第5章 偏微分方程式の境界値問題

Size: px
Start display at page:

Download "第5章 偏微分方程式の境界値問題"

Transcription

1 October 5, / 113

2 4 ( ) 2 / 113

3 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113

4 Poisson d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ p Γ N \ Γ p 9 = Laplace ν ( A.5.4) ν = ν Poisson 4 / 113

5 Poisson (Poisson ) b : R, p N : Γ N R, u D : R u = b in, ν u = p N on Γ N, u = u D on Γ D (5.1.1) (5.1.2) (5.1.3) u : R 5 / 113

6 Poisson (5.1.1) Poisson b = 0 Laplace Poisson Laplace (5.1.3) u u D Γ D u u D (5.1.2) ν u Γ N u ( ) 6 / 113

7 Poisson u D H 1 (; R) (5.1.3) u U (u D ) = { v H 1 (; R) v = ud on Γ D } 4.6 U (u D ) Hilbert U = { v H 1 (; R) v = 0 on Γ D } (5.1.4) U Hilbert Poisson (5.1.1) v U Gauss-Green ( A.8.2) uv dx = u v dx ν uv dγ = bv dx (5.1.5) Γ N 7 / 113

8 Poisson Γ D v = 0 (5.1.2) v U Γ N ν uv dγ = Γ N p N v dγ Γ N (5.1.6) (5.1.6) (5.1.5) u v dx = bv dx + p N v dγ (5.1.7) Γ N (5.1.7) Poisson (5.1.7) u v (5.1.7) v 4.6 a (u, v) = u v dx, (5.1.8) l (v) = bv dx + p N v dγ (5.1.9) Γ N 8 / 113

9 Poisson / 113

10 Poisson (Poisson ) U (5.1.4) b L 2 (; R), p N L 2 (Γ N ; R) u D H 1 (; R) a (, ) l ( ) (5.1.8) (5.1.9) v U a (u, v) = l (v) (5.1.10) ũ = u u D U ( u) (5.1.1) u 2 Γ N ν u u 2 (5.1.8) u v Poisson Poisson u 10 / 113

11 Poisson / 113

12 Poisson (5.1.3) Dirichlet 1 Dirichlet Dirichlet Dirichlet (5.1.2) Neumann 2 Neumann Neumann Neumann Neumann ( 5.2.6) Dirichlet Neumann Dirichlet Neumann u D = 0 p N = 0 u D 0 p N 0 12 / 113

13 Poisson Poisson Poisson Poisson Poisson ( Poisson ) b : R, c : R, p R : R, c : R u + c u = b in, (5.1.11) ν u + c u = p R on, (5.1.12) u : R 13 / 113

14 Poisson Poisson (5.1.12) Robin Robin U = H 1 (; R) (5.1.13) (5.1.11) v U Gauss-Green ( A.8.2) ( u + c u) v dx = ( u v + c uv) dx ν uv dγ = bv dx (5.1.14) (5.1.12) v U ν uv dγ = (p R c u) v dγ (5.1.15) 14 / 113

15 Poisson Poisson (5.1.15) (5.1.14) ( u v + c uv) dx + c uv dγ = bv dx + p R v dγ (5.1.16) (5.1.16) / 113

16 Poisson Poisson (5.1.16) u v v a : U U R l : U R a (u, v) = ( u v + c uv) dx + c uv dγ, (5.1.17) l (v) = bv dx + p R v dγ (5.1.18) ( Poisson ) U (5.1.13) b L 2 (; R), c L (; R), p R L 2 ( ; R), c L ( ; R) a (, ) l ( ) (5.1.17) (5.1.18) v U a (u, v) = l (v) (5.1.19) u U 16 / 113

17 Poisson Poisson (5.1.10) (5.1.19) 2 ( A.7.1) 1 a 1 l U Hilbert U 1 (4.4 ) 17 / 113

18 5.2.1 ( Hilbert 1 ) a : U U R U 1 v U α > 0 a (v, v) α v 2 U a 18 / 113

19 U R d 1 x, y R d a (x, y) = x (Ay) A R d d A = A T a A ( Hilbert 1 ) a : U U R U 1 u, v U β > 0 a (u, v) β u U v U a U = R d 1 a (x, y) = x (Ay) A ( (4.4.3) ) 19 / 113

20 5.2.3 ( ) a : U U R U 1 l = l ( ) = l, U v U a (u, v) = l (v) u U U = R d 1 a (x, y) = x (Ay) A R d d b R d y R d (Ax) y = b y (5.2.1) x R d 20 / 113

21 Lax-Milgram Lax-Milgram Lax-Milgram 1 a Hilbert Riesz ( ) ( [2] p.29 Theorem1.3, [3] p. 297 Theorem 1, [9] p ) (Lax-Milgram ) a l U u U α u U 1 α l U 21 / 113

22 Lax-Milgram U = R d (5.2.1) x A A x = A 1 b (5.2.2) x R d 1 α b R d α A A A ( A T + A ) /2 x R d x (Ax) α x 2 R d x {( A T + A ) x } 2α x 2 R d Poisson Lax-Milgram 22 / 113

23 Lax-Milgram (Poisson ) Γ D (= Γ D dγ) ũ = u u D U Lax-Milgram U = { u H 1 (; R) } u = 0 on ΓD Hilbert ˆl (v) = l (v) a (ud, v) (5.2.3) v U a (ũ, v) = ˆl (v) ũ = u u D U Lax-Milgram 23 / 113

24 Lax-Milgram 1 a Poincaré ( A.9.4) a (v, v) = v v dx = v 2 L 2 (;R d ) 1 c 2 v 2 H 1 (;R) 1/c 2 α a 2 a Hölder ( A.9.1) a (u, v) = u v dx u L 2 (;R d ) v L 2 (;R d ) u H 1 (;R) v H 1 (;R) β = 1 24 / 113

25 Lax-Milgram 3 ˆl U Lipschitz ( 4.4.2) γ L(H 1 (;R);H 1/2 ( ;R)) = sup v H 1/2 ( ;R) v H 1 (;R)\{0 H 1 (;R) } v H 1 (;R) (5.2.4) c 1 > 0 Hölder ˆl (v) bv dx + p Nv dγ + u D v dx Γ N b L 2 (;R) v L 2 (;R) + pn L 2 (Γ N ;R) v L 2 (Γ N ;R) + u D L2 (;R d ) v L 2 (;R d ) ( ) b L 2 (;R) + c1 pn L 2 (Γ N ;R) + ud H 1 (;R) v H 1 (;R) b L 2 (; R), p N L 2 (Γ N; R) u D H 1 (; R) ( ) l U ũ = u u D U 25 / 113

26 Lax-Milgram (Neumann ) Γ D = u U a Γ D > 0 Poincaré ( A.9.4) Neumann Γ D = 0 Poincaré a Lax Milgram u D = 1 u dx (5.2.5) Poincaré ( A.9.3) a (v, v) = v v dx = v 2 L 2 (;R d ) 1 c v 2 ud 2 L 2 (;R d ) 26 / 113

27 Lax-Milgram a Neumann (5.2.5) u D ũ = u u D U 27 / 113

28 Lax-Milgram Poisson ( 5.1.3) ( Poisson ) c L (; R) 2 c L ( ; R) u U Lax-Milgram U = H 1 (; R) Hilbert 28 / 113

29 Lax-Milgram 1 a ess inf x c (x) ess inf x c (x) c 1 > 0 c 2 > 0 γ : H 1 (; R) L 2 ( ; R) γ 1 L(L 2 ( ;R);H 1 (;R)) = sup v H 1 (;R) v L 2 ( ;R)\{0 L 2 ( ;R) } v L 2 ( ;R) (5.2.6) c 3 > 0 a (v, v) v 2 L 2 (;R d ) + c1 v 2 L 2 (;R) + c2 v 2 L 2 ( ;R) ( ) min {1, c 2} + c2 v 2 c 2 H 1 (;R) 3 ( ) α a 29 / 113

30 Lax-Milgram 2 a (5.2.4) γ L(H 1 (;R);H 1/2 ( ;R)) c4 c L (; R) c L ( ; R) a (u, v) u L2 (;R d ) v L 2 (;R d ) + c L (;R) u L 2 (;R) v L 2 (;R) + c L ( ;R) u L 2 ( ;R) v L 2 ( ;R) ( ) 1 + c L (;R) + c2 4 c L ( ;R) u H1 (;R d ) v H 1 (;R d ) ( ) β a 30 / 113

31 Lax-Milgram 3 l U (5.2.4) γ L(H 1 (;R);H 1/2 ( ;R)) c4 l (v) bv dx + p Rv dγ b L 2 (;R) v L 2 (;R) + pr L 2 ( ;R) v L 2 ( ;R) ( ) b L 2 (;R) + c4 pr L 2 ( ;R) v H 1 (;R) b L 2 (; R) p R L 2 ( ; R) ( ) l U Lax-Milgram u U 31 / 113

32 ( ) a : U U R U 1 l = l ( ) = l, U f : U R {f (u) = 12 } a (u, u) l (u) min u U u U U = R d {f (x) = 12 } x (Ax) b x min x R d (5.2.7) x R d 32 / 113

33 5.2.8 ( [2] p.24 Theorem1.1, [6] p , [9] p ) ( ) a l U u U / 113

34 U = R d A (5.2.7) x R d (5.2.2) Poisson ( 5.1.2) a (Poisson ) a ˆl (5.1.8) (5.2.3) { f (ũ) = 1 } 2 a (ũ, ũ) ˆl (ũ). min ũ U ũ = u u D U 34 / 113

35 5.3 Poisson ( 5.1.1) b, p, u D (5.2.3) ˆl U Poisson u u D U = { u H 1 (; R) u = 0 on Γ D } Poisson 8 9 H 1 ( ) C 1 35 / 113

36 5.3.1 Poisson ( 5.1.1) b, p, u D u = b in, ν u = p N on Γ N, u = u D on Γ D b L 2 (; R), p N H 1 (; R), u D H 2 (; R) Dirichlet Neumann Γ N Γ D B u H 2 ( \ B; R ) b L 2 (; R) Poisson u H 2 ( \ B; R ) 36 / 113

37 ν C (Γ N ; R) p N H 1 (; R) p N H 1/2 (Γ N ; R) ν u = ν u H 1/2 ( Γ N \ B; R ) u H 2 ( \ B; R ) Sobolev ( ) d {2, 3} α (0, 1/2) H 2 (; R) C 0,α ( ; R ) u u u 37 / 113

38 5.3.2 x 0 Θ α θ Γ1 Γ2 B(x 0,r 0 ) 5.3.1: 2 38 / 113

39 x 0 u ( ) r (0, r 0 ] u u (r, θ) = i {1,2, } k i u i (r) τ i (θ) + u R (5.3.1) ( [7], [8] p.273 8, [10], [5] p.ix Preface p.182 Chapter 4) u R (5.3.1) 1 k i u i (r) r τ i (θ) θ (0, α) Γ 1 Γ 2 Dirichlet (u = 0) Neumann ( ν u = 0) i {1, 2, } τ i (θ) = sin iπ α θ, τ i (θ) = cos iπ α θ (5.3.2) (5.3.3) 39 / 113

40 (5.3.2) τ i (0) = τ i (α) = 0 (5.3.3) (dτ i /dθ) (0) = (dτ i /dθ) (α) = 0 Γ 1 Γ 2 Dirichlet Neumann i {1, 2, } τ i (θ) = sin iπ 2α θ (5.3.4) 40 / 113

41 Laplace ( (r ω 2 sin ωθ) = r r r r 2 θ 2 ) (r ω sin ωθ) = 0 (5.3.5) ω ω > 1/4 1 ω > 1/4 Γ 1 Γ 2 (α 2π) ω 1/4 ω = 1 (5.3.5) z = x 1 + ix 2 = re iθ C (i ) x = (x 1, x 2 ) R 2 f (z) = z ω u i = Im [z ω ] = r m sin ωθ Cauchy-Riemann (5.3.5) r ω sin ωθ Laplace ( Poisson ) τ i (θ) sin ωθ u i (r) = r ω Laplace x 0 r 0 B (x 0, r 0 ) 41 / 113

42 1 Γ 1 Γ 2 Dirichlet (u = 0) u (r, θ) = kr π/α sin π α θ + u R (5.3.6) 2 Γ 1 Γ 2 Neumann ( ν u = 0) u (r, θ) = kr π/α cos π α θ + u R (5.3.7) 3 Γ 1 Dirichlet Γ 2 Neumann u (r, θ) = kr π/(2α) sin π 2α θ + u R (5.3.8) k α 42 / 113

43 5.3.1 ( ) 2 x 0 α (0, 2π) u x 0 B (x 0, r 0 ) u = r ω τ (θ) τ (θ) C ((0, α), R) k {0, 1, 2, } p (1, ) ω > k 2 p (5.3.9) u W k,p (B (x 0, r 0 ) ; R) 43 / 113

44 u = r ω τ (θ) k r ω k τ (θ) τ (θ) C ((0, α), R) u k B (x 0, r 0 ) p Lebesgue r0 α 0 0 r p(ω k) r τ (θ) dθdr < p (ω k) + 1 > 1 (5.3.9) 44 / 113

45 Poisson u r ω ( ) 2 x 0 Θ α (0, 2π) Poisson ( 5.1.1) u x 0 u H s (B (x 0, r 0 ) ; R) 1 x 0 Γ 1 Γ 2 α [π, 2π) s (3/2, 2] 2 Γ 1 Γ 2 α [π/2, π) s (3/2, 2] α [π, 2π) s (5/4, 3/2] 45 / 113

46 Γ 1 Γ 2 (5.3.6) (5.3.7) ω = π/α α [π, 2π) ω (1/2, 1] (5.3.9) s 1 2 p = = 1 2 < ω s 2 2 p = = 1 ω (1/2, 1] s (1) Γ 1 Γ 2 (5.3.8) ω = π/ (2α) α [π/2, π) ω (1/2, 1] (5.3.9) s (2) α [π, 2π) ω (1/4, 1/2] (5.3.9) s 1 2 p = = 1 4 < ω s 2 2 p = = 1 2 ω (1/4, 1/2] s (2) 46 / 113

47 B(x 0,r 0 ) Γ N B(x 0,r 0 ) Γ D (a) α > π (b) α > π/ : 2 47 / 113

48 5.3.2 (α = 2π) x 0 ϵ > 0 u H 3/2 ϵ (B (x 0, r 0 ) ; R) (5.3.10) x 0 x 0 (α = π) (5.3.10) u W 1, ( ) 2 x 0 Θ α (0, 2π) x 0 1 Γ 1 Γ 2 α < π 2 Γ 1 Γ 2 α < π/2 Poisson ( 5.1.1) u W 1, (B (x 0, r 0 ) ; R2) 48 / 113

49 Γ 1 Γ 2 (5.3.6) (5.3.7) ω = π/α α < π ω > 1 (5.3.9) (1) Γ 1 Γ 2 (5.3.8) ω = π/ (2α) α < π/2 ω > 1 (5.3.9) (2) (2) Γ 1 Γ Poisson c : R Dirichlet Neumann 49 / 113

50 5.4 Stokes p N Γ p u D Γ D b 5.4.1: 50 / 113

51 R d d {2, 3} Lipschitz Γ D (Dirichlet ) Γ N = \ Γ D (Neumann ) Γ p Γ N Γ p Γ N \ Γ p Γ D > 0 b : R d p N : Γ N R d u D : R d u : R d 51 / 113

52 5.4.1 u u x dx 2 2 u u x dx 2 2 dx 2 u u 2 u dx dx 1 1 x 1 u 1 u u x dx : 2 u ( u T) T 52 / 113

53 1 1 d {2, 3} 1 u (0, l) du/dx d {2, 3} u d ( u T) T = ( ui / x j ) ij R d d 2 ( ) u ( u T) T ( u T ) T = E (u) + R (u) (5.4.1) E (u) = E T (u) = (ε ij (u)) ij = 1 2 { u T + ( u T) T } (5.4.2) R (u) = R T (u) = (r ij (u)) ij = 1 2 { ( u T ) T u T } (5.4.3) 53 / 113

54 E (u) (a) (c) d R (u) (d) d ε 22 ε 12 r 12 1 ε (a) ε 11 (b) ε 22 (c) ε 12 = ε 21 (d) r : 2 E (u) R (u) 54 / 113

55 (5.4.2) (5.4.3) u 0 R d ( ) u u 2 Almansi Green 55 / 113

56 Cauchy Cauchy d = (b) 3 d = ν (d = 2 d = 3 ) p R d p i, j {1,, d} σ ij x i x j S = (σ ij ) R d d Cauchy 56 / 113

57 Cauchy x2 u D Γ D dγ p N Γ p x1 b (a) dγ σ11 σ12 dγ1 dγ σ21 dγ2 σ22 ν p (b) Cauchy df =pdγ =S(u)νdγ 5.4.4: 2 Cauchy S p 57 / 113

58 Cauchy x2 ν df=pdγ=sνdγ σ11 dγ σ33 p x3 σ22 x : 3 Cauchy S p 58 / 113

59 Cauchy Cauchy S p (Cauchy ) p S Cauchy S T ν = Sν = p (5.4.4) d = 2 i {1, 2} x i σ 1i dγ 1 + σ 2i dγ 2 = p i dγ ( (b)) ν 1 = dγ 1 /dγ ν 2 = dγ 2 /dγ σ 1i ν 1 + σ 2i ν 2 = p i (5.4.5) 59 / 113

60 Cauchy (5.4.5) (5.4.4) σ 21 = σ 12 ( 5.4.6) d = 3 σ22 σ21 σ11 σ12 (0,ε) 2 σ12 σ11 σ21 σ : 2 (ϵ 1) 60 / 113

61 d S (u) = S T (u) = (σ ij (u)) ij = CE (u) = c ijkl ε kl (u) (k,l) {1,,d} 2 ij (5.4.6) C = (c ijkl ) ijkl : R d d d d 4 S (u) E (u) c ijkl = c jikl, c ijkl = c ijlk (5.4.7) 61 / 113

62 C L A = (a ij ) ij R d d B = (b ij ) ij R d d A (CA) α A 2, A (CB) β A B (5.4.8) (5.4.9) α β A B = i,j{1,,d} a ijb ij (5.4.8) C (5.4.9) C C u ( ) (5.4.6) Hooke C u 62 / 113

63 C d = 3 1 C 3 4 = 81 2 (5.4.7) 36 3 w w = 1 w E (u) (CE (u)), S (u) = 2 E (u) 2 c ijkl = c klij (5.4.10) / 113

64 λ L µ L S (u) = 2µ L E (u) + λ L tr (E (u)) I λ L µ L Lamé tr (E (u)) = i {1,,d} e ii (u) µ L e Y ν P E (u) = 1 + ν P S (u) ν P tr (S (u)) I e Y e Y e Y ν P (Young ) Poisson k b k b = λ L + 2µ L 3, e Y = 2µ L (1 + ν P ), λ L = 2µ Lν P 1 2ν P 64 / 113

65 5.4.4 Cauchy (5.4.6) Hooke σ11 σ σ ε σ σ 21 x ε x 2 b σ 12 2 σ 12 + ε x 1 b 1 σ σ σ12 (0,ε) 2 ε σ21 σ22 x : (ϵ 1) 65 / 113

66 x 1 x 2 σ 11 + σ 21 + b 1 = 0, x 1 x 2 σ 12 + σ 22 + b 2 = 0 x 1 x 2 d {2, 3} T S (u) = b T [ (5.4.11) T S (u) = C (5.4.11) { ( 1 2 u T + ( u T) )}] T u 2 C (5.4.11) 66 / 113

67 (5.4.11) ( ) b : R d, p N : Γ N R d u D : R d T S (u) = b T in, S (u) ν = p N on Γ N, u = u D on Γ D (5.4.12) (5.4.13) (5.4.14) u : R d 67 / 113

68 u U = { v H 1 ( ; R d) v = 0R d on Γ D } (5.4.15) (5.4.12) v U Gauss-Green (A.8.2) ( T S (u) ) v dx = (S (u) ν) v dγ + S (u) E (v) dx Γ N = b v dx (5.4.16) (5.4.13) v U Γ N 68 / 113

69 (S (u) ν) v dγ = Γ N p N v dγ Γ N (5.4.17) (5.4.16) 2 1 (5.4.17) S (u) E (v) dx = b v dx + p N v dγ Γ N v U a(u, v) = S (u) E (v) dx, (5.4.18) l (v) = b v dx + p N v dγ (5.4.19) Γ N 69 / 113

70 5.4.3 ( ) U (5.4.15) b L 2 ( ; R d), p N L 2 ( Γ N ; R d), u D H 1 ( ; R d) C L ( ; R d d d d) a (, ) l ( ) (5.4.18) (5.4.19) v U a (u, v) = l (v) ũ = u u D U 70 / 113

71 5.4.6 v l (v) a (u, v) ( ) Γ D > 0 ũ = u u D U 71 / 113

72 Lax-Milgram U Hilbert v U ˆl (v) = l (v) a (ud, v) a (ũ, v) = ˆl (v) ũ = u u D U Lax-Milgram 72 / 113

73 1 a Γ D > 0 Korn 2 ( A.9.6) c v 2 H 1 (;R d ) c E (v) 2 L 2 (;R d d ) (5.4.8) C v U a (v, v) = E (v) (CE (v)) dx c 1 E (v) 2 L 2 (;R d d ) c1 c v 2 H 1 (;R d ) c 1 (5.4.8) α c 1/c α a 2 a (5.4.9) β β a 73 / 113

74 3 ˆl U Lipschitz ( 4.4.2) γ L(H 1 (;R d );H 1/2 ( ;R d )) c2 > 0 Hölder ˆl (v) b v dx + p N v dγ + Γ N β E (u D) E (v) dx b L2 (;R d ) v L 2 (;R d ) + pn L 2 (Γ N ;R d ) v L 2 (Γ N ;R d ) + β E (u D) L2 (;R d d ) E (v) L 2 (;R d d ) ( b L2 (;R d ) + c2 pn L 2 (Γ N ;R d ) ) + β E (u D) L2 (;R d d ) v H1 (;R d ) Lax-Milgram ũ = u u D U 74 / 113

75 Stokes 5.5 Stokes Stokes Stokes u D b 5.5.1: Stokes 75 / 113

76 Stokes R d d {2, 3} Lipschitz b : R d Dirichlet u D : R d u D = 0 in (5.5.1) µ Stokes Stokes u : R d p : R (ν ) u = ( u T) T ν ν u 76 / 113

77 Stokes (Stokes ) b : R d, u D : R d µ R T ( µ u T) + T p = b T in, (5.5.2) u = 0 in, u = u D on, p dx = 0 (u, p) : R d+1 (5.5.3) (5.5.4) (5.5.5) (5.5.2) Stokes (5.5.3) Newton (5.5.2) T ( µ u T pi ) = b T in (5.5.6) 77 / 113

78 Stokes I d (5.4.2) E (u) Cauchy S (u, p) = pi + 2µE (u) (5.5.7) (5.5.2) T S (u, p) = b T in, (5.5.8) (5.5.3) 5.6 (5.5.2) 78 / 113

79 Stokes u U = { u H 1 ( ; R d) u = 0R d on } (5.5.9) (5.5.2) v U Gauss-Green (A.8.2) { T ( µ u T) T p + b T} v dx = (µ ν u pν) v dγ { ( + µ u T ) ( v T) + p v + b v } dx { ( = µ u T ) ( v T) + p v + b v } dx = 0 79 / 113

80 Stokes v U Stokes p { } P = q L 2 (; R) q dx = 0 (5.5.10) (5.5.3) q P q u dx = 0 q P Stokes a (u, v) = µ ( u T) ( v T) dx, (5.5.11) 80 / 113

81 Stokes b (v, q) = q v dx, l (v) = b v dx (5.5.12) (5.5.13) Stokes (Stokes ) U P (5.5.9) (5.5.10) u D H 1 ( ; R d) (5.5.1) µ a (, ), b (, ) l ( ) (5.5.11), (5.5.12) (5.5.13) (v, q) U P a (u, v) + b (v, p) = l (v), b (u, q) = 0 (5.5.14) (5.5.15) (ũ, p) = (u u D, p) U P 81 / 113

82 5.6 Stokes u Stokes u p Stokes 82 / 113

83 U P Hilbert a : U U R b : U P R U U U P (4.4.4 ) a = a L(U,U;R) = b = b L(U,P ;R) = a (u, v) sup, u,v U\{0 U } u U v U sup u U\{0 U }, q P \{0 P } b (u, q) u U q P 83 / 113

84 Hilbert ( Hilbert U div ) b : U P R 1 U div = {v U b (v, q) = 0 for all q P } U Hilbert 84 / 113

85 5.6.2 ( ) a : U U R b : U P R l U r P (v, q) U P a (u, v) + b (v, p) = l, v, b (u, q) = r, q (u, p) U P 85 / 113

86 ( [4] p.61 Corollary 4.1, [1] p.42 Theorem 1.1, [6] p , [9] p ) 86 / 113

87 5.6.3 ( ) a : U U R U div ( v U div α > 0 a (v, v) α v 2 U ) b : U P R β > 0 inf sup q P \{0 P } v U\{0 U } b (v, q) v U q P β (5.6.1) 87 / 113

88 5.6.3 ( ) (u, p) U P α, β, a b c > 0 u U + p P c ( l U + r P ) (5.6.1) Ladysenskaja-Babuška-Brezzi Babuška-Brezzi-Kikuchi 88 / 113

89 5.6.3 Stokes (Stokes ) ũ = u u D U div ũ = 0 R d (5.5.14) (5.5.15) (ũ, p) U P U P Hilbert (v, q) U P a (ũ, v) + b (v, p) = ˆl (v), b (ũ, q) = ˆr (q), (ũ, p) U P ˆl (v) = l (v) a (ud, v), ˆr (q) = b (u D, q) a U div a U b 89 / 113

90 U div U div div U div τ τ ( divv / v U < ) (v 1, v 2 U div τv 1 = τv 2 v 1 = v 2) v U div τv = divv = 0 v U div v U div U div = {0 U } τ U div P ( [4] ) inf sup q P \{0 P } v U\{0 U } inf q P \{0 P } v U\{0 U } b (v, q) v U q P = inf sup 1 > 0 τ 1 L(P ;U div) sup q P \{0 P } v U\{0 U } ( τv, q) P τ 1 ( q) U q P inf q P \{0 P } ( divv, q) L 2 (;R) v U q P (q, q) P τ 1 ( q) U q P ˆl U (5.5.1) ˆr (q) = 0 P (u u D, p) U P 90 / 113

91 5.6.2 ( 5.6.2) a : U U R ( ) a : U U R b : U P R (l, r) U P L (v, q) = 1 a (v, v) + b (v, q) l, v r, q 2 (v, q) U P L (u, q) L (u, p) L (v, p) (u, p) U P 91 / 113

92 5.6.5 ( [4] p.62 Theorem 4.2, [9] p ) ( ) a (a (u, v) = a (v, u)) ( v U a (v, v) 0 ) ( 5.6.5) q P Lagrange f (v) = 1 a (v, v) l, v 2 min {f (v) b (v, q) r, q = 0} (5.6.2) (v,q) U P 92 / 113

93 (v, q) L (v, q) Lagrange q P Lagrange (5.6.2) ( 2.9.2) 93 / 113

94 (Poisson ) Lax-Milgram (5.1, 5.2 ) 2 (5.3 ) 3 Lax-Milgram (5.4 ) 4 Stokes Stokes (5.5 ) 94 / 113

95 b : R, u D : R u + u = b in, u = u D on u : R u b u D x A x B 95 / 113

96 (cnt.) x A x B Γ D u D=(0, 0) T Γ p p N=(0, 1) T b=(0, 0) T 5.8.1: 96 / 113

97 (cnt.) 5.3 b : (0, t T ) R d, p N : Γ N (0, t T ) R d, u D : (0, t T ) R d, u D0 : R d, u DT : R d ρ > 0 ρü T S (u) = b T in (0, t T ), S (u) ν = p N on Γ N (0, t T ), u = u D on Γ D (0, t T ), u = u D0 in {0}, u = u DT in {t T } u : (0, t T ) R d t (0, t T ) u = u/ t 97 / 113

98 (cnt.) b = 0 R d, p N = 0 R d u D = 0 R d (x, t) (0, t T ) ( ) u (x, t) = ϕ (x) e λt ϕ : R d λ R 5.5 b : (0, t T ) R d, u D : (0, t T ) R d, µ > 0 ρ > 0 ρ u + ρ (u ) u µ u + p = b in (0, t T ), u = 0 in (0, t T ), u = u D on { (0, t T )} { {0}} (u, p) : (0, t T ) R d R Navier-Stokes 1 Navier-Stokes 2 98 / 113

99 (cnt.) 5.6 e Y µ L Poisson ν P e Y = 2µ L (1 + ν P ) 99 / 113

100 5 5.1 Dirichlet U = H0 1 (; R) v U ( u + u) v dx = ( u + u) v dx = v u ν dγ + ( u v + uv) dx = ( u v + uv) dx = bv dx v U a (u, v) = l (v) 100 / 113

101 5 (cnt.) ũ = u u D U a (u, v) = ( u v + uv) dx, l (v) = bv dx Lax-Milgram U = H 1 0 (; R) Hilbert v H 1 0 (; R) a (v, v) = v 2 H 1 (;R) a ˆl U ˆl ˆl (v) bv dx + ( u D v + u D v ) dx 101 / 113

102 5 (cnt.) b L 2 (;R) v L 2 (;R) + u D L 2 (;R d ) v L 2 (;R d ) + u D L 2 (;R) v L 2 (;R) ( ) b L2 (;R) + u D H1 (;R) v H1 (;R) b L 2 (; R) u D H 1 (; R) 5.2 x A Dirichlet Neumann α = π/ (2) x A B A u H 2 ( B A ; R 2) x A x B Neumann Neumann α π/ (1) p N x B B B (0, 0) T (0, 1) T Γ p p N L ( B B ; R 2) u C 0,1 ( B B ; R 2) H 2 ( B B ; R 2) 102 / 113

103 5 (cnt.) 5.3 U = { u H 1 ( (0, t T ) ; H 1 ( ; R d)) u = 0R d on Γ D (0, t T ), u = 0 R d on (0, t T ) } u D0, u DT H 1 ( ; R d) u D H 1 ( (0, t T ) ; H 1 ( ; R d)) b L 2 ( (0, t T ) ; L 2 ( ; R d)), p N L 2 ( (0, t T ) ; L 2 ( Γ N ; R d)) 1 v U (0, t T ) v U tt 0 (b ( u, v) a (u, v) + l (v)) dt = / 113

104 5 (cnt.) ũ = u u D U b (u, v) = ρu v dx, a (u, v) = S(u) E(v) dx, l (v) = b v dx + p N v dγ Γ N 104 / 113

105 5 (cnt.) 5.4 ϕ U = { ϕ H 1 ( ; R d) ϕ = 0R d on Γ D } ϕ U u (x, t) = ϕ (x) e λt ρü T T S (u) = 0 T R v U d u = u D on Γ D (0, t T ) v U λ 2 b (ϕ, v) + a (ϕ, v) = 0 (ϕ, λ) U R ( ) U ( ) a (, ) (0 ) b (, ) ( ) U 105 / 113

106 5 (cnt.) (ϕ i, λ i ) i N λ 2 i 0 λ i = ±iω i (i ) ϕ i (x) ( e iωit + e iωit) = ϕ i cos ω i t ω i ϕ i 5.5 u p U = { u H 1 ( (0, t T ) ; H 1 ( ; R d)) u = 0 R d on (0, t T ) {0} }, V = { u H 1 ( (0, t T ) ; H 1 ( ; R d)) u = 0 R d on (0, t T ) {t T } }, P = {p L 2 ( (0, t T ) ; L 2 (; R) ) } p dx = / 113

107 5 (cnt.) v V Navier-Stokes (0, t T ) u = u D on (0, t T ) {0} Navier-Stokes q P (0, t T ) (v, q) U Q tt (b( u, v) + c(u)(u, v) + a(u, v) + d(v, p)) dt = 0 0 tt 0 d(u, q) dt = 0 (u u D, p) U Q a (u, v) = µ ( u T) ( v T) dx, tt l (v) dt, 107 / 113

108 5 (cnt.) b (u, v) = ρu v dx, c(u)(w, v) = ρ ((u ) w) v dx, d (v, q) = q v dx, l (v) = b v dx + p N v dγ Γ N 108 / 113

109 5 (cnt.) 5.6 P.5.1 (a) ε 11 = ε 22 = 1 + ν P e Y σ 0 (1) P.5.1 (b) π/4 ε 11 = γ 12/ 2 2 = γ 12 2 = ε 12 = σ 0 2µ L (2) (1) (2) e Y = 2µ L (1 + ν P ) 109 / 113

110 5 (cnt.) σ0 σ0 σ0 σ0 x 2 x 1 σ0 σ0 σ0 γ 12 /2 σ0 (a) 2 (b) π/4 P.5.1: 110 / 113

111 [1] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, New York; Tokyo, [2] P. G. Ciarlet. Finite Element Methods. Handbook of Numerical Analysis, P.G. Ciarlet, J.L. Lions, general editors. Elsevier, Amsterdam; Tokyo: North-Holl, [3] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, [4] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin; Tokyo, / 113

112 (cnt.) [5] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program, Boston, [6]. :.,, [7] R. S. Lehman. Developments at an analytic corner of solutions of elliptic partial differential equations. Journal of Applied Mathematics and Mechanics, Vol. 8, pp , [8] G. Strang, G. J. Fix,,..,, / 113

113 (cnt.) [9]..,, [10],,.. bit, Vol. 5, pp , / 113

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

2005 2006.2.22-1 - 1 Fig. 1 2005 2006.2.22-2 - Element-Free Galerkin Method (EFGM) Meshless Local Petrov-Galerkin Method (MLPGM) 2005 2006.2.22-3 - 2 MLS u h (x) 1 p T (x) = [1, x, y]. (1) φ(x) 0.5 φ(x)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension 微分方程式の精度保証付き数値計算 : 逐次反復に基づく Title計算機援用証明 (Progress in Mathematics of Systems) Author(s) 渡部, 善隆 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (22), B3: 45-55 Issue Date 22-4 URL http://hdl.handle.net/2433/9624

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

微分方程式の解を見る

微分方程式の解を見る ( ) norikazu[at]ms.u-tokyo.ac.jp http://www.infsup.jp/saito/materials/829gairon.pdf 28 2 9 NS ( ) 28 2 9 / 5 Newton 2 3 Navier-Stokes 4 5 6 NS ( ) 28 2 9 2 / 5 2 x 2 + bx + c = x = b ± b 2 4c 2 3 x 3 +

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information