (BEC) BEC FEC 100 20 BEC FEC 6.19% 14.1% High Throughput and Highly Reliable Transmission in MANET Masaaki Kosugi 1 and Hiroaki Higaki 1 1. LAN

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

format

format 非直交多元接続 (NOMA) 慶應義塾大学理工学部電子工学科 眞田研究室 4 年 安藤健二 -1- 背景通信に使うことのできる周波数帯域は限られているため, 増加するトラフィックに対し帯域利用効率のよい多元接続方式が求められる -2-82.2 105.2 123.5 154.6 181.3 234.8 274.3 328.9 349.0 422.0 469.8 546.4 586.2 0 100 200

More information

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip No.75 2010 7 5 Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems..................................... ( )........... ( ) Design of Power Efficient

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

5989_3443JAJP.qxd

5989_3443JAJP.qxd Agilent Application Note 1509 2 3 Reduced Interface Spacing 4 C B r r 5 s H 6 SISO SIMO MISO MIMO C S B.log 2 (1 r s i = 1 to N N i2 (H)) s H H AA AA A 7 T 0 T1 0.8 0.2 0.3-0.9 R 0= 0.8T 0+ 0.3T1 R 1=

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

format

format MIMO 復調法 信号の検出方法について 2012 年 5 月 10 日 -1- Multiple-Input Multiple-Output MIMO 同一時刻 同一周波数で信号を複数のアンテナから多重送信. 複数のアンテナから受信し信号処理を行うことで情報を復元するシステム. 使用する帯域幅が狭く, 多くの情報を送ることができる. 情報 A 信号分割 送信機 送信信号 x 1 x 2 x X h

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 657 8531 1 1 E-mail: {soda,matsubara}@ws.cs.kobe-u.ac.jp, {masa-n,shinsuke,shin,yosimoto}@cs.kobe-u.ac.jp,

More information

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n+1 Cluster n+1 ... 3 1. MIMO... 3 1.1 MIMO 1.2 MIMO

More information

untitled

untitled LMS FPGA 18 2 28 0244031 MMSE( Minimum Mean Square Error) MMSE LMS( Least Mean Square), RLS( Recursive Least Mean) ( ) LMS, N-LMS( Normalized - LMS) FPGA( Field Programmable Gate Array) FPGA, 2 FPGA N-LMS

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2 (Communication and Network) 1 1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2 1.1 AM s(t) : A(αs(t) + 1) cos 2πf c t A, α : s(t) = cos

More information

大面積プラズマ生成用アンテナの設計に関する研究

大面積プラズマ生成用アンテナの設計に関する研究 第 53 回伝送工学研究会 MIMO 伝送特性におけるアンテナ素子の利得不平衡の影響に対する実験的検討 柿沼悠岩木孝憲陳強澤谷邦男 東北大学大学院工学研究科 平成 年 月 8 日 MIMO 伝送特性におけるアンテナ素子の利得不平衡の影響に対する実験的検討 柿沼悠 岩木孝憲 陳強 澤谷邦男 東北大学大学院工学研究科 98-8579 宮城県仙台市青葉区荒巻字青葉 6-6-5 E-mail: {kaki,

More information

1-4 DL 10 bps / Hz UL 2.5 bps / Hz 1-6 DL 10 bps / Hz WCDMA Evolved UTRA / UTRAN 1-4 DL 5 bps / Hz UL 2.5 bps / Hz 1-7 DL 5 bit / Hz WCDMA HSDPA / HSUPA 1-2 DL 1.0 1.7 bit / Hz 1-7 DL 5 bit / Hz 1-10 5

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

t.dvi

t.dvi T-1 http://adapt.cs.tsukuba.ac.jp/moodle263/course/view.php?id=7 (Keisuke.Kameyama@cs.tsukuba.ac.jp) 29 10 11 1 ( ) (a) (b) (c) (d) SVD Tikhonov 3 (e) 1: ( ) 1 Objective Output s Known system p(s) b =

More information

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR Vol. 51 No. 11 2081 2088 (Nov. 2010) 2 1 1 1 which appended specific characters to the information such as identification to avoid parity check errors, before QR Code encoding with the structured append

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

P361

P361 ΣAD -RFDAC - High-Speed Continuous-Time Bandpass ΣAD Modulator Architecture Employing Sub-Sampling Technnique with 376-8515 1-5-1 Masafumi Uemori Tomonari Ichikawa Haruo Kobayashi Department of Electronic

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

untitled

untitled + From Tradeoffs of Receive and Transmit Equalization Architectures, ICC006,Bryan Casper, Intel Labs Transmitter Receiver 0 magnitude (db) 0 0 30 40 50 60 0 4 frequency (GHz). Receiver Transmitter FFE

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

27 送信電 ISSCC 2017 [5, 6, 7] PC CPU ASIC CPU ASIC AD/DA 1 制御 2: 制御 3: 4: LAN dbm 90 dbm 20 dbm 20 db 0 dbm 40 db AD 40 dbm 50 db

27 送信電 ISSCC 2017 [5, 6, 7] PC CPU ASIC CPU ASIC AD/DA 1 制御 2: 制御 3: 4: LAN dbm 90 dbm 20 dbm 20 db 0 dbm 40 db AD 40 dbm 50 db () 30 4 2 1 2 LAN 1 IEEE 802.11n 6 Mbps IEEE 802.11n 6 Mbps 82 dbm 20 dbm 82 dbm 160 90 dbm 20 dbm 110 db 1: 2 2018 4,,,, Vol.101, No.4, pp.387 393, 2018. [1] It is generally not possible for radios to

More information

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

地中レーダによる地下計測

地中レーダによる地下計測 2001 7 sato@cneas.tohoku.ac.jp Tel&Fax:022-217-6075 1 (Ground Penetrating radar: GPR) ( ) 2 2.1 10MHz ε r c 3 v = = 10 8 ( m/ s) (1) ε ε r r 1 f (Hz) λ (m) ε r λ = vt = v f ( m) (2) 2.2 1 1 τ (s) d(m)

More information

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) NAIST-IS-MT0751044 2.4GHz W-LAN 2008 8 20 ( ) ( ) ( ) ( ) ( ) 2.4GHz W-LAN ISM(Industrial, Sientific and Medical) 2.4GHz IEEE802.11b/gW-LAN 2.4GHz W-LAN 2.4GHz ISM (Industry Scientific and Medical) ISM

More information

MainOfManuscript.dvi

MainOfManuscript.dvi 18 2 28 0244086 IC IC IC (MDA) 20% 60% i 1 1 2 4 2.1................. 4 2.2 UHF............. 9 2.2.1 315MH.......................... 10 2.2.2 433MH.......................... 13 2.2.3.......................

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

MainOfManuscript.dvi

MainOfManuscript.dvi OFDM A Study on Transmission Characteristics of OFDM with Directional Antenna 17 2 7 03GD150 LAN OFDM OFDM OFDM 1 i 1 1 1.1...................................... 1 1.2 OFDM............. 2 1.3...............................

More information

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 1 1 1 GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Self-location is very informative for wearable systems.

More information

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 ITU-R IMT-Advanced 100 Mbit/s 1Gbit/s IMT-Advanced IMT-Advanced

More information

? FPGA FPGA FPGA : : : ? ( ) (FFT) ( ) (Localization) ? : 0. 1 2 3 0. 4 5 6 7 3 8 6 1 5 4 9 2 0. 0 5 6 0 8 8 ( ) ? : LU Ax = b LU : Ax = 211 410 221 x 1 x 2 x 3 = 1 0 0 21 1 2 1 0 0 1 2 x = LUx = b 1 31

More information

4.1 % 7.5 %

4.1 % 7.5 % 2018 (412837) 4.1 % 7.5 % Abstract Recently, various methods for improving computial performance have been proposed. One of these various methods is Multi-core. Multi-core can execute processes in parallel

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

untitled

untitled - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp) ADC121S625 ADC121S625 12-Bit, 50 ksps to 200 ksps, Differential Input, Micro Power Sampling A/D Converter Literature Number: JAJSAB8 ADC121S625 12 50kSPS 200kSPS A/D ADC121S625 50kSPS 200kSPS 12 A/D 500mV

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

スライド タイトルなし

スライド タイトルなし (1) - E-Mail: katto@waseda.jp Y U V R G B (1/30 ) RGB / YUV = B G R V U Y 0.31 0.52 0.21 0.32 0.28 0.60 0.11 0.59 0.30 RGB YUV CCIR 601 4:4:4 4:2:2 4:2:0 Y Y Y U V U V U V YUVUV UV 4:2:0 4:2:2 (RGB8 )

More information

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc THE ISTITUTE OF ELECTROICS, IEICE Technical Report IFORMATIO AD COMMUICATIO EGIEERS OFDM PAPR 90-579 6-6-05 E-mail: kazuki@mobile.ecei.tohoku.ac.jp, adachi@ecei.tohoku.ac.jp (OFDM (PAPR PAPR Tomlinson-Harashima

More information

untitled

untitled 4. AWCC 4.1 ITS MIMO ITS MIMO 4.2 AWCC 4.3 AWCC 400 350 300 250 200 150 100 50 0 H17 H18 H19 H20 AWCC(5 ) 31.65.4 / 8.0 / 180 160 140 120 100 80 60 40 20 0 H17 H18 H19 H20 AWCC 40 35 30 25 20 15 10 5 0

More information

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN 3 1,a) 1,b) 3D 3 3 Difference of Normals (DoN)[1] DoN, 1. 2010 Kinect[2] 3D 3 [3] 3 [4] 3 [5] 3 [6] [7] [1] [8] [9] [10] Difference of Normals (DoN) 48 8 [1] [6] DoN DoN 1 National Defense Academy a) em53035@nda.ac.jp

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch 1 -- 2 6 LDPC 2012 3 1993 1960 30 LDPC 2 LDPC LDPC LDPC 6-1 LDPC 6-2 6-3 c 2013 1/(13) 1 -- 2 -- 6 6--1 2012 3 turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) 6 1 2 1 1 interleaver 2 2 2 parallel concatenated

More information

2006 Indexed Fuzzy Vault 3ADM1117 3ADM3225

2006 Indexed Fuzzy Vault 3ADM1117 3ADM3225 2006 Indexed Fuzzy Vault 3ADM1117 3ADM3225 1 1 2 Fuzzy Vault Scheme 2 2.1................................... 2 2.2............................... 2 2.3............................. 2 3 3 3.1 Reed-Solomon...........................

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

3 16 2 27 4497 LAN(Local Area Network) OFDM(Orthogonal Frequency Division Multiplexing) 12 3 3 12 3 12 33. F/B 22.7dB 3 F/B i 1 1 2 3 8 2.1................................. 8 2.2.............................

More information

2013 M

2013 M 2013 M0110453 2013 : M0110453 20 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1................................. 6 2.2................................. 8 2.3.................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MATLAB MIMO MIMO MIMO MIMO MIMO MIMO [16] MIMO [1

MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MATLAB MIMO MIMO MIMO MIMO MIMO MIMO [16] MIMO [1 CSI MIMO 1,a) Bryan Ng 2 Winston Seah 2,b) 3,c) 1,d) 1 1 MIMO MIMO MIMO MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MIMO MATLAB 50 2.5 1.4 1. 2013 1 2014 1 65% 10 100 [1]

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

GD152

GD152 15 1 31 01GD152 MUSIC T T CdmaOne 2 i 1 1 2 6 2.1... 6 2.1.1... 6 2.1.2... 8 2.2 Beamformer... 9 2.3 MUSIC... 10 3 T 15 3.1... 15 3.2... 18 4 20 4.1... 20 4.2... 21 5 25 5.1... 25 5.2... 29 5.2.1 1...

More information

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN 23 IEEE802.11n LAN 43422519 ( ) 24 2 6 IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE802.11 LAN Bluetooth 2009 9 IEEE802.11 LAN IEE E802.11n

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33 : : P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33 27 26 10 26 10 25 10 0.7% 331 % 26 10 25 10 287,018 280,446 6,572 30,236 32,708 2,472 317,254 313,154 4,100 172,724 168,173 4,551 6,420 6,579 159 179,144

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

impulse_response.dvi

impulse_response.dvi 5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt

AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt 1 BYOD LAN 1 2 3 4 1 BYOD 1 Gb/s LAN BYOD LAN LAN Access Point (AP) IEEE 802.11n BYOD LAN AP wget iperf3 1 AP [2] 2 IEEE 802.11ac [3] AP 4 AV (207 m 2 ) ( 1 2 )[4, 5] AP Wave2 Aruba AP-335 Aruba LAN 7210

More information