II 1 II 2012 II Gauss-Bonnet II

Size: px
Start display at page:

Download "II 1 II 2012 II Gauss-Bonnet II"

Transcription

1 II 1 II 212 II Gauss-Bonnet II Theorema egregium Gauss-Bonnet C 1.1. I R c : I R k k = 2 k = 3 c c (t) c : [a, b] R k b a c (t) dt c J I t = t(u) d : J R k d(u) = c(t(u)). (1) c(i) (2) d(u) = c(t(u)) c c(u) = c(t(u)) (3) ( 1.1) (4)

2 II 2 (5) c(t) dt du > c(u) ( 1.2) 1.2. c : I R k α I, c(α) = a R k s(t) = t α c (t) dt t s c(s) = c(t(s)) c (s) = 1 s a.. ds dt = c (t) > c(s) dc ds = dc dt dt ds = 1. c(t) c(s) t ċ, c s c, c c(t) dt du > c(u) 1.3. c(t) = (t, a cosh(t/a)) c : I R 2 e 1 = 1 ċ ċ 9 1 e 2 = 1 e 1 (e 1, e 2 ) c(t) Frenet. (1) ċ (2) 1.4. ė j = k ω k j e k ω 2 1 = ω1 2, ω1 1 = ω2 2 =. ω k j ωk j = e j e k e j e k = δ jk 1.5. c : I R 2 c c(t) κ(t) = ω2 1 ċ (t) = ė1(t) e 2 (t) ẋÿ ẍẏ = ċ (t) ( (ẋ)2 + (ẏ) 2) 3/2 ω 2 1 = κ(s) ( e 1 e 2) = ( e1 e 2 ) ( κ κ 1.6. c(t) κ(t) (1) φ : J I, t = φ(u) dt du > c(φ(u)) κ(u) κ(u) = κ(φ(u)) )

3 II 3 (2) F : R 2 R 2 F c(t) κ(t) κ(t) = κ(t) (3) F : R 2 R 2 F c(t) κ(t) κ(t) = κ(t). (1) Frenet {e 1, e 2 } e j (t) = e j (u) de j du = de j dt dt du, dc du = dc dt dt du (2)(3) F 2 A b F(x) = Ax + b A = 1 A = 1 F c(t) Frenet {Ae 1, A Ae 2 } (2)(3). R 1 R 1 R * c(t) = (a cos t, b sin t) Frenet 1.5. y = f (x) x 1.6. y = f (x) x α > x y = r r 2 x 2 r < 1/α r > 1/α 1.7. r = f (θ) θ 1.8. c(t) = (cosh t, sinh t) 1.9. c(s) c (s) = (cos θ(s), sin θ(s)) θ (s) = κ(s) 1.1. c(s) c (s) = κ(s) * c 1 (s), c 2 (s) κ 1 (s) = κ 2 (s) F : R 2 R 2 c 2 = c 1 F. c 1 () = c 2 (), c 1 () = c 2 () Frenet 2 F 1 (s), F 2 (s) ( ) κ(s) F j (s) = F j(s) κ(s) t F j F j = F j t F j = E d ds ( ) ( ) t F1 F 2 = (F1 ) t F 2 + F t κ 1 (F 2 ) = F 1 κ t( ) κ t F 2 + F 1 κ t F 2 = O *1 1 κ(t) c *2 1

4 II 4 F 1 t F 2 F 1 () = F 2 () F 1 t F 2 = E F 1 (s) = F 2 (s) 1 c 1 (s) = c 2 (s) c 1() = c 2 () c 1 (s) = c 2 (s) c : [a, b] R 2 c R b a [a, b) c (Mukhopadhyaya). c 4 κ (s) =. c : [, l] R 2 s = s = a (, a) κ (s) > (a, l) κ (s) < c() c(a) x x (, a) y > (a, l) y < c(s) = (x(s), y(s)) ( ) ( ) x (e 1 ) y = y = κe 2 = κ x < l κ (s)y(s)ds = l κ(s)y (s)ds = l x (s)ds = [x (s)] l 3 κ 1 c(), c(a) c m c = 1 2π l κ(s)ds, l = c c m c = 1 2π b a κ(t) ċ dt = 1 2π b a ẋÿ ẍẏ (ẋ) 2 + (ẏ) 2 dt. c (s) = (cos θ(s), sin θ(s)) θ c θ() [, l] m θ(l) = θ() + 2πm l κ(s)ds = l θ (s)ds = θ(l) θ() = 2πm c (s) c, c 1 C 2 C : [, 1] I R 2, C(, t) = c (t), C(1, t) = c 1 (t)

5 II 5 c u (t) = C(u, t) c c 1 c u (t) u c u (t) c c (Whitney). c, c 1. m c c 1 1 c () = c 1 () = (, ), c () = c 1 () = (1, ) c j (s) = (cos θ j(s), sin θ j (s)) θ j () = m θ j (1) = 2πm Θ(u, s) = (1 u)θ (s) + uθ 1 (s) D(u, s) = s (cos Θ(u, t), sin Θ(u, t))dt Θ(, s) = θ (s), Θ(1, s) = θ 1 (s) D(, s) = c (s), D(1, s) = c 1 (s) C(u, s) = D(u, s) sd(u, 1) C(u, s + 1) C(u, s) = D(u, s + 1) D(u, s) D(u, 1) = s+1 s 1 (cos Θ(u, t), sin Θ(u, t)) t 1 C(u, s + 1) = C(u, s) c u (s) = C(u, s) 1 D(, 1) = D(1, 1) = (, ) C(, s) = c (s), C(1, s) = c 1 (s) c u (s) c u = C s = D D(u, 1) = (cos Θ(u, s), sin Θ(u, s)) s 1 (cos Θ(u, t), sin Θ(u, t))dt [, 1] 1 1 m c u m = Θ(u, t) u θ 1 (s) θ (s) c 1 c : [a, b] R 2 a t 1 < t 2 < b c(t 1 ) = c(t 2 ) 2 *3 P Q sgn P Q +1 Q sgn P Q = 1 Q *4 *3 *4 -

6 II (Whitney ). P 1 ±1 c c µ = l κ(s) ds, l = c µ 2π. (1) c (s) = (x (s), y (s)) y (s) l = y(l) y() = l y (s)ds y (s) x c (s) = (x (s), y (s)) (2) c () = c (a) = c (l) = (1, ) c (s) = (cos θ(s), sin θ(s)) a l a µ = κ(s) ds + κ(s) ds l θ (s)ds + θ (s)ds = θ(a) θ() + θ(l) θ(a) 2π a (3) ±1 ±1 κ(s) (2) (, a) (a, l) θ (s) θ(s) ±π c (s) (1) c(t) = (a cos t, b sin t) < a < b c(t) = (a cos t, b sin t) c F F c m F c = m c r 2 = 2a 2 cos 2θ a

7 II f (z) z 1 z = 1 f (z) (1) c(t) = f (e it ) (2) c(t) (x + iy)(u iv) = (xu + yv) i(xv yu) κ(t) = Re( f f e it ) + f f ( f f ) 3/2 (3) c z < 1 f (z) 1.4 c(s) c (s) κ(s) = c (s) c(s) c (s) e 2 e 1 (s) = c (s), e 2 (s) = 1 κ(s) e 1 (s), e 3(s) = e 1 (s) e 2 (s) Frenet Frenet ( e 1 (s) e 2 (s) e 3 (s)) = ( e 1 (s) e 2 (s) e 3 (s) ) κ(s) κ(s) τ(s) τ(s) e 2 e 3 τ(s) c(s) c(s) c(s) κ(s) = κ(s) τ(s) = τ(s) κ(s) > τ(s) c(s) κ(s) τ(s). 3 κ df ds = F κ τ = FK τ F() = E t K = K d ds (Ft (F)) = F t F + F t F = FK t F + F t (FK) = FK t F FK t F = O F t F = F() t F() = E F(s) F(s) (helix) c(t) = (a cos t, a sin t, bt) Frenet

8 II c Frenet e 1 = ċ ċ, e ċ ( c ċ) 2 = ċ ( c ċ), e 3 = ċ c ċ c κ(t) = ċ c, τ(t) = det(ċ, c, c(3) ) c (3) = d3 c ċ 3 ċ c 2 dt 3 a (b c) = (a c)b (a b)c, (a b) c = det(a, b, c) c(t) = (a cos t, b sin t, ct) 1.2. c(t) c V n ρ : V V R V {e 1, e 2,..., e n }. A = ρ(e i, e j ). V ρ(x, x) ρ t PAP g g ρ g t PAP = P 1 AP g G ρ A g t PGP t PAP t PGP = E g ρ t PAP λe = t PAP λ t PGP = P 2 A λg = t PAP p (A λg)pp = p Pp ρ g 1 A

9 II 9 A M m m x 2 t xax M x 2 x m, M 2.1. g ρ M m mg(x, x) ρ(x, x) Mg(x, x) x g ρ. g R 3 S uv D p : D R 3, p(u, v) = (x(u, v), y(u, v), z(u, v)) p u p v. (1) S = p(d) R 3 (u, v) D S p(u, v) D u = (u, v) S (2) S p 2.3. u S p u (u) p v (u) 2 S u T u S = { ξ p u (u) + ζ p v (u) ξ, ζ R }. (ξ, ζ) (u(s, t), v(s, t)) u s v s u t v t p(s, t) = p(u(s, t), v(s, t)) S p S T p S ( ) us u (p s, p t ) = (p u, p v ) t v s v t 2.4. T u S (ξ 1 p u + ζ 1 p v ) (ξ 2 p u + ζ 2 p v ) = ( ) ( E F ξ 1 ζ 1 F G ) ( ξ2 ζ 2 ), E = p u p u, F = p u p v, G = p v p v S 1 E, F, G 1 1 d p = p u du + p v dv I = d p d p = Edudu + 2Fdudv + Gdvdv

10 II 1 R 3 E, F, G 1 R 3 u = ξ p u (u) + ζ p v (u) T u S u = E(ξ) 2 + 2Fξζ + G(ζ 2 ) 2 = I(u, u) u, w T u S θ cos θ = I(u, w) u w S c(t) = p(u(t), v(t)), a t b ċ(t) = u(t)p u + v(t)p v L(c) = b a ċ(t) dt = b U D p(u) S EG F2 dudv U a E( u)2 + 2F u v + G( v) 2 dt dµ = EG F 2 dudv S ( ). ( ). ( ). x 2 a + y2 2 b + z2 = 1, p(u, v) = (a cos u cos v, b cos u sin v, c sin u) 2 c2 x 2 a + y2 2 b z2 = 1, p(u, v) = (a cosh u cos v, b cosh u sin v, c sinh u) 2 c2 x 2 a + y2 2 b z2 = 1, p(u, v) = (a sinh u cos v, b sinh u sin v, c cosh u) 2 c2 ( ). z = x2 a 2 + y2 b 2, p(u, v) = (u, v, u2 /a 2 + v 2 /b 2 ), p(u, v) = (au cos v, bu sin v, u 2 ) ( ). z = x2 a 2 y2 b 2, p(u, v) = (u, v, u2 /a 2 v 2 /b 2 ), p(u, v) = (a(u + v), b(u v), 4uv) ( ). xz (x R) 2 + z 2 = r 2, R > r > z, p(u, v) = ((R + r cos u) cos v, (R + r cos u) sin v, r sin u) ( ). xz x > x = f (u) >, z = g(u) z p(u, v) = ( f (u) cos v, f (u) sin v, g(u)) ( ). xy x = f (u), y = g(u) z p(u, v) = ( f (u), g(u), v). C 2 z = f (x, y) p(u, v) = (u, v, f (u, v)) 2.1. u = u(s, t), v = v(s, t) (s, t) 1 Ẽ, F, G (Ẽ ) ( ) ( ) ( ) F us v = s E F us u t F G u t v t F G v s v t

11 II u = u(s, t), v = v(s, t) Ẽ G F 2 dsdt = EG F 2 dudv u 2.6. p(u, v) = ( f (u), g(u), v), a u b, c v d ( f (u), g(u)) d c 2.7. z = f (x, y) p(u, v) = (u, v, f (u, v)) * 5 EG F2 = 1 + ( f u ) 2 + ( f v ) S γ(s) = p(u(s), v(s)) γ(s) γ (s) S γ (s) = κ g + κ n κ g T γ(s) S κ n S e = p u p v p u p v * 6 κ n = κ n e = γ (s) e = d ds (p uu + p v v ) e = ( p uu (u ) 2 + 2p uv u v + p vv (v ) 2) e γ γ u = γ T u S u u e S 2.5. T u S 2 II = Ldudu + 2Mdudv + Ndvdv, L = p uu e, M = p uv e, N = p vv e 2 L, M, N 2 II(u, u) u 2.6. I II 2.7. ( ) ( ) L M E F λ = (EG F M N F G 2 )λ 2 (EN + GL 2FM)λ + (LN F 2 ) = *5 1 *6 1

12 II 12 κ (( ) ( )) L M E F κ x = M N F G (Euler ). u S κ 1, κ 2 κ 1 κ 2 κ 1 u φ u II(u, u) = κ 1 cos 2 φ + κ 2 sin 2 φ κ 1 = κ 2. u (,, 1) z = f (x, y) f x (, ) = f y (, ) = p(u, v) = (u, v, f (u, v)) p u = (1,, ), p v = (, 1, ) 1 2 z κ 1 x κ 2 y 2 II II = κ 1 dudu + κ 2 dvdv u = (cos φ, sin φ, ) κ 1 cos 2 φ + κ 2 sin 2 φ κ 1 = κ 2 φ II = κ 1 dudu + κ 1 dvdv κ K Gauss H K = κ 1 κ 2 = LN M2 EG F, H = κ 1 + κ 2 EN + GL 2FM = 2 2 2(EG F 2 ). S. 2.1 p(u, v) = (a cos u cos v, b cos u sin v, c sin u) p u = ( a sin u cos v, b sin u sin v, c cos u) p v = ( a cos u sin v, b cos u cos v, ) p uu = ( a cos u cos v, b cos u sin v, c sin u) p uv = (a sin u sin v, b sin u cos v, ) p vv = ( a cos u cos v, b cos u sin v, ) e = 1 ( bc cos u cos v, ca cos u sin v, ab sin u)

13 II 13 π/2 u π/2 cos u 2 = b 2 c 2 cos 2 u cos 2 v + c 2 a 2 cos 2 u sin 2 v + a 2 b 2 sin 2 u = a 2 b 2 c 2 ( x 2 /a 4 + y 2 /b 4 + z 2 /c 4) e 1 E = a 2 sin 2 u cos 2 v + b 2 sin 2 u sin 2 v + c 2 cos 2 u F = (a 2 b 2 ) cos u sin u cos v sin v G = a 2 cos 2 u sin 2 v + b 2 cos 2 u cos 2 v L = abc, M =, N = abc cos2 u EG F 2 = 2 cos 2 u, LN M 2 = a 2 b 2 c 2 cos 2 u/ 2 K = a2 b 2 c 2 4 = 1 a 2 b 2 c 2 ( x 2 /a 4 + y 2 /b 4 + z 2 /c 4) 2 H = abc(a2 sin 2 u cos 2 v + b 2 sin 2 u sin 2 v + c 2 cos 2 u + a 2 sin 2 v + b 2 cos 2 v) 2 3 a = p(α, β) S p n f (u, v) = p(u, v) n *7 f u (α, β) = f v (α, β) =, f uu (α, β) = L, f uv (α, β) = M, f vv (α, β) = N a S K > S a a K < K > K < K =. a = (,, ), n = (,, 1) S 2 z = f (x, y) f x (, ) = f y (, ) = LN M 2 = f xx (, ) f yy (, ) ( f xy (, )) 2 p f (, ) xy p f xy 2.8. u = u(s, t), v = v(s, t) 2 (u, v) 2 L, M, N (s, t) 2 L, M, Ñ ( ) ( ) ( ) ( ) L M us v = s L M us u t M Ñ u t v t M N v s v t 2.9. p(u, v) K, H c ( ) cp(u, v) K/c 2, H/c 2.1. ( 2.8) 1 2 ( f (u)) 2 + (g (u)) 2 = ( 2.7) ( f (u)) 2 + (g (u)) 2 = *7 a n

14 II S a S H(a) a. p : U S p(, ) = a a S λ(u, v) C λ(u, v) 1, λ(, ) = 1 (, ) V V U U V λ p s (u, v) = p(u, v) + sλ(u, v)h(u, v)e(u, v) p s p a p s E s, F s, G s E s = E + sλhl + O(s 2 ), F s = F + sλhm + O(s 2 ), G s = G + sλhn + O(s 2 ) E s G s (F s ) 2 = EG F 2 + sλh(gl + EN 2FM) + O(s 2 ) = (EG F 2 )(1 + 2sλH 2 + O(s 2 )) Es G s (F s ) 2 = EG F 2 (1 + sλh 2 + O(s 2 )) p s A(s) A () = S λh 2 dµ A() e S γ(t) = p(u(t), v(t)) e e = 1 d (e(γ(t)) e(γ(t)) = dt d dt (e(γ(t)) = e uu + e v v T γ(t) S A : T p S T p S A(ξ p u + ζ p v ) = e u ξ e v ζ A g : S S 2 g(p) = e 1 g ) (1) II(u, u) = I (A(u), u) (2) A

15 II 15. (1) u = ξ 1 p u + ζ 1 p v, u = ξ 2 p u + ζ 2 p v I (A(u), u) = ( e u ξ 1 e v ζ 1 ) ξ 2 p u + ζ 2 p v = ξ 1 ξ 2 e u p u ξ 1 ζ 2 e u p v ζ 1 ξ 2 e v p u ζ 1 ζ 2 e v p v = ξ 1 ξ 2 L + ξ 1 ζ 2 M + ζ 1 ξ 2 M + ζ 1 ζ 2 N = II(u, u) (2) {p u, p v } II A κ 1 = κ 2 A p p II = κi. 1 A = λe II(u, u) = I (A(u), u) = λi (u, u) S S ( ). S p(u, v) Au = λu A(ξ p u + ζ p v ) = e u ξ e v ζ e u = λp u, e v = λp v e uv = e vu λ v p u + λp uv = λ u p v + λp vu λ u = λ v = λ λ = 2 ( ) λ p 1 λ e a a 1/ λ ( ) K (1) (2) (3) S κ 1 cos 2 φ + κ 2 sin 2 φ = φ (1)(3) κ 1 =, κ 2 κ 1 φ = κ 1 = κ 2 = 2.8 S z = f (x, y), f (, ) = f x (, ) = f ( y, y) = xy f (x, y) = f xx f yy ( f xy ) 2 < (, ) 2 γ(t), γ() = (,, ) xy γ xy (, ) γ ()

16 II p(u, v) = ( f (u) cos v, f (u) sin v, g(u)), ( f (u)) 2 + (g (u)) 2 = 1 a f (u) = a f (u) ( 2.6) p(u, v) = ( f (u) cos v, f (u) sin v, g(u)), ( f (u)) 2 + (g (u)) 2 = x = 3u + 3uv 2 u 3, y = v 3 3v 3u 2 v, z = 3(u 2 v 2 ) Enneper ( 2.1) Theorema egregium 2 R 3 Gauss 1 Gauss (Theorema egregium) (u, v) (u 1, u 2 ) *8 1 φ u j = φ / j 2 φ u 1 u 2 = φ /21 g 11 = p /1 p /1 = E g 12 = g 21 = p /1 p /2 = F g 22 = p /2 p /2 = G ( ) ( ) g = g i j du i du j g11 g 12 E F = g 21 g 22 F G i, j 2 h 11 = p /11 e = p /1 e /1 = L, h 12 = h 21 = p /12 e = p /1 e /2 = M, h 22 = p /22 e = p /2 e /2 = N, ( ) ( ) h = h i j du i du j h11 h 12 L M = h 21 h 22 M N i, j *8

17 II 17 (g i j ) (g i j ) ( ) g 11 g 12 g 21 g 22 = 1 EG F Γ k i j Christoffel ( ) G F g F E ik g k j = δ i j Γ k i j = 1 g kh (g ih/ j + g jh/i g i j/h ) 2 h. (1) 1 Γ k i j = Γk ji Christoffel 6 (2) Christoffel u R 3 u = ( g 11 u p /1 + g 12 u p /2 ) p/1 + ( g 21 u p /1 + g 22 u p /2 ) p/2 + (u e)e k. u {p /1, p /2, e} u p / j 3.3. (1) p /i j = Γ k i j p /k + h i j e (Gauss ) k (2) e /i = g jk h ki p / j (Weingareten ) k, j. g i j/k = (p /i p / j ) /k = p /ik p / j + p /i p / jk 2p /i j p /k = g ik/ j + g jk/i g i j/k 2 h i j = p /i j e (1) (2) 3.4. R i jkl = Γi jl/k Γi jk/l + Γ m l j Γi mk Γ m k j Γi ml R i jkl = 3.5. (1) R i jkl = h ik h jl h il h jk (Gauss ) (2) h i j/k + h l j Γ l ki = h ik/ j + h lk Γ l ji (Codazzi-Mainardi ) l l. Gauss u k p /i jk = Γ l i j/k p /l + Γ l i j p /lk + h i j/k e + h i j e /k l m l m g im R m jkl Gauss Weingarten {p /1, p /2, e} p /i jk = Γl i j/k + Γ m i j Γl mk h i j g ml h mk p /l + h i j/k + Γ m i j h mk e l m m p /i jk p /ik j = p /l Gauss e Codazzi-Mainardi. (1) 1 R i jkl, R i jkl k, l (2) Gauss R i jkl i, j R i jkl i, j, k, l R i jkl i, j, k, l 1 2 R 1212 = det h R i jkl ± det h m

18 II 18 Gauss Theorema egregium Gauss 1 2 det h det g 3.6 (Gauss). Gauss K = R 1212 det g K 1 u 1 u 2 D 2 g = g i j du i du j h = h i j du i du j g p : U R 3 1 g 2 h 2 p 3.7 ( Bonnet ). g, h Gauss Codazzi-Mainardi p : U R 3 1 g 2 h p R g = g i j du i du j = du 1 du 1 + h 2 du 2 du 2 Christoffel Γ i jk K = h /11 h g = g i j du i du j = e 2σ (du 1 du 1 + du 2 du 2 ) Christoffel Γ i jk K = σ σ = u /11 + u /22 e 2σ 3.2 γ(t) = p(u 1 (t), u 2 (t)) S X(t) γ X(t) T γ(t) S X(t) = ξ 1 (t)p /1 (γ(t)) + ξ 2 (t)p /2 (γ(t)) = ξ j (t)p / j (γ(t)) γ (t) γ X(t) {p /1, p /2, e} d dt X(t) = (ξ j ) p / j + ξ j p / jk (u k ) = (ξh ) + ξ j Γ h jk (uk ) p /h + ξ j h jk (u k ) e j j,k h 1 S 2 S 2 2 h(x(t), γ (t))e j,k j j,k d 3.8. dt X(t) D dt X(t) = (ξh ) + ξ j Γ h jk (uk ) p /h h j,k X(t) γ. 1 1 R 3 g(u, w)

19 II S γ γ X, Y d ( D ) dt g (X(t), Y(t)) = g dt X(t), Y(t) + g (X(t), D ) dt Y(t). R 3 (X(t) Y(t)) = X (t) Y(t) + X(t) Y (t) X(t) Y(t) e 3.1. S γ γ X D dt X γ γ S γ(t) γ (t) T γ(t) S. γ (t) D dt γ γ(t) = p(u 1 (t), u 2 (t)) X(t) (ξ h ) + Γ h jk (uk ) ξ j = h = 1, 2 1 X() γ(t) = p(u 1 (t), u 2 (t)) (u h ) + Γ h jk (u j ) (u k ) = h = 1, 2 j,k j,k 2 γ(), γ (). γ (t) = (u 1 ) p /1 + (u 2 ) p /2 γ(t), a t b S C : ( ε, ε) [a, b] S R 3 C(s, a) = γ(a), C(s, b) = γ(b), C(, t) = γ(t) C(s, t) = γ s (t) γ s γ = γ C γ γ s L(s) s = C t L(s) = b a C t = γ (t) γ (t) = c C t dt L () = 1 c b a 2 C s t C t dt Y(t) = C s (, t) γ Y(a) = Y(b) = γ C L () = 1 c b a d ( Y(t) γ (t) ) Y(t) γ (t)dt = 1 dt c b a Y(t) D dt γ (t)dt

20 II 2 D dt γ (α) α (a, b) Y(t) = λ(t) D dt γ (t), λ(t) 1, λ(a) = λ(b) =, λ(α) = 1 L () < γ S a a = (,, ) T a S xy γ() = (,, ), γ () = (u 1, u 2, ) γ γ(u 1, u 2 ; t) t (u 1 ) 2 + (u 2 ) 2 = 1 ε > t < ε = γ(u 1, u 2 ; t) γ(tu 1, tu 2 ; 1) = γ(u 1, u 2 ; t) p(u 1, u 2 ) = γ(u 1, u 2 ; 1) (u 1 ) 2 + (u 2 ) 2 ε 2 p p(t, ) p(, ) γ(t, ; 1) (,, ) γ(1, ; t) (,, ) p /1 (, ) = lim = lim lim = (1,, ) t t t t t t p /2 (, ) = (, 1, ) (, ) p(u 1, u 2 ) {p /1, p /2 } a (u 1 ) 2 + (u 2 ) 2 c 2 a c u 1 = r cos θ, u 2 = r sin θ p(r, θ) a θ γ(r) = p(r, θ) = p(r cos θ, r sin θ; 1) = p(cos θ, sin θ; r) 1 p r p r = 1 p r = cos θp /1 + sin θp /2, p θ = r sin θp /1 + r cos θp / p(r, θ) lim r + h r (r, θ) = 1 g = drdr + h 2 (r, θ)dθdθ. E = p r p r = 1 θ = 2p rθ p r = 2(p θ p r ) r 2p θ p rr

21 II 21 p(r, θ) r p rr 2 (p θ p r ) r = p θ p r r p θ (, θ) = F = p θ p r = G = p θ p θ r 2 G r = 2p rθ p θ, G rr = 2p rrθ p θ + 2p rθ p rθ p rθ = sin θp /1 + cos θp /2 + ru lim G r =. r lim G rr = 2 r G lim r r = 1 2 h(r, θ) = G lim r + h(r, θ)/r = 1 lim r + h r (r, θ) = a r a r L(r) A(r) L(r) = 2πr π 3 K(a)r3 + o(r 3 ), A(r) = πr 2 π 12 K(a)r4 + o(r 4 ). p(r, θ) a r > p(r, θ). θ 2π r L(r) = 2π h(r, θ)dθ, A(r) = ds 2π h(s, θ)dθ = r L(s)ds L(r) K = h rr h lim r + h rr /h = K(a) lim r + h rr = h rr lim r + r lim r + h rrr = K(a) Taylor h rr h = lim r + h r = K(a) h(r, θ) = r 1 3! K(a)r3 + o(r 3 ) L(r) K(a) = lim r + 6πr 3L(r) πr γ X(t), Y(t) g (X(t), Y(t)) 3.4. γ g(γ, γ )

22 II p(u 1, u 2 ) = ( f (u 1 ) cos u 2, f (u 1 ) sin u 2, g(u 1 )), ( f ) 2 + (g ) 2 = 1 γ(t) = ( f (t) cos α, f (t) sin α, g(t)) δ(t) = ( f (a) cos t, f (a) sin t, g(a)) 3.7. R 1/R Gauss-Bonnet ABC A p(r, θ) γ(t) = p(r(t), θ(t)) I = drdr + h(r, θ) 2 dθdθ, p θ p θ = h 2 r hh r (θ ) 2 =, θ + 2 h r h r θ + h θ h (θ ) 2 = γ (t) p r (γ(t)) φ(t) φ (t) = θ (t)h r. 3.1 Γ 1 11 = Γ1 12 = Γ2 11 =, Γ1 22 = hh r, Γ 1 12 = h 1 h r, Γ 2 22 = h 1 h θ u 1 = r, u 2 = θ r + Γ 1 i j (u j ) (u k ) = r hh r (θ ) 2 = i j θ + Γ 2 i j (u j ) (u k ) = θ + 2h 1 h r r θ + h 1 h θ (θ ) 2 = i j γ(t) = (r(t), θ(t) 1 γ(t) { p r (γ(t)), γ (t) = r p r (γ(t)) + θ p θ (γ(t)) = cos φ(t)p r (γ(t)) + sin φ(t) 1 h p θ(γ(t)) } 1 h p θ(γ(t)) r = cos φ(t), θ = h 1 sin φ(t) r = (sin φ)φ = hh r (θ ) 2 = h r (sin φ)θ sin φ φ = h r θ sin φ = γ A ±p r γ(t) p(±t + c, θ) φ π θ φ = h r θ =

23 II (Gauss). KdA = A + B + C π ABC K da. A p(r, θ) α θ β, r m(θ) B p(r, α) C p(r, β) γ(θ) = p(m(θ), θ) BC γ(θ) BC β KdA = dθ ABC α m(θ) h rr h hdr = β α h r (, θ) h r (m(θ), θ)dθ 1 h r (, θ) = 1 β α A 2 h r = dφ dθ β α h r (m(θ), θ)dθ = β α dφ dθ = φ(β) φ(α) dθ φ γ A φ(α) = π B, φ(β) = C.. R ( π)r 2 S χ(s ) = + * (Gauss-Bonnet ). S KdA = 2πχ(S ). S T j, 1 j N S KdA = N j=1 S T j KdA = N (T j π) T j L 2πL KdA = 2πL πn *9 4 I S j=1

24 II 24 M 3N = 2M N = 2M 2N KdA = 2πL πn = 2π(L M + N) = 2πχ(S ) S R 2 D 1 g = g 11 du 1 du 1 + 2g 12 du 1 du 2 + g 22 du 2 du 2 R H = {(x, y) y > } g = dx2 + dy 2 H = {z C Imz > } H 1 R S L(2, R) H ( ) a b A =, φ c d A (z) = az + b cz + d A ad bc = 1 Im(φ A (z)) = Imz cz + d 2 φ A H H φ AB = φ A φ B E φ E φ A H H 3.2. (1) φ A H (2) 2 z 1, z 2 H φ A (z 1 ) = z 2 A S L(2, R) (3) z H φ A (z ) = z A S L(2, R) F z F z S O(2) (4) φ A (z) = z A = ±E. (1) z(t) H H φ A (z) = φ A (z) (t) H = z (cz + d) 2 1 Im(φ A (z)) u H = 1 Imz u φ A (z) = 1 Im(φ A (z)) cz + d 2 z (t) = 1 Imz y 2 z (t) = z (t) H φ A 2 φ A

25 II 25 (2) a, b z 2 = az 1 + b z j a = Im(z 2 )/Im(z 1 ) > b = z 2 az 1 A = ( ) a b/ a 1/ S L(2, R) a φ A (z) = az + b φ A (z 1 ) = z 2 a b (3) z = i φ A (i) = i A = c d a = d b = c ad bc = 1 F i = S O(2) z φ P (i) = z P S L(2, R) A F z φ P 1 AP(i) = (φ P ) 1 φ A φ P (i) = i P 1 AP S O(2) F z = P (S O(2)) P 1 F z S O(2) (4) φ A (z) = z z 2 b = c = a = d ad bc = a 2 = 1 A = ±E x 2x y y =, y + (x ) 2 y (y ) 2 y x y /y y /y = log y = log y + A y = By y = Ce Bt H (1) (2). Az z + λz + λ z + D =, λ 2 AD > (1) (2) Cauchy-Riemann φ A γ(t) 1 A S L(2, R) φ A (γ()) = i P S O(2) φ PA (γ) () φ PA (γ(t)) i γ(t) φ (PA) 1 w H v T w H w v =

26 II 26 L P P L (a, b, c, d) = a c b d b c a d H 2 z 1, z 2 (z 1, z 1, z 2, z 2 ) = (i, i, ai, ai) z 1 z 2 z 1 z 2 = z 1 z 2 2 z 1 z 2 z 1 z 2 z 1 z 2 < 1 2 (a 1)2 a > 1 (a + 1) 2 a 1 a + 1 = z 1 z 2 z 1 z 2, a = z 1 z 2 + z 1 z 2 z 1 z 2 z 1 z 2 z 1, z 1, z 2, z 2 i, i, ai, ai S L(2, R) z 1, z 2 i, ai z 1 z 2 i ai {iy 1 y a} H 2 z 1, z 2 a 1 1 dy = log a y d(z 1, z 2 ) = log z 1 z 2 + z 1 z 2 z 1 z 2 z 1 z 2

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information