( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Size: px
Start display at page:

Download "( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )"

Transcription

1 ( ) 2 2 ) ) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t) = i ħ θ(t) B(t) A() A()B(t)

2 A B Φ R 5 j x = lim ω σ xx (ω)e x e iωt σ xx 6 V σ xx (ω) = [ Φ R iω xx (ω) Φ R xx() ] Φ R xx(t) = i ħv θ(t) J x(t)j x () J x ()J x (t) J(t) - J x (t) B(t) J x () Ȧ() -- ) J = (e/m) p ψ p ψ - 5 X, Y X(x)Y (x ) X Y x, x G (, ) = T τ {ψ() ψ( )} 6 σ µν σ xx, σ yy ˆx ẑ ŷσ yx : Φ xx (iω λ ) = 2ħ2 e 2 m 2 2 V β xg (, iε n )G (, iε n iω λ ),n σ xx = ne2 τ m n e m τ B ρ B = Tr (ρb) () 7 ) 2

3 H ρ = e βh /Tr ( e βh) (2) H H = H µn m ħ iħ B(t) t = [B(t), H] (5) 9 m, t ρ = m m ρ m m (3) m, t = U(t) m, (6) 8 U(t) = exp( iht/ħ) B(t) = U (t)b()u(t) (4) (3) ρ(t) = m = m m, t ρ m m, t U(t) m, ρ m m, U (t) = U(t)ρ()U (t) (7) (5) U(t) U (t) iħ ρ(t) [ U(t) = iħ ρ()u (t) + U(t)ρ() U ] (t) t t t = HU(t)ρ()U (t) U(t)ρ()U (t)h = [ρ(t), H] (8) ) [ρ, H] = (9) 8 (3) B = Tr (ρb) = n ρb n = m m B n n mn n m ρ = ρ m m B n n m = ρ m m B m mn m n n n = m B m m B ρ m m Tr(ρB) B

4 A B ) 3.2. ρ t = ρ(t = ) = ρ () ρ = e β(h Ω) Ω e βω = Tr e βh ω Ee iωt H (t) = e i r i Ee iωt () e r i H (t) = Ae i(ω+iδ)t (2) (2) ω + iδ δ H (t ) = Ae iωt e = (3) t = E = ϕ A q e i(q r ωt) q = Ae iωt e iδt ω iδ e iωt e i(ω+iδ)t iħ ρ(t) t = [H + H (t), ρ(t)] (4) ρ(t) = ρ + ρ (t) (5) ρ (t) (4) iħ ρ (t) t = [H, ρ (t)] + [H (t), ρ ] (6) H (t) [H (t), ρ (t)] (9) [H, ρ ] = ρ (t) = U(t)g(t)U (t) (7) 4

5 (6) iħ ρ (t) t = HU(t)g(t)U (t) + iħu(t) g(t) U (t) t U(t)g(t)U (t)h = iħu(t) g(t) U (t) + [H, ρ (t)] (8) t (6) (6) g(t) t = i ħ U (t) [H (t), ρ ] U(t) (9) g(t) = i ħ t dt U (t ) [H (t ), ρ ] U(t ) (2) (7) g(t) ρ (t) (6) ρ (t) = i ħ t dt U(t t ) [H (t ), ρ ] U (t t ) (2) () j µ j µ (t) = Tr [{ρ + ρ (t)} j µ ] = Tr [ρ (t)j µ ] (22) Tr[ρ j µ ] = B B(t) = Tr [ρ (t)b] (23) (23) (2) (2) B(ω) = i ħ B(t) = B(ω)e iωt (24) dt Tr {[A, ρ ] B(t)} e iωt (25) Tr{XY Z} = Tr{Y ZX}B(t) = U (t)bu(t) t t t A B B(ω) σ(ω) (25) B(ω) = i ħ iω = i ħ iω X(t) = Tr {[A, ρ ] B(t)} (26) (25) [ X() + dt dx(t) dt dt ( e iωt) dx(t) dt e iωt ] (27) ω ω + iδ t = 2 X( ) 3 X() = dt dx(t) dt (28) B(t) (5) ρ H dx(t) dt = i ħ Tr { [A, H]ρ B(t) [A, H]B(t)ρ } = B(t)Ȧ() A()B(t) (29) iħȧ = [A, H] () (29) 4 2 t t t t t = t = G R (t) = iθ(t) ψ pσ (t)ψ pσ () ψ pσ ()ψ pσ(t) Ȧ, B ψ ψ Φ 5

6 Φ R (t) = i ħ θ(t) B(t) A() A()B(t) (3) B(ω) = iω dt ( e iωt) Φ R (t) (3) Φ R (t) Φ R (t) = 5 dω 2π ΦR (ω)e iωt (32) B(ω) = [ Φ R (ω) Φ R () ] (33) iω (24), (3), (33) 3.3 () (33) A = e i r i E (34) A = i ħ [A, H] = i e [ ri E, p 2 ] i ħ 2m i = e p i E (35) m i 5 ω ω ω B(ω) = iω = iω = iω = iω dt ( e iωt) dω dt dω 2π 2π ΦR (ω )e iω t { } e iω t e i(ω ω )t Φ R (ω ) dω { 2πδ(ω ) 2πδ(ω ω ) } Φ R (ω ) 2π [ ] Φ R () Φ R (ω) [x, p x ] = iħ, [x, p 2 x] = 2iħp x J = e p i (36) m i A = J E (37) µ j µ = J µ /V B = j µ j µ = lim σ µν (ω)e ν e iωt ω (38) σ µν (ω) = [ Φ R iω µν (ω) Φ R µν() ] (39) Φ R µν(t) = i ħv θ(t) J µ(t)j ν () J ν ()J µ (t) (4) σ µν σ xx σ xy 6 (38) - ) σ xy = ), 2) 6

7 E m m Φ R (t) = i ħ θ(t)eβω m,n e βe n [ n B(t) m m A() n n A() m m B(t) n ] (4) 4 (38)- (4) 7 4. H m = 7 ) n B(t) m = n e iht/ħ B()e iht/ħ m = n B() m e i(e n E m )t/ħ Φ R (t) = i ħ θ(t)eβω m,n e βe n [ e i(e n E m )t/ħ n B m m A n e i(e n E m )t/ħ n A m m B n = i ħ θ(t)eβω m,n ] ( e βe n e βe m ) (42) e i(en Em)t/ħ n B m m A n (43) m n Φ R βω (ω) = e m,n n B m m Ȧ n 8 e βen e βem ħω + E n E m + iδ (44) 8 dω e iωt θ(t) = lim δ 2πi ω iδ F (t) = iθ(t)e ixt { } F (ω) = i dt e iωt θ(t)e ixt { } dω e i(ω+ω +X)t = i dt 2πi ω { } iδ = dω δ(ω + ω + X) ω { } iδ = ω + X + iδ { } 7

8 Φ(τ) = T τ { B(τ) Ȧ() } (45) Φ(iω λ ) = β dτ e iω λτ Φ(τ) (46) B, Ȧ 4 ω λ = 2λπ B T (47) λ τ > Φ(τ) = e βω βh B(τ) m m Ȧ() n m,n n e = e βω e βen e (En Em)τ m,n n B m m A n (48) Φ(iω λ ) = β dτ e iω λτ Φ(τ) = e βω m,n n B m m A n β dτ e iω λτ e βe n e (E n E m )τ βω = e m,n n B m m Ȧ n e βe n e βe m iω λ + E n E m (49) e iω λβ = (45) (46) iω λ ħω + iδ (5) (44) ω λ ħω x σ xx = [ Φ R iω xx (ω) Φ R xx() ] (5) Φ xx (iω λ ) = V β dτe iω λτ T τ {J x (τ)j x ()} (52) e J = e ħψ σ m ψ σ (53) (52) Φ xx (iω λ ) = e2 ħ 2 m 2 x V xk (iω λ ) (54) K (iω λ ) = β dτe iω λτ K (τ) (55) K (τ) = T τ { ψ (τ)ψ (τ) ψ ()ψ ()} (56) K K (τ) ψ (τ)ψ () ψ (τ) ψ () = T τ {ψ () ψ (τ)} T τ { ψ (τ) ψ ()} = G (, τ)g (, τ) (57) 8

9 9 τ > K (iω λ ) = G (τ) = e iεnτ G (iε n ) (58) β β n dτe iω λτ β 2 n,n e i(ε n εn)τ G (, iε n)g (, iε n ) = G (, iε n iω λ )G (, iε n ) (59) β n 2 Φ xx (iω λ ) = 2ħ2 e 2 m 2 V 2 β xg (, iε n )G (, iε n iω λ ),n (6) 2 9 = T τ {ψ (τ) ψ ()} = dr dr 2 T τ {ψ (τ) ψ 2 ()} e i r e i r 2 = dr dr 2 = dr dr 2 = d (2π) 3 G (, τ)e i (r r 2 ) e i r +i r 2 d (2π) 3 G (, τ)e i( ) r e i( ) r 2 d (2π) 3 G (, τ)(2π) 6 δ( )δ( ) = G (, τ)(2π) 3 δ( ) δ( ) (54) 2 ε n ω λ ω n + ε n ε n 8. β dτe i(εn ε n ) = βδ εn,ε n K (iω λ ) = G (iε n )G (iε n iω λ ) β n n ε n = (2n + )π/β (6) dz 2πi n F(z)F (z) (62) C F (z) n F (z) n F (z) = e βz + (63) n F (z) z = (2n + )πi/β iε n 2 β n dz F (iε n ) = C 2πi n F(z)F (z) (64) 22 ε n z iε n z C 2 2 n B (ε) = /(e βε ) 22 e βz z = (2n + )iπ/β e βz + β z (2n + )iπ/β n F (z) /β (65) 9

10 Im z (a) Im z Ca Im z = iω λ Re z Cb Re z Cc (b) Im z 2: n F (z) C C2 C3 C4 Re z F (z) G (z)g (z iω λ ) Im z = Im z = iω λ 23 Im z = Im z = iω λ C 3(a) C a (Im z > iω λ ); C b ( < Im z < iω λ ); C c (Im z < ) ω λ > G (z), G (z iω λ ) 3(b) Im z =, iω λ C C 4 + x C, C 2 z = x + iω λ ± iδ, C 3, C 4 z = x ± iδ 23 G (p, iε n ) iεn ε+iδ G R (p, ε) for ε n > (66) G (p, iε n) iε n ε iδ G A (p, ε) for ε n < (67) 3: K (iω λ ) = + + dx 2πi n F(x)G (x + iω λ )G (x + iδ) (C ) dx 2πi n F(x)G (x + iω λ )G (x iδ) (C 2 ) dx 2πi n F(x)G (x + iδ)g (x iω λ ) (C 3 ) dx 2πi n F(x)G (x iδ)g (x iω λ ) (C 4 ) G iω λ iω λ iδ C, C 2 e iβω λ = n(x + iω λ ) = n(x) iω λ ħω + iδ

11 24 dx K(ω) = 2πi n F(x) [ G R (x + ħω)g R (x) G R (x + ħω)g A (x) ] + G R (x)g A (x ħω) G A (x)g A (x ħω) 25 (68) iω λ < x < C C 4 G R G R, G R G A, G A G A C 2 + C 3 G R G A C +C 4 G R G R G A G A G R G A ω (39) ω Φ R µν(ω) = Φ R() µν + 24 iε n iω λ 25 iω λ ħω + iδ K (ħω + iδ) dx = 2πi n F(x)G (x + ħω + iδ)g (x + iδ) dx + 2πi n F(x)G (x + ħω + iδ)g (x iδ) dx 2πi n F(x)G (x + iδ)g (x ħω iδ) dx + 2πi n F(x)G (x iδ)g (x ħω iδ) G ( ± iδ) ( + iδ) G R ( iδ) G A (68) 26 G R G R G A G A Φ R() µν ω + Φ R(2) µν ω 2 + ω (39) ω σ µν (ω) = iφ R() µν (69) ω G R G A G R G R, G A G A G R G A ω C 2 + C 3 dx 2πi n F(x) [ G R (x)g A (x ħω) G R (x + ħω)g A (x) ] x x + ħω dx 2πi [n F(x + ħω) n F (x)] (7) G R (x + ħω)g A (x) (7) n F (x + ħω) ħω ħω ( dx dn ) F(x) G R (x)g A (x) (72) 2πi dx dn F (x)/dx T dn F (x)/dx (Fermi surface term) C 2 + C 3 27 (Fermi sea term) 27 C 2 +C 3 ω (7) ω = G R (x)g A (x) G R (x)g A (x) = ω C + C 4 Φ R µν()

12 G R G R, G A G A ω C + C 4 dx 2πi n F(x) [ G R (x + ħω)g R (x) G A (x)g A (x ħω) ] (73) G R (x + ħω) = G R (x) + ħω x G R (x) [ ] ω G R x G R = 2 x { G R } 2 [ ] ħω G R (x) GR (x) + G A (x) GA (x) x x [ { = ħωre G R (x) } ] 2 x G A = [G R ] ħω = ħω dx 2πi n F(x) [ {G x Re R (x) } ] 2 ( dx dn F(x) 2πi dx ) [ {G Re R (x) } ] 2 lim ε ± G R (ε) = C 2 + C 3 C + C 4 dn F /dx ) σ xx σ yy (dissipative) C + C 4 dn F /dx σ xy (dispersive) C + C 4 n F σ xx = ħe2 ħ 2 2 x πv m 2 dε ( dn F(ε) dε [ G R (, ε)g A (, ε) Re { G R (, ε) } 2 ] (74) dn F /dε G R G A Re { G R} 2 = 2 [ ImG R ] 2 ) (75) T µ σ xx = 2ħe2 πv ħ 2 2 x m 2 [ ImG R (, ) ] 2 (76) G R (, ε) = ε ξ Σ (, x) + iσ (, x) (77) ) Σ Σ Σ > Σ Σ (, ε) ξ x Σ ξ ε G R (, ε) = a ε b ξ + iσ (78) a, b F a = ε Σ ( F, ε) ε= (79) b = + ξ Σ (, ) =F (8) - a 3), 4) ρ(ε) = 2π A(, ε) = Im G R (, ε) π (8) 2

13 ρ = bρ (82) ρ (= ρ()) b 28 G R G A G R (, )G A (, ) = b bσ Σ ξ 2 + (bσ ) 2 = πb Σ δ(ξ ) (83) bσ πδ(x) = lim a a/(x 2 + a 2 ) G R G A Σ (84) G R G A Σ C + C 4 Re{G R } 2 [ {G Re R (, ) } ] 2 = b 2 ξ2 b2 Σ 2 (ξ 2 + b2 Σ 2 ) 2 (85) ξ 29 Re [ {G R } 2 ] (86) 28 (8) G R = /(ε ξ + iδ) ρ(ε) = π δ (ε ξ ) 2 + δ 2 = δ(ε ξ ) (78) ρ(ε) = π Σ ρ = Σ (a ε b ξ ) 2 + Σ 2 δ(b ξ ) = b 29 E F B T = ρ 2 E E dξ δ(ξ ) = bρ E G R G A σ xx = ħe2 V ħ 2 2 x m 2 = ħe 2 d ħ 2 6π 2 b Σ δ(ξ ) b m 2 4 Σ m ħ 2 F δ( F ) = ħe2 F 3 b 6π 2 m Σ (87) 3 dξ /d = ħ 2 /m τ = ħ 2Σ (88) n = 3 F /3π2 σ xx = ne2 τ m ρ ρ (89) σ xx = ne 2 τ/m 5 (85) ξ E dx x2 a 2 [ E (x 2 + a 2 ) 2 = x ] E x 2 + a 2 E = 2E E 2 + a2 2 E E F E E F τ/ħ Re{G R } 2 3 x 2 d 3 (2π) 3 2 x... = 2 d 2π dφ π sin θ dθ 2π 2π 2π 2 sin θ 2 cos φ 2... = 6π 2 4 d... 3

14 5. 3 R i U(r R i ) N i N i U(r) = U(r R i ) (9) i= dr ψ(r)u(r)ψ(r) (9) (85) G (, ) = G (, ) + d2 G (, 2)U(2)G (2, ) + d2d3 G (, 2)U(2)G (2, 3)U(3)G (3, ) + (92) (92) G U(r) U(r) U(r) = i,q u(q)e iq (r R i) (93) 3 U(r) ave = i,q = i,q = i,q u(q)e iq r e iq R i ave u(q)e iq r dri V e iq R i u(q)e iq r δ q, = N i u() (94) U(r) dr U(r) 32 u() = (92) U()U(2) ave = i,j q,q 2 u(q )u(q 2 )e i(q r+q2 r2) e i(q R i +q 2 R j ) ave (95) u() = R i = R j q = q 2 U()U(2) ave = N i u(q)u( q)e iq (r r 2 ) q (96) 4(a) u(q) N i N i n i = N i /V u(q) q = u() = 32 4(a) 33 u( q) = u (q) u(q)u( q) = u(q) 2 4

15 (a) (b) (c) -q (d) (e) (f) -q (g) q -q (h) q -q q q -q-q -q -q-q q -q q -q -q -q 4: (a) (b), (d), (e) u() = 4(a) 4(b) (c) (b) (a) (c) R i = R j q + q 2 = 4(f) 34 4(g) (h) n i n2 i 5.3 4(c) G (c) = G Σ (c) G (97) 34 e i(q +q 2 +q 3 ) R i q + q 2 + q 3 = 4(h) G (h) = G Σ (c) G Σ (c) G (98) Σ (c) Σ (c) G (c) = G + G Σ (c) G + G Σ (c) G Σ (c) [ G + ] = G + G Σ (c) G + G Σ (c) G + = G + G Σ (c) G (c) (99) G (, iε n ) ave = G (, iε n ) + G (, iε n )Σ(, iε n ) G (, iε n ) ave () 35 5 G 4(h) G (c) (c) Σ Σ 4(c) 35 (98) G = G + G ΣG G ( ) G Σ G = (98) G G = G Σ 5

16 36 = + = : Σ Σ(, iε n ) = dξ ħ iε n + ξ 2πτ ε 2 n + ξ 2 = ħ iε n 2τ ε n (3) 37 τ (88) τ (2) G = [ G Σ ] G (, iε n ) = iε n ξ + i sgn(ε n )ħ/2τ (4) Σ(, iε n ) = N i u(q) 2 G ( q, iε n ) q u( ) 2 = N i iε n ξ = N i u( ) 2 iε n + ξ ε 2 n + ξ 2 () u( ) 2 ħ = τ 2 N iρ dω u( ) 2 (2) 36 dξ dω = 2V (2π) 3 2 d sin θdθdφ = V dω π 2 2 d 4π,σ dω = sin θdθdφ dω/4π = 2 ξ = ħ 2 2 /2m 2 d = ( ) 2m 3/2 ξdξ 2 ħ 2 ρ(ϵ) =,σ V 2π 2 ( ) 2m 3/2 ϵ ħ 2 dω = dξρ(ξ) 4π dn F (x)/dx ρ(ξ) ρ ρ 37 ξ ξ iε n ε n ε n > ±iε n +iε n dξ ξ 2 + ε 2 = dξ n (ξ iε n )(ξ + iε n ) = π ε n ε n < iε n dξ (ξ iε n )(ξ + iε n ) = π ε n dξ ξ 2 + ε 2 n = π ε n 6

17 (a) (b) (c) G R (, ε) = ε ξ + iħ/2τ (5) G A (, ε) = ε ξ iħ/2τ (6) (4) ħ/τ A(, ε) = (ε ξ ) 2 + ħ 2 /4τ 2 (7) (d) (e) (f) 6: (a)-(c) (d)-(e) ħ/2τ x x x 6 4 (6) 6 (a)-(c) (d)-(f) 38 7: (8) x 6(d) 6(e) (6) = + 8: (9) 38 vertex. 7

18 Φ xx (iω λ ) = 2ħ2 e 2 m 2 x Γ x () V β,n G (, iε n )G (, iε n iω λ ) (8) Γ () = + N i u( ) 2 Γ ( ) G (, iε n )G (, iε n iω λ ) (9) 7, 8 Γ 39 Γ () = γ () Γ (9) γ γ = + γ ħ 2π τ dξ G (, iε n )G (, iε n iω λ ) () ħ τ = 2 N iρ dω u( ) 2 2 (2) 4 () ξ η(ε n ) = sgn(ε n )ħ/2τ dξ iε n ξ + iη(ε n ) i(ε n ω λ ) ξ + iη(ε n ω λ ) (3) ε n iε n + 39 Γ (; iε n, iε n iω λ ) 4 (9) Γ () = γ γ = + N i γ v 2 G G 2 = 2 γ = + N i γ 2 v 2 G G iη(ε n ), i(ε n ω λ ) + iη(ε n ω λ ) ω λ > ε n > ε n ω λ < (3) iω λ ω + iδ ω 2π/(ħ/τ ) γ () γ = γ = + γ τ τ (4) τ /τ = τ tr τ (5) ħ = ħ ħ τ tr τ τ = ( 2 N iρ dω u( ) 2 ) 2 (6) Φ xx (iω λ ) = 2ħ2 e 2 [ ( τtr ) ] m 2 + V β τ θ(ε n )θ(ω λ ε n ),n 2 xg (, iε n )G (, iε n iω λ ) (7) θ(x) ε n > ε n ω λ < 4 C 2 + C 3 G R G A (89) C 2 + C 3 τ tr /τ σ xx = ne2 τ tr m ρ ρ (8) 8

19 ' ' 9: τ tr τ tr ( / 2 ) 4 cos χ χ cos χ /τ tr cos χ /τ tr 9 4 ρ ρ(t) B(t) = Tr [ρ (t)b] (9) B ρ A B(t) = B(ω)e iωt (2) B(ω) Φ R (ω) B(ω) = [ Φ R (ω) Φ R () ] (2) iω A B Φ R (t) = i ħ θ(t) B(t)Ȧ() A()B(t) (22) A B ψψ ψ(τ)ψ(τ) ψ()ψ() Φ xx (iω λ ) = 2ħ2 e 2 m 2 V 2 β xg (, iε n )G (, iε n iω λ ),n (23) 9

20 F (iε n ) iε n β n dz F (iε n ) = C 2πi n F(z)F (z) (24) G (iε n )G (iε n iω λ ) C C 4 3(b) iε n ε iω λ ω + iδ K (iω λ ) = G (, iε n )G (, iε n iω λ ) β n (25) dε K(ω) = 2πi n F(ε) [ G R (ε + ħω)g R (ε) G R (ε + ħω)g A (ε) ] + G R (ε)g A (ε ħω) G A (ε)g A (ε ħω) (26) σ xx = ħe2 ħ 2 2 ( x πv m 2 dε dn ) F(ε) dε [G R (, x)g A (, x) Re { G R (, x) } ] 2 (27) G R G A C 2 + C 3 Re [ {G R (, x)} 2] C + C 4 (dissipative) (dispersive) G R (, ε) = a ε b ξ + iσ (28) C 2 + C 3 C + C 4 G R G A Σ (29) Re [ {G R (, )} 2] (3) σ xx = ne2 τ m ρ ρ (3) ρ = bρ τ τ = ħ 2Σ (32) Σ(, iε n ) = ħ 2τ iε n ε n (33) τ N i ħ = τ 2 N iρ dω u( ) 2 (34) G (, iε n ) = ε n ξ + i sgn(ε n )ħ/2τ (35) G R (, iε n ) = ε ξ + iħ/2τ (36) 2

21 ħ = ( τ tr 2 N iρ dω u( ) 2 ) 2 (37) τ tr σ xx = ne2 τ tr m ρ ρ (38) ( / 2 ) τ Green-Kubo Green 43 (24), (3), (33) Φ(ω) = 2ħ2 e 2 m 2 V m,n m x n 2 n F(E m ) n F (E n ) E m E n + ħω + iδ (39) δ δ σ δ δ > 5 43 B(ω) = i e iωτ Tr(e ih τ/ħ [A, ρ]e ih τ/ħ B)dτ ħ ( ) δ M = i t { Tr ρ [H (t ), ˆM(t)] } dt (Ricayzen) ħ σ αβ (q, ω) = t dt e iω(t t ) ψ [j ωv α(q, t), j β (q, t )] ψ + i n e 2 mω δ αβ (Mahan) A(t) = dt f(t ) A(t)B(t ) R (Zagosin) 2

22 /(ε ξ + iħ/2τ ) /(E m E n + ħω + iħ/2τ ) τ E m,n (39) δ [2] H. Fuuyama: Prog. Theor. Phys. 42 (969) 284. [3] S. Naajima and M. Watabe: Prog. Theor. Phys. 29 (963) 34. [4] J. C. Swihart, D. J. Scalapino, and Y. Wada: Phys. Rev. Lett. 4 (965) 6. [] R. Kubo: J. Phys. Soc. Jpn. 2 (957) 57. [2] R. Kubo and K. Tomita: J. Phys. Soc. Jpn. 9 (954) 888. [3] : 84 (955) 25. [4] : 88 (955) 53. [5] H. Naano: Prog. Theor. Phys. 5 (956) 77. [6] : 88 (955) 45. [7] : 89 (955) 72. [8] : 89 (955) 79. [9] : 89 (955) 99. [] J. v. Neumann: Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. (927) 245. [] H. Fuuyama, H. Ebisawa, and Y. Wada: Prog. Theor. Phys. 42 (969)

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information