(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Size: px
Start display at page:

Download "(MIRU2008) HOG Histograms of Oriented Gradients (HOG)"

Transcription

1 (MIRU2008) HOG Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human Posture Estimation Using the HOG Features from Monocular Image Katsunori ONISHI, Tetsuya TAKIGUCHI, and Yasuo ARIKI Graduate School of Science and Technology, Kobe University, -, Rokkodai, Nada, Kobe, Hyogo Organization of Advanced Science and Technology, Kobe University, -, Rokkodai, Nada, Kobe, Hyogo Abstract the markers. This paper shows a method to estimate the D human posture from monocular image without using A D human body is expressed by a multi-joint model, and each of that joint angle describes a posture. This method estimates the posture with the Histograms of Oriented Gradients(HOG) features that can express the shape of the object in the input image obtained from one camera. In addition, the feature dimension of the background area is reduced by principal component analysis performed at every block of HOG. Joint angles in Human multi-joint model are estimated by linear regression analysis applied to its feature vector extracted from an input image. As a result of comparison experiment with the Shape Contexts features, the estimation error was reduced by about 5.5 degrees. Key words Posture estimation, D, Histograms of Oriented Gradients, Principal component analysis, Linear regression analysis, Monocular image. [] [2]

2 入力画像 背景差分 正規化 輝度勾配 算出 セル毎に勾配方向と 強度をヒストグラム化. ブロック毎に 正規化 HOG [7] [0] [6] [8] [9] [] [2] HOG HOG HOG 2. HOG HOG 2. Histograms of Oriented Gradients gradient Histograms of Oriented Gradients (HOG) [] [4] Scale- Invariant Feature Transform (SIFT) [5] HOG SIFT SIFT SIFT (keypoint) HOG HOG 2.. HOG 2(a) (x, y) I(x, y) f x (x, y) = I(x +, y) I(x, y) f y (x, y) = I(x, y + ) I(x, y ) x, y x, y f x f y x y m(x, y) θ(x, y) () m(x, y) = f x (x, y) 2 + f y (x, y) 2 (2) θ(x, y) = tan (f y (x, y)/f x (x, y)) () θ(x, y) [ 80, 80 ] [0,80 ] { θ(x, y) + π, if θ(x, y) < 0 θ(x, y) = θ(x, y), otherwise (a) 2 セル : c w c h 画素 HOG (b) (4) 2(b) c w c h m(x, y) θ(x, y)

3 θ(x, y) c b m(x, y) c b 2.. b w b h c b d b = b w b h c b v (i, j), { < = i < = b w, < = j < = b h } h ij 4 2(a) HOG 特徴次元高 h ij = h ij v ϵ (ϵ = ) (5) h ij 4 低 オーバーラップ & 正規化 ブロック : c b方向 b w b h セル 2. ( ) y HOG HOG 5. [6] ( 6)

4 HOG 特徴 x n 枚画像 A 6 推定人体モデル特徴 HOG x R d y R m y = Ax + ε (6) A m d ε x y n {(y i, x i ) i = n}( HOG ) (A ) A := arg min A y n Ax i y i 2 (7) i= m n Y (y y 2 y n ) d n X (x x 2 x n ) A := arg min AX Y 2 (8) A HOG x A y A AX = Y X T A T = Y T 4. Shape Contexts [8] 4. [6] 7(a) 7(b) n P = {p,, p n }, p i R 2 p i p i q(q p i ) p i n p i h i (k) = {q p i : (q p i ) bin(k)} (9) p i shape context 7(c) log-polar p i (a) (b) (c) log-polar 7 60 shape context shape context 00 k-means shape context shape context (a)

5 (b) hedvig/data.html (c) 2. (a) (b) (c) HOG c w = 0, c h = 0, c b = 9, b w =, b h = d b = b w b h c b = HOG HOG 90% 8 HOG y ( ) 24 RMS error (degree) Shape Contexts HOG Block PCA 9 HOG HOG RMS error (degree) Shape Contexts HOG Block PCA 腕部 脚部 全身 HOG 0 5

6 ( ) 5 0 Shape Contexts HOG Block PCA RMS error (degree) 直立手を上げる手を広げる歩く走る HOG HOG [] -Computer Vision and Image Media, Vol.2006, No.5, pp.75-92, [2] Boosting (MIRU2007), 77-82, [] N.Dalal and B.Triggs Histograms of Oriented Gradients for Human Detection, IEEE Conputer Vision and Pattern Recognition, , [4],, H.Bon-Woo,,, (MIRU2007), , [5] D.Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2), 9-0, [6] A.Agarwal and B.Triggs, D Human Pose from Silhouettes by Relevance Vector Regression, IEEE Conference on Computer Vision and Pattern Recognition, VOL.2, , 2004 [7] M.Lee, I.Cohen, A Model-Based Approach for Estimating Human D Poses in Static Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL.28, No.6, [8] G.Mori and J.Malik, Estimating Human Body Configurations using Shape Context Matching, European Conference on Computer Vision, 50-80, [9] G.Mori and J.Malik, Recovering D Human Body Configurations using Shape Contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL.28, No.7, , [0],,,, CG, Technical report of IEICE. PRMU, VOL.04, No.57, 79-84, [], B.Stenger, Tree-Based Filtering, (MIRU2006), 6-69, [2],,,, (MIRU2007), , 2007.

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF Partial Copy Detection of Line Drawings from a Large-Scale Database Weihan Sun, Koichi Kise Graduate School of Engineering, Osaka Prefecture University E-mail: sunweihan@m.cs.osakafu-u.ac.jp, kise@cs.osakafu-u.ac.jp

More information

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta 1 1 1 1 2 1. Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Takayuki Okatani 1 and Koichiro Deguchi 1 This paper presents a method for recognizing the pose of a wire harness

More information

Real AdaBoost HOG 2009 3 A Graduation Thesis of College of Engineering, Chubu University Efficient Reducing Method of HOG Features for Human Detection based on Real AdaBoost Chika Matsushima ITS Graphics

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

本文6(599) (Page 601)

本文6(599) (Page 601) (MIRU2008) 2008 7 525 8577 1 1 1 E-mail: matsuzaki@i.ci.ritsumei.ac.jp, shimada@ci.ritsumei.ac.jp Object Recognition by Observing Grasping Scene from Image Sequence Hironori KASAHARA, Jun MATSUZAKI, Nobutaka

More information

A Graduation Thesis of College of Engineering, Chubu University Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata

A Graduation Thesis of College of Engineering, Chubu University Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata 2011 3 A Graduation Thesis of College of Engineering, Chubu University Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata CG [2] [3][4] 3 3 [1] HOG HOG TOF(Time Of Flight) iii

More information

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information 1 1 2 TOF 2 (D-HOG HOG) Recall D-HOG 0.07 HOG 0.16 Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata 1 and Hironobu Fujiyoshi 1 A method for estimating the pose of a human from

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2 IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 MI-Hough Forest () E-mail: ym@vision.cs.chubu.ac.jphf@cs.chubu.ac.jp Abstract Hough Forest Random Forest MI-Hough Forest Multiple Instance Learning Bag Hough Forest

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance EMD 1,a) 1 1 1 SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance (EMD), Bag-of-keypoints,. Bag-of-keypoints, SIFT, EMD, A method of similar image retrieval system using EMD and SIFT Hoshiga

More information

VRSJ-SIG-MR_okada_79dce8c8.pdf

VRSJ-SIG-MR_okada_79dce8c8.pdf THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 630-0192 8916-5 E-mail: {kaduya-o,takafumi-t,goshiro,uranishi,miyazaki,kato}@is.naist.jp,.,,.,,,.,,., CG.,,,

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly

More information

yoo_graduation_thesis.dvi

yoo_graduation_thesis.dvi 200 3 A Graduation Thesis of College of Engineering, Chubu University Keypoint Matching of Range Data from Features of Shape and Appearance Yohsuke Murai 1 1 2 2.5D 3 2.1 : : : : : : : : : : : : : : :

More information

paper.dvi

paper.dvi 23 Study on character extraction from a picture using a gradient-based feature 1120227 2012 3 1 Google Street View Google Street View SIFT 3 SIFT 3 y -80 80-50 30 SIFT i Abstract Study on character extraction

More information

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing number of HOG Features based on Real AdaBoost Chika Matsushima, 1 Yuji Yamauchi, 1 Takayoshi Yamashita 1, 2 and

More information

,,,,,,,,,,,,,,,,,,, 976%, i

,,,,,,,,,,,,,,,,,,, 976%, i 20 Individual Recognition using positions of facial parts 1115081 2009 3 5 ,,,,,,,,,,,,,,,,,,, 976%, i Abstract Individual Recognition using positions of facial parts YOSHIHIRO Arisawa A facial recognition

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: matsunagah@murase.m.is.nagoya-u.ac.jp, {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,

More information

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf 1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi

More information

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1, 1 1 2,,.,.,,, SIFT.,,. Pitching Motion Analysis Using Image Processing Shinya Kasahara, 1 Issei Fujishiro 1 and Yoshio Ohno 2 At present, analysis of pitching motion from baseball videos is timeconsuming

More information

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc iphone 1 1 1 iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Processing Unit)., AR Realtime Natural Feature Tracking Library for iphone Makoto

More information

14 2 5

14 2 5 14 2 5 i ii Surface Reconstruction from Point Cloud of Human Body in Arbitrary Postures Isao MORO Abstract We propose a method for surface reconstruction from point cloud of human body in arbitrary postures.

More information

Sobel Canny i

Sobel Canny i 21 Edge Feature for Monochrome Image Retrieval 1100311 2010 3 1 3 3 2 2 7 200 Sobel Canny i Abstract Edge Feature for Monochrome Image Retrieval Naoto Suzue Content based image retrieval (CBIR) has been

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa 3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) yabushita.hiroko@lab.ntt.co.jp

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

IPSJ SIG Technical Report Vol.2015-UBI-47 No.23 Vol.2015-ASD-2 No /7/ , HOG Parameter Estimation from Videos in Monocular Camera for Eva

IPSJ SIG Technical Report Vol.2015-UBI-47 No.23 Vol.2015-ASD-2 No /7/ , HOG Parameter Estimation from Videos in Monocular Camera for Eva 1 2 1, HOG Parameter Estimation from Videos in Monocular Camera for Evaluation System of the Bowing Action Abstract: Bowing is a symbol of greeting culture in Japan, and it is an important action for smooth

More information

色の類似性に基づいた形状特徴量CS-HOGの提案

色の類似性に基づいた形状特徴量CS-HOGの提案 IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: yuhi@vision.cs.chubu.ac.jp Abstract

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i 24 SURF Recognition of Facial Expression Based on SURF 1130402 2013 3 1 SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i Abstract Recognition of Facial

More information

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 657 8531 1 1 E-mail: {soda,matsubara}@ws.cs.kobe-u.ac.jp, {masa-n,shinsuke,shin,yosimoto}@cs.kobe-u.ac.jp,

More information

経済論集 44‐1(よこ)/2.李

経済論集 44‐1(よこ)/2.李 PC PC IT PC IT ! 1 The Archimedes Project 2 1992 TAS Total Access System 3 itaskintelligent Total Access System 4 Ho alauna 5 1 PC IT IT Archimedes at StanfordTASTotal Access System itaskintelligent Total

More information

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGIN

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGIN 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report PRMU2017-36,SP2017-12(2017-06)

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

兵庫県立大学学報vol.17

兵庫県立大学学報vol.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 THE UNIVERSITY OF HYOGO NEWS 2014 VOL.17 School of Human Science and Environment

More information

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1 UNWTO OD 2 FURUYA, Hideki 1 LCC 1 2 OD 1 2 OD 3 4 5 6 7 8 9 10 11 /1 GDP M. H. Mohd Hanafiah and M. F. Mohd Harun 12 GDP 1 13 Vol.15 No.4 2013 Winter 041 3 3.1 6222011 Visit Japan Campaign2003521 10119

More information

(Visual Secret Sharing Scheme) VSSS VSSS 3 i

(Visual Secret Sharing Scheme) VSSS VSSS 3 i 13 A Visual Secret Sharing Scheme for Continuous Color Images 10066 14 8 (Visual Secret Sharing Scheme) VSSS VSSS 3 i Abstract A Visual Secret Sharing Scheme for Continuous Color Images Tomoe Ogawa The

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

光学

光学 Range Image Sensors Using Active Stereo Methods Kazunori UMEDA and Kenji TERABAYASHI Active stereo methods, which include the traditional light-section method and the talked-about Kinect sensor, are typical

More information

Microsoft Word - toyoshima-deim2011.doc

Microsoft Word - toyoshima-deim2011.doc DEIM Forum 2011 E9-4 252-0882 5322 252-0882 5322 E-mail: t09651yt, sashiori, kiyoki @sfc.keio.ac.jp CBIR A Meaning Recognition System for Sign-Logo by Color-Shape-Based Similarity Computations for Images

More information

25 Removal of the fricative sounds that occur in the electronic stethoscope

25 Removal of the fricative sounds that occur in the electronic stethoscope 25 Removal of the fricative sounds that occur in the electronic stethoscope 1140311 2014 3 7 ,.,.,.,.,.,.,.,,.,.,.,.,,. i Abstract Removal of the fricative sounds that occur in the electronic stethoscope

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es 1 1 1 1 1 5 1 2 1 A Consideration of Features for Fatigue Estimation by Gait Analysis Using Accelerometer Hidekazu Higashi, 1 Tadashi Shigeoka, 1 Tsuyoshi Itokawa, 1 Teruaki Kitasuka 1 and Masayoshi Aritsugi

More information

bag-of-words bag-of-keypoints Web bagof-keypoints Nearest Neighbor SVM Nearest Neighbor SIFT Nearest Neighbor bag-of-keypoints Nearest Neighbor SVM 84

bag-of-words bag-of-keypoints Web bagof-keypoints Nearest Neighbor SVM Nearest Neighbor SIFT Nearest Neighbor bag-of-keypoints Nearest Neighbor SVM 84 Bag-of-Keypoints Web G.Csurka bag-of-keypoints Web Bag-of-keypoints SVM 5.% Web Image Classification with Bag-of-Keypoints Taichi joutou and Keiji yanai Recently, need for generic image recognition is

More information

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b (MIRU202) 202 8 AdrianStoica 89 0395 744 89 0395 744 Jet Propulsion Laboratory 4800 Oak Grove Drive, Pasadena, CA 909, USA E-mail: uchino@irvs.ait.kyushu-u.ac.jp, {yumi,kurazume}@ait.kyushu-u.ac.jp 2 nearest

More information

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swiveling using a Misalignment Model Abstract: When the camera sets on a gimbal head as a fixed-view-point, it is

More information

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 1 1 1 GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Self-location is very informative for wearable systems.

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

DEIM Forum 2010 A Web Abstract Classification Method for Revie

DEIM Forum 2010 A Web Abstract Classification Method for Revie DEIM Forum 2010 A2-2 305 8550 1 2 305 8550 1 2 E-mail: s0813158@u.tsukuba.ac.jp, satoh@slis.tsukuba.ac.jp Web Abstract Classification Method for Reviews using Degree of Mentioning each Viewpoint Tomoya

More information

企業の信頼性を通じたブランド構築に関する考察

企業の信頼性を通じたブランド構築に関する考察 Abstract The importance of the relationship management came to be said. The essence of relationship is a relation based on the shinrai of each other, and the base to build a more long-term relation to

More information

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni DEIM Forum 2012 B5-3 606 8510 E-mail: {zhao,ohshima,tanaka}@dl.kuis.kyoto-u.ac.jp Web, 1. Web Web TinEye 1 Google 1 http://www.tineye.com/ 1 2. 3. 4. 5. 6. 2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

01-譴カ蜴・-8.fm

01-譴カ蜴・-8.fm No.109, 2006 * Comparative Study in the Sentence of Students' Reports Produced between PC-Mail and Mobile Phone-Mail Naomasa SASAKI and Kumiko ISHIKAWA* Accepted April 30, 2006 : 1,100 : Abstract : This

More information

人工知能学会研究会資料 SIG-KBS-B Analysis of Voting Behavior in One Night Werewolf 1 2 Ema Nishizaki 1 Tomonobu Ozaki Graduate School of Integrated B

人工知能学会研究会資料 SIG-KBS-B Analysis of Voting Behavior in One Night Werewolf 1 2 Ema Nishizaki 1 Tomonobu Ozaki Graduate School of Integrated B 人工知能学会研究会資料 SIG-KBS-B508-09 Analysis of Voting Behavior in One Night Werewolf 1 2 Ema Nishizaki 1 Tomonobu Ozaki 2 1 1 Graduate School of Integrated Basic Sciences, Nihon University 2 2 College of Humanities

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

社団法人人工知能学会 Japanese Society for Artificial Intelligence 人工知能学会研究会資料 JSAI Technical Report SIG-Challenge-B30 (5/5) A Method to Estimate Ball s State of

社団法人人工知能学会 Japanese Society for Artificial Intelligence 人工知能学会研究会資料 JSAI Technical Report SIG-Challenge-B30 (5/5) A Method to Estimate Ball s State of 社団法人人工知能学会 Japanese Society for Artificial Intelligence 人工知能学会研究会資料 JSAI Technical Report SIG-Challenge-B30 (5/5) A Method to Estimate Ball s State of Spin by Image Processing for Strategic Learning in

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

DEIM Forum 2010 A3-3 Web Web Web Web Web. Web Abstract Web-page R

DEIM Forum 2010 A3-3 Web Web Web Web Web. Web Abstract Web-page R DEIM Forum 2010 A3-3 Web Web 305 8550 1 2 305 8550 1 2 E-mail: s0813167@u.tsukuba.ac.jp, satoh@slis.tsukuba.ac.jp Web Web Web. Web Abstract Web-page Recommendation System based on the Keyword transitions

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

IPSJ SIG Technical Report Vol.2016-CE-133 No /2/ ,.,,,.,,.,,,.,,,,,., HOG Evaluation System of the Exactness Bow using a Monocular Camer

IPSJ SIG Technical Report Vol.2016-CE-133 No /2/ ,.,,,.,,.,,,.,,,,,., HOG Evaluation System of the Exactness Bow using a Monocular Camer 1 2 1,.,,,.,,.,,,.,,,,,., HOG Evaluation System of the Exactness Bow using a Monocular Camera Abstract: The bow is a symbol of greeting culture in Japan, and it is an important action for smooth communication.

More information

Spin Image [3] 3D Shape Context [4] Spin Image 2 3D Shape Context Shape Index[5] Local Surface Patch[6] DAI [7], [8] [9], [10] Reference Frame SHO[11]

Spin Image [3] 3D Shape Context [4] Spin Image 2 3D Shape Context Shape Index[5] Local Surface Patch[6] DAI [7], [8] [9], [10] Reference Frame SHO[11] 3-D 1,a) 1 1,b) 3 3 3 1% Spin Image 51.6% 93.8% 9 PCL Point Cloud Library Correspondence Grouping 13.5% 10 3 Extraction of 3-D Feature Point for Effect in Object Recognition based on Local Shape Distinctiveness

More information

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc 1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since

More information

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325 社団法人人工知能学会 Japanese Society for Artificial Intelligence 人工知能学会研究会資料 JSAI Technical Report SIG-Challenge-B3 (5/5) RoboCup SSL Humanoid A Proposal and its Application of Color Voxel Server for RoboCup SSL

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TRECVID2012 Instance Search {sak

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TRECVID2012 Instance Search {sak THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TRECVID2012 Instance Search 599 8531 1 1 E-mail: {sakata,matozaki}@m.cs.osakafu-u.ac.jp, {kise,masa}@cs.osakafu-u.ac.jp

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi- 1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,

More information

光学

光学 Fundamentals of Projector-Camera Systems and Their Calibration Methods Takayuki OKATANI To make the images projected by projector s appear as desired, it is e ective and sometimes an only choice to capture

More information

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 1115084 2009 3 5 3.,,,.., HCI(Human Computer Interaction),.,,.,,.,.,,..,. i Abstract Method for Recognizing Expression Considering

More information

24 Region-Based Image Retrieval using Fuzzy Clustering

24 Region-Based Image Retrieval using Fuzzy Clustering 24 Region-Based Image Retrieval using Fuzzy Clustering 1130323 2013 3 9 Visual-key Image Retrieval(VKIR) k-means Fuzzy C-means 2 200 2 2 20 VKIR 5 18% 54% 7 30 Fuzzy C-means i Abstract Region-Based Image

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4] 1,a) 2,3,b) Q ϵ- 3 4 Q greedy 3 ϵ- 4 ϵ- Comparation of Methods for Choosing Actions in Werewolf Game Agents Tianhe Wang 1,a) Tomoyuki Kaneko 2,3,b) Abstract: Werewolf, also known as Mafia, is a kind of

More information

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004 The Journal of the Japan Academy of Nursing Administration and Policies Vol 8, No 1, pp 43 _ 57, 2004 The Literature Review of the Japanese Nurses Job Satisfaction Research Which the Stamps-Ozaki Scale

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation

More information

Fig. 1. Example of characters superimposed on delivery slip.

Fig. 1. Example of characters superimposed on delivery slip. Extraction of Handwritten Character String Superimposed on Delivery Slip Data Ken-ichi MATSUO, Non-member, Katsuhiko UEDA, Non-member (Nara National College of Technology), Michio UMEDA, Member (Osaka

More information

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1 ACL2013 TACL 1 ACL2013 Grounded Language Learning from Video Described with Sentences (Yu and Siskind 2013) TACL Transactions of the Association for Computational Linguistics What Makes Writing Great?

More information

0801297,繊維学会ファイバ11月号/報文-01-青山

0801297,繊維学会ファイバ11月号/報文-01-青山 Faculty of Life Environment, Kinjogakuin University, Moriyama-ku, Nagoya 463-8521, Japan Faculty of Home Economics, Japan Women s University, Bunkyo-ku, Tokyo 112-8681, Japan AStudy on Easing by a Variable

More information

untitled

untitled 2007 55 2 235 254 c 2007 1 2 3 3 2007 6 12 2007 11 1 20 8 2 1. 2004 Sakata et al. 2004 1 610 0394 1 3 2 176 8525 2 42 1 3 525 8577 1 1 1 236 55 2 2007 2003 2004 Camurri et al. 1999 2002 2005 CG 1987 1

More information

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Journal of Geography 116 (6) 749-758 2007 Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Data: A Case Study of a Snow Survey in Chuetsu District,

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

RANSAC RANSAC Amerini [8] RANSAC LO-RANSAC(Locally Optimized RANSAC)[9] LO-RANSAC 2.2 SIFT SIFT SIFT 128 SIFT SIFT SIFT SIFT p i p j d ij SIF

RANSAC RANSAC Amerini [8] RANSAC LO-RANSAC(Locally Optimized RANSAC)[9] LO-RANSAC 2.2 SIFT SIFT SIFT 128 SIFT SIFT SIFT SIFT p i p j d ij SIF RANSAC 1 1 1 2 1 SIFT LO-RANSAC Improving the method detecting partially duplicated regions using RANSAC Kenji Kawashima 1 Tetsuya Matsumoto 1 Hiroaki Kudo 1 Yoshinori Takeuchi 2 Noboru Ohnishi 1 Abstract:

More information

3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]

3   Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] 3 E-mail: {akizuki}@isl.sist.chukyo-u.ac.jp Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] Shape Index [3] [4][5] 3 SHOT [6] [7] Point Pair Feature

More information

The Bulletin of the Institute of Human Sciences, Toyo University, No. 7 The Semantic Role and Function of GA and WO as object markers in Japanese WANG Yaxin The purpose of this paper is to analyze the

More information

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect Using a Human-Shaped Input Device for Remote Pose Instruction Yuki Tayama 1,a) Yoshiaki Ando 2,b) Misaki Hagino 2,c) Ken-ichi Okada 1,d) Abstract: There

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

Web Basic Web SAS-2 Web SAS-2 i

Web Basic Web SAS-2 Web SAS-2 i 19 Development of moving image delivery system for elementary school 1080337 2008 3 10 Web Basic Web SAS-2 Web SAS-2 i Abstract Development of moving image delivery system for elementary school Ayuko INOUE

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

untitled

untitled (Robot Vision) Vision ( (computer) Machine VisionComputer Vision ( ) ( ) ( ) ( ) ( ) 1 DTV 2 DTV D 3 ( ( ( ( ( DTV D 4 () 5 A B C D E F G H I A B C D E F G H I I = A + D + G - C - F - I J = A + B + C -

More information

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF   a m Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki

More information

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo 5D1 SY4/14/-485 214 SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomomichi SUGIHARA 2 1 School of Engineering, Osaka University 2-1

More information

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii 2012 3 A Graduation Thesis of College of Engineering, Chubu University High Accurate Semantic Segmentation Using Re-labeling Besed on Color Self Similarity Yuko KAKIMI 2400 90% 2 3 [1] Semantic Texton

More information