II Brown Brown

Size: px
Start display at page:

Download "II Brown Brown"

Transcription

1 II Brown Brown Markov Brown Martingales Stopping time Martingales Brown Markov

2 2

3 1 Brown 1 2 Brown Markov 1.1 (Ω, F, P t t [, t [, T, T > 1.1 (1 t R d X = (X t t = (X t (ω t d (stochastic process (d = (2 d ω Ω t X t (ω 1.1 W d = C([,, R d (path X d X(ω W d, ω Ω X W d - : A B(W d { ω Ω ; X(ω A} F W d 5 B(W d Borel σ- : B K (W d := σ { C(t 1,..., t n ; A ; n N, t 1 < < t n <, A B(R dn } C(t 1,..., t n ; A := {w = (w t t W d ; (w t1,..., w tn A } (cylinder set σ- ( σ- Kolmogorov σ- B(W d = B K (W d X W d (1 B(W d = B K (W d (2 X W d - F σ- (F t t F t σ- F s F t F, s t filtration 1 URL sugiura/ 2 [F [N : [IW N.Ikeda and S.Watanabe: Stochastic Differential Equations and Diffusion Processes. 2nd ed., North Holland, [KS I.Karatzas and S.E.Shreve: Brownian Motion and Stochastic Calculus. 2nd ed., Springer, [O B.Øksendal: Stochastic Differential Equations. An Introduction with Applications. 6th ed., Springer, 23. ( 5 : [RY D.Revuz and M.Yor: Continuous Martingales and Brownian Motion 3rd ed., Springer, [SV D.W.Stroock and S.R.S.Varadhan: Multidimensional Diffusion Processes, Springer, [F [F1 ( 3 path (Poisson 4 (continuous modification X Y P (X t = Y t = 1, t 5 W d ( 3

4 1.2 (1 d X = (X t t (F t - (adapted t X t : Ω R d F t - (2 d X = (X t t (F t - (progressively measurable t [, t Ω (s, ω X s (ω R d B([, t F t /B(R d - B([, t F t σ- 1.2 X (F t - t F t X t E[ f(x s ds = f(x Ω [,t s(ω P (dωds ( 1.1 X (F t - (F t X = (X t (F t - X : lim h X t+h (ω = X t (ω, t [,, ω Ω (F t - : X t X (n s (ω := X (k+1t/2 n(ω for kt/2 n < s (k + 1t/2 n, k =, 1,..., 2 n 1 A B(R d {(s, ω; X (n s (ω A} = 2 n 1 k= ( kt (k + 1t, 2n 2 n { ω ; X (k+1t/2 n(ω A } B([, t F t X s (n B([, t F t - lim n X s (n (ω = X s (ω, ω Ω. X s B([, t F t (F t t filtration (1 F t+ := s>t F s F t+ = F t, t, (F t (2 F t := σ(f s ; s < t F t = F t, t, (F t 1.1 X = (X t t t = σ{ X s ; s t } (F,X t t filtration X (F,X t - (F,X t X filtration (F,X t F,X 1.2 X d O R d σ O (ω := inf{ t ; X t (ω O } (inf = {σ O t} F,X t+ {σ O t} / F,X t P N := { N F ; P (N = } F,X t Ft X := F,X t N X t = Y t a.s. ( t X (F t X - Y (F t X - F t ( Brown t (cf

5 1.2 Brown 1.4 (Ω, F, P ( B = (B t t = (B t (ω t Brown (Brownian motion (1 B = a.s. (2 ω Ω t B t (ω (3 s t B t B s F s,b := σ(b u ; u s (4 s t B t B s, t s Gauss 1.3 (2 1.1 a.s.ω B t (ω ω B t (ω (t (3, (4 = t < t 1 < < t n {B ti B ti 1 } 1 i n N(, t i t i 1 A 1,..., A n B(R P (B ti B ti 1 A i, 1 i n = dx 1 A 1 dx 2 A 2 dx n A n n p(t i t i 1, x i p(t, x = 1 2πt e x2 /2t, t >, x R (1.1 y =, x i = y i y i 1, 1 i n A 1,..., A n B(R n P (B ti A i, 1 i n = dy 1 dy 2 dy n p(t i t i 1, y i y i 1 (1.2 A 1 A 2 A n Brown n 1.2 Brown 1.2 Kolmogorov (Kolmogorov n N (R n, B(R n µ n (consistent i=1 µ n+1 (A R = µ n (A, A B(R n, n N (R N, B(R N µ µ(a R N = µ n (A, A B(R n A R N := { (x 1, x 2,... ; (x 1,..., x n A } R N R N B(R N Borel 6 Brown (1 Fourier (2 Gauss (3 (Donsker (cf. [KS pp i=1

6 : 1 : C := { A R N ; A B(R n, n N } R N µ µ(a R N = µ n (A {µ n } µ n C C n C C n (C n C n+1, n N n=1c n = lim µ(c n = (1.3 n Hopf µ B(R N = σ(c (1.3 ε > : µ n (C n > ε, n N n=1c n 2 : C n = A n R N, A n B(R n C 1 = R R N C n A n A n A n A n µ n(a n \A n ε/2 n+1 i < n à i = A i R n i A n = à 1 à n 1 A n, C n = A n R N A n C n µ(c n = µ n (A n µ(a n n µ i (A i \A i ε 2 i=1 3 : n=1c n x n = (x 1 n, x 2 n,... C n, n N {x n } {x nk } x = (x 1, x 2,... R N i lim n x i n = x i A n (x 1,..., x n A n x n=1c n D n := { k/2 n ; k =, 1,..., 2 n }, D = n=1d n 1.4 (Kolmogorov X = (X t C, ε, p > E[ X t X s p C t s 1+ε, s, t D (1.4 X t a.s. D : 1 : λ n := 2 nε/2p I n := { (s, t D D ; t s 2 n } A n := { ω Ω ; X s X t λ n, (s, t I n } P (A n C 1 2 nε/2 Borel-Cantelli P ( n=1 k=n A k = 2 : a(n, t = k/2 n, t [k/2 n, (k + 1/2 n X t = X a(n,t + (X a(n+i+1,t X a(n+i,t, t D i= j a(j, t = t X s (s, t I n a(n, t a(n, s 2 n 6

7 3 : ω A n (a, (b : (a (s, t I n s.t. X a(n,t X a(n,s λ n /2 (b t, i s.t. X a(n+i+1,t X a(n+i,t 3λ n /2(i π 2. (a, (b X t X s < λ n 2 + 3λ n 1 π 2 i= = λ (1+i 2 n, (s, t I n (a (q, r I n (D n D n s.t. X r X q λ n /2 (q, r 2 n P ((a = 2 n sup P ( X s+2 n X s λ n /2 2 n (2/λ n p sup E[ X s+2 n X s p s D n s D n 2 n 2 p λ p n C2 n(1+ε = C 2 2 nε/2. (b i, (q, r I n+i (D n+i+1 D n+i s.t. X r X q 3λ n /2(i+1 2 π 2 (q, r 2 n+i+1 P ((b = 2 n+i+1 sup P ( X s+2 (n+i+1 X s 3λ n /2(i π 2 s D n+i i= C 2 n+i+1 2 (n+i+1(1+ε (2(i π 2 /3λ n p i= C 3 i= 2 (n+i+1ε (i + 1 2p λ p n C 4 2 nε/2. P (A n C 1 2 nε/2 1.5 X = (X t t [,1 (1.4 s, t [, 1 X : t / D X t := lim s D,s t X s 1.4 X t t [, 1 (1.4 s D, s t X s X t in L p t [, 1 X t = X t a.s. X t X t 1.2 : 1 : [, 1 Brown (B t t [,1 Ω = R D, B t (ω = ω t, t D, ω Ω D = {t 1, t } R n µ n {t 1,..., t n } s 1 < s 2 < < s n n µ n (dx 1 dx n := p(s i s i 1, x i x i 1 dx i, s =, x = i=1 p(t, x (1.1 (s 1 = p(, x 1 dx 1 = δ (dx 1 {µ n } p : p(t + s, y x = p(t, z xp(s, y z dz, t, s > R Chapman-Kolmogorov Kolmogorov Ω µ E µ [ B t B s 4 = x y 4 p(s, yp(t s, x y dydx = 3 t s 2, t > s, s, t D R 2 7

8 Kolmogorov (B t t D µ-a.s. t / D B t := lim s D,s t B s (B t t [,1 (Ω, µ Brown 2 : [, 1 Brown {(Bt i t [,1 } i N ( B t := [t i=1 Bi 1 + B [t+1 t [t, t (B t t Brown W (= W 1 := C([,, R, W := { w W ; w = } B(W, B(W Borel Ω := W, F = B(W B t (w = w t, w = (w t t W Brown (W, B(W P Wiener 1.2 Wiener 1.6 d B t = (Bt i 1 i d = (Bt 1,..., Bt d, t d Brown Brown {Bi } 1 i d B i t d Brown d Brown i = 1,..., d (Ω i, F i, P i Brown B i = (Bt i t Ω = d i=1 Ωi, F = d i=1 F i, P = d i=1 P i ω = (ω 1,..., ω d Ω B t (ω = (Bt 1 (ω 1,..., Bt d (ω d (Ω, F, P d Brown 1.3 B = (B t t (Ω, F, P 1 Brown Ft = σ{ B s ; s t }, F t = Ft N N = { N F ; P (N = } Brown 1.6 (1 E[B 2p t = (2p 1!!t p, E[B 2p 1 t =, p N. (2 E[B t B s = t s(:= min{t, s}, t, s. (3 B = (B t t (F t -martingale E[B t F s = B s a.s. < s < t. : (1 B t N(, t (2 s < t 1.4 (3 B t B s F s E[B t B s = E[(B t B s B s + E[B 2 s = E[B t B s E[B s + s = s. (3 (2 A F s E[(B t B s 1 A = E[B t B s P (A =. 1.7 B B a, B b, B c Brown s >, γ > (1 Bt a := B t+s B s, t. (2 Bt b := B t, t. (3 Bt c := γb t/γ 2, t. 8

9 : 1.2 (1.2 (1 ( = t < t 1 < < t n, g C b (R n E[g(Bt a 1,..., Bt a n = E[g(B t1 +s B s,..., B tn +s B s n = g(x 1 x,..., x n x p(s, x p(t i t i 1, x i x i 1 dx dx 1 dx n R n+1 i=1 n = p(s, x dx g(x R 1,..., x n p(t i t i 1, x i x i 1 dx 1 dx n n R = E[g(B t1,..., B tn. i=1 1.3 B = (B t t d Brown A d d AB t d Brown : B = (B t t d Brown (1.1 p(t, x p(t, x = 1 (2πt d/2 e x 2 /2t, t >, x R d (1.2 A 1,..., A n B(R d B t t [T 1, T 2, T 1 < T 2 a.s.ω : 1.7 T 1 =, T 2 = 1 [, 1 : = t < t 1 < < t N = 1 V (2 (ω = N j=1 {B t i (ω B ti 1 (ω} 2 lim E[(V (2 12 = = max 1 i N {t i t i 1 } Z i := {B ti (ω B ti 1 (ω} 2 (t i t i 1 {Z i } 1 i N E[Z i = ( E[(V (2 N 2 N 12 = E[ Z i = E[Z 2 i = j=1 j=1 N 2(t i t i j=1 1 in L2 { k } k 1 a.s. δ (ω = max i B ti (ω B ti 1 (ω B t (ω [, 1 lim δ (ω =. V (ω = sup V (ω, V (ω = N i=1 B t i (ω B ti 1 (ω { k } V (2 V (2 V (ω V k (ω V (2 k (ω δ k (ω a.s. Brown path [KS p.19, p.112, p.114 9

10 1.9 (1 a.s.ω B t (ω t (2 : lim sup t B t 2t log log 1/t = 1 a.s. lim inf t B t 2t log log 1/t = 1 a.s. lim sup t (3 Hölder : B t 2t log log t = 1 a.s. lim sup δ 1.4 Markov 1 2δ log 1/δ lim inf t B t 2t log log t = 1 a.s. max B t B s = 1 a.s. s<t 1:t s δ B = (B t t d Brown x R d Brown (x+b t t (W d, B(W d P x P x E x [ (W d, B(W d, P x B t (w, w W d B t (w = w t 1.4 (1 Y = Y (w W d R d x E x [Y R ( Y (w = n k=1 f k(w tk, t 1 < < t n f k C b (R d (2 Y = Y (w: W d B(W d - R d x E x [Y R B(R d - B(W d F t := σ(b s ; s t, F t := F t N, F t := s>t F s N := { N B(W d ; P x (N = } (F t F t x W d θ s : W d W d, s (θ s w t := w t+s B t θ s = B t+s 1.1 (F t Markov x R d, s Y = Y (w: W d B(W d - E x [Y θ s F s = E Bs(w[Y, P x -a.s. w W d (1.5 (1.5 ( s s ( Brown : (1.5 F s - Z : E x [Y θ s Z = E x [E Bs(w[Y Z ( well-defined 1

11 1 : f : R d R Borel Y = f(b t, t f(x = e iξ x, ξ R d ( f 1 Y = e iξ B t E x [e iξ B t θs Z = E x [e iξ B t+s Z = E x [e iξ (B t+s B s e iξ Bs Z = E x [e iξ (B t+s B s E x [e iξ Bs Z = e ξ 2 t/2 E x [e iξ Bs Z E y [e iξ Bt = E [e iξ (Bt+y = e iξ y e ξ 2t/2 2 : Y = n k=1 f k(b tk, t 1 < < t n f k : R d R Borel n n = 1 1 n 1 E x [Y θ s Z = E x [ n k=1 = E x [ E Bs [ [ f k (B tk +s Z = E x E Bt1 +s E Bt1 [ n k=2 = E x [ E Bs [f 1 (B t1 [ n k=2 f k (B tk t 1 f 1 (B t1 n k=2 f k (B tk t 1 f 1 (B t1 +sz Z f k (B tk Z = E x [E Bs [Y Z 1 2 f 1 (B t1 +sz F t1 +s f 1 (B t1 F t1 - ( 3 : Y 1.1 (1 B(W d = B K (W d 2 Y 1 ( (Ft Markov F t = F t, t (1.6 B(W d - Y Fs - Z : 1 : (1.6 F s - Z Y = f(b t, f C b (R d, t Z F s+ε -, ε > 1.1 E x [f(b t+s+ε Z = E x [E Bs+ε [f(b t Z. ε f B t Lebesgue E x [f(b t+s Z g t (y = f(zp(t, z y dz R d g t E x [E Bs+ε [f(b t Z = E x [g t (B s+ε Z Lebesgue E x [g t (B s Z = E x [E Bs [f(b t Z 2 : 1 Borel f : R d R Fs - Z Y = n k=1 f k(b tk, t 1 < < t n f k Borel (1.6 11

12 3 : Y 2 t i s < t i+1 2 Fs - Z E x [Y Z = E x [Y 1 θ s Y 2 Z = E x [E Bs [Y 1 Y 2 Z, Y 1 = n k=i+1 f k(b tk s, Y 2 = i k=1 f k(b tk E Bs [Y 1 Y 2 F s - Y F s - Ỹ E x [Y 1 A = E x [Ỹ 1 A, A F s (1.7 Y : B(W d - (cf. 1.5 Y = 1 G, G Fs E[(1 G 1 G 1 A =, A Fs 1 G 1 G F s 1 G 1 G =, P x -a.s. N F s 1 G F s - G F s i.e., Fs F s 1.5 Y : B(W d - F s Ỹ (1.7 : 2 {Y n } Y L 1 (P x - E[(Ỹm Ỹn 1 A E[ Y m Y n A = {Ỹm Ỹn > }, {Ỹm Ỹn < } {Ỹn} L 1 (P x Chauchy Ỹ {Ỹn} a.s. N F s Ỹ F s (Blumenthal -1 A F (= F P x (A = 1 : A F P x (A = E x [1 A = E x [1 A θ 1 A = E x [E B [1 A 1 A = E[P x (A1 A = P (A 2. P x (A = Brown σ (, := inf{ t > ; B t (, } (Brown P (σ (, = = 1 A := {σ (, = } F 1.12 P (σ (, = = or 1. t > P (σ (, t P (B t = 1/2 t P (σ (, = 1/2 ( Brown 12

13 1.5 Brown Fourier 1.2 {ξn} k L 2 [, 1 {ψn} k : ψ 1 (t 1 } ψn(t k = 2 {1 (n 1/2 [ k 1 2 n, k 2 n (t 1 [ k 2 n, k+1 2 n (t, k I(n, n N I( = {1}, I(n = {1, 3,..., 2 n 1} (n N B (N t (ω = N n= k I(n ξ k n(ω ψ k n(s ds (1.8 ( L 2 [, 1 ( {ψn; k k I(n, n =, 1,... } L 2 [, 1 : g L 2 [, 1 k I(n, n =, 1,... g(tψk n(t dt = g = a.e. n N (k+1/2 n k/2 n g(t dt =, k =, 1,..., 2 n 1 (1.9 { k/2 n ; k =, 1,..., 2 n, n N } [, 1 1 n = g(t dt = 1 g(tψ1 (t dt = n 1 n k k = k/2 2 n (t = 1 ( 1[ k 2 2 n 1, k (t + 2 (n 1/2 ψ k+1 2 n 1 n (t g(t dt = 1 ( (k +1/2 n 1 1 g(t dt 2 (n 1/2 g(tψ k k/2 2 n(t dt =. n 1 [ k 2 n, k+1 (k+1/2 n k /2 n 1 (k+2/2 n (k +1/2 n 1 (k+1/2 n g(t dt = g(t dt g(t dt =. (k+1/2 n k /2 n 1 k/2 n 1.14 a.a.ω (ω; t 1} N [, 1 {B (N t : b n (ω = max k I(n ξn(ω k x > 2 P ( ξn k > x = π ( P (b n > n = P x k I(n e u2 2 u 2 du π x x e { ξn k > n} 2 n P ( ξn 1 > x 1 u 2 2 du = 2 π 2 π e x2 2 x 2 n e x2 2 x, n 1. n P (b n > n < Borel-Cantelli Ω = N=1 n=1 {b n n} P ( Ω = 1 ω Ω N(ω n N(ω b n (ω n 13

14 max t 1 n=n(ω+1 k I(n ξ k n(ω ψ k n(s ds n=n(ω+1 n2 n n <. (1.8 (ω; t 1} [, 1 {B (N t 1.2 : 1 : 1.14 B t = lim N B (N t (B t t [,1 Brown t B t (ω 1.14 (cf. 1.3 = t < t 1 <... < t m 1 {B tj B tj 1 } m j=1, t j t j 1 : λ j R, j = 1,..., m [ { m } m { E exp i λ j (B tj B tj 1 = exp 1 } 2 λ2 j(t j t j 1. j=1 λ m+1 =, Sn(t k = ψk n(s ds {ξn} k N(, 1 [ { m } [ { m } E exp i λ j (B (N t j B (N t j 1 = E exp i (λ j+1 λ j B (N t j [ { = E exp = = N j=1 n= k I(n N n= k I(n [ = exp 1 2 i N ξn k n= k I(n j=1 [ { E exp iξ k n j=1 j=1 j=1 m } (λ j+1 λ j Sn(t k j m } (λ j+1 λ j Sn(t k j j=1 [ exp 1 { m } 2 (λ j+1 λ j S k 2 n(t j m j=1 j =1 m (λ j+1 λ j (λ j +1 λ j N n= k I(n Sn(t k j Sn(t k j Parseval n= k I(n Sk n(t j Sn(t k j = 1 1 [,t j 1 [,tj dt = t j t j N ( Lebesgue [ { m } [ E exp i λ j (B tj B tj 1 = exp 1 m m (λ j+1 λ j (λ j 2 +1 λ j t j t j 2 : { = exp { = exp j=1 m m j=1 j =j+1 j=1 j =1 (λ j+1 λ j (λ j +1 λ j t j 1 2 m (λ j+1 λ j ( λ j+1 t j 1 2 j=1 { m 1 1 = exp (λ 2 j+1 λ 2 2 jt j 1 2 λ2 mt m }= j=1 m } (λ j+1 λ j 2 t j j=1 m } (λ j+1 λ j 2 t j j=1 m j=1 { exp 1 } 2 λ2 j(t j t j 1. p

15 2 Martingales [F1 (Ω, F, P X F σ- G Q(B := E[X, B X(ωP (dω, B G B Q (Ω, G Q P Radon-Nikodym ( 1.6, 1.7 G- Y Q(B = Y (ωp (dω, B G B 2.1 (1 Y E[X G G X (2 A F P (A G := E[1 A G A E[X G P (A G 2.1 X, Y, X n, n N (1 a, b R E[aX + by G = ae[x G + be[y G a.s. (2 X a.s. E[X G a.s. (3 X G- XY E[XY G = XE[Y G a.s. E[X G = X a.s. (4 H, G F σ- H G E[E[X G H = E[X H a.s. E[E[X G = E[X (5 (Jensen ψ R ψ(x ψ(e[x G E[ψ(X G a.s. (6 X n X in L 1 E[X n G E[X G in L 1 (7 X G E[X G = E[X a.s. A 1, A 2 F P (A 1 A 2 G = P (A 1 G + P (A 2 G a.s. A 1, A p = { p(ω, A ; ω Ω, A F } p G P (1 ω Ω p(ω, (Ω, F 15

16 (2 A F p(, A G- (3 P (A B = p(ω, A P (dω, A F, B G. B (Ω, F 7 Ω F = B(Ω [IW p.13, [SV p.12 [SV conditional probability distribution regular 2.2 (Ω, F P (Ω, F G F σ- G P p = { p(ω, A ; ω Ω, A F } H G σ- G- N ω / N p(ω, A = 1 A (ω, A H 2.2 Stopping time (F t t (Ω, F, P filtration F (F t t 2.3 σ : Ω [, (F t t stopping time ( Markov {σ t} { ω ; σ(ω t } F t, t 2.3 (i (iv (i σ stopping time. (ii {σ < t} F t, t. (iii {σ > t} F t, t. (iv {σ t} F t, t. : (i (iii, (ii (iv (i (ii (ii (i {σ < t} = n=1{σ t 1/n} F t {σ t} = n=n{σ < t + 1/n} F t+1/n N N (F t 7 (Ω, F {1,..., n}, N, [, 1 Borel Ω (σ- Borel ϕ ϕ, ϕ 1 16

17 2.4 σ, τ, σ n, n N stopping time (i σ + τ, σ τ, σ τ stopping time. (ii σ n σ n+1, n N σ n σ n+1, n N lim n σ n stopping time. : Q t = (Q [, t {t} (i {σ + τ t} = n=n r Q t [{σ r} {τ t r + 1/n}, N N. {σ τ t} = {σ t} {τ t}, {σ τ t} = {σ t} {τ t}. (ii {σ n } { lim σ n t} = n n=1{σ n t}, {σ n } { lim σ n < t} = n n=1{σ n < t}. 2.1 (X t (Ω, F, P (F t - d X E R d (first hitting time σ E (ω = inf{ t > ; X t (ω E } (2.1 E σ E stopping time (Ω, F, P E B(R d σ E stopping time 8 : E E {σ E < t} = r Q (,t {X r E} F t E E n = { x R d ; d(x, E < 1 } n E n σ En stopping time. E n E σ En (ω σ E (ω, ω Ω 2.4 (ii σ E stopping time 2.4 stopping time σ F σ = { A F ; t A {σ t} F t } ( σ stopping time (2.2 F σ σ- σ t ( (2.2 F σ F t 2.5 σ, τ, σ n, n N stopping time (i σ F σ - (ii σ τ F σ F τ. (iii ( ω Ω σ n (ω σ(ω n=1f σn = F σ. : (i: {σ s} F σ, s {σ s} {σ t} F t, t {σ s} {σ t} = {σ t s} F t s F t (ii: A F σ A {σ t} F t, {σ t} {τ t} A {τ t} = [A {σ t} {τ t} F t, t A F τ 8 p.51 C.Dellacherie: Capacités et Processus Stochatiques. Springer,

18 (iii: (ii A n=1f σn A {σ < t} = n=1a {σ n < t} F t, t A F σ (cf. 2.3 (ii (i 2.3 Martingales (Ω, F, P F filtration (F t t 2.5 ( X = (X t t (F t t (martingale (i t E[ X t <. (ii X = (X t t (F t -adapted. (iii s t E[X t F s = X s a.s. 3 (iii E[X t F s X s a.s. X (submartingale, E[X t F s X s a.s. X (supermartingale Brown B = (B t Ft B = σ{ B s ; s t } N 1.11 (Ft B F 1.6 (3 (1 (2, (3 (1 (B t (F t B (2 X t = Bt 2 t (X t (F t B (3 σ R Y t = e σb t σ2 2 t (Y t (F t B 2.3 p 1 X = (X t p ( X t p 2.6 (Doob X = (X t λ >, p > 1 ( (i P sup X s λ 1 [ s t λ E X t, sup X s λ. s t (ii t X t (ω a.s. ( P sup s t sup s t X s λ 1 [X λ E t (iii X E[ X t p <, t [ E X s p p p 1 E[ X t p : t k = kt/n (X tk k [F1, p ( P sup 1 k n X tk λ 1 [ λ E X t, sup X tk λ 1 k n (X t n (i (ii (i (iii Y = sup s t X s 18

19 E[Y p = p = p = λ p 1 P (Y λ dλ p λ p 2 dλ Ω p p 1 E[Y p 1 X t λ p 1 1 λ E[ X t, Y λ dλ ((i X t 1 {Y λ} dp (Fubini p p 1 E[Y (p 1/p E[ X t p 1/p (Hölder E[Y (p 1/p p (iii 2.7 (Doob (optional sampling theorem σ, τ stopping time σ τ X = (X t E[X τ F σ X σ a.s. (2.3 X = (X t (2.3 X τ X τ (ω = X τ(ω (ω X σ : σ n (ω = [nσ(ω+1, τ n n (ω = [nτ(ω+1 σ, τ σ n n, τ n [F1, p E[X τn F σn X σn a.s. F σ F σn A F σ E[X τn, A E[X σn, A σ n (ω σ(ω, τ n (ω τ(ω (X t {X τn } n, {X σn } n [F1, p lim n E[X τ n, A = E[X τ, A, lim n E[X σn, A = E[X σ, A X E[X τn E[X τn+1, n N inf n E[X τn E[X > ε > N N E[X τn < inf n E[X τn + ε λ > n N E[ X τn, X τn > λ = E[X τn, X τn > λ + E[X τn, X τn λ E[X τn E[X τn, X τn > λ + E[X τn, X τn λ E[X τn + ε E[ X τn, X τn > λ + ε, P ( X τn > λ 1 λ E[ X τ n = 1 λ (2E[X τ n E[X τn 1 λ (2E[X inf n E[X τ n sup n N P ( X τn > λ (λ {X τn } n {X σn } n σ, τ 1 (X t σ :=, τ := σ {1} ( 1 τ < a.s. ( Brown cf. 2.2 X σ =, X τ = 1 a.s

20 R a, b 2.8 M = (M t M = x (a, b τ := σ [a,b c < a.s. P (M τ = a = b x b a, P (M τ = b = x a b a. (2.4 : M x = E[M τ t, t > M τ t a b Lebesgue t τ < a.s. x = E[M τ = ap (M τ = a + bp (M τ = b τ < a.s. P (M τ = a + P (M τ = b = 1. ( x (a, b 1 Brown B = (B t τ := σ [a,b c < a.s. c R σ {c} < a.s. : 2.2 (ii Bt 2 t E[τ t = E[B 2 τ t ( a b 2, t t Fatou E[τ ( a b 2 τ < a.s. (2.4 b P (B σ{a} = a = 1, a P (B σ{b} =b = 1 c R σ {c} < a.s. 2.4 Brown Markov d Brown 1.4 x R d Brown (W d, B(W d P x ( B t (w = w t, w W d, t filtration (F t (F t N = {N B(W d ; P x (N =, x R d } (F t stopping time σ σ θ σ : W d {σ < } W d (θ σ w t := w t+σ(w, t 1.1, ( Markov x R d Y = Y (w: W d B(W d - E x [Y θ σ F σ = E Bσ [Y, P x -a.s. w {σ < }. (2.5 : 1.1, 1.11 f C b (R d Y = f(b t (2.5 E x [f(b t+σ, A {σ < } = E x [E Bσ [f(b t, A {σ < }, A F σ ( N σ σ n = ([nσ + 1/n σ n stopping time A F σ 2

21 Ex [f(b t+σn, A {σ < } = = E x [f(b t+σn, A {σ n = k/n} (2.6 k=1 E x [E [f(b Bσ n t, A {σ n = k/n} = E x [E [f(b Bσ n t, A {σ < }. (2.7 k=1 2 A F σ F σn A {σ n = k/n} F k/n Brown Markov {σ < } σ n σ f, B t Lebesgue (2.6 E x [f(b t+σ, A {σ < } (1.1 E [f(b Bσ n t = f(xp(t, x B σn dx R d f(xp(t, x B σ dx = E Bσ [f(b t R d (2.7 E x [E Bσ [f(b t, A {σ < } 2.3 ( 1 Brown B t m t := sup s t B s a, x, t > P (B t < a x, m t a = P (B t > a + x. : a σ := σ {a} stopping time Markov P (B t > a + x = P (σ t, B t > a + x = E[P Bσ (B t σ > a + x, σ t = E[P Bσ (B t σ < a x, σ t = P (σ t, B t < a x = P (B t < a x, m t a. 2 {σ t} B σ = a : P a (B t σ > a + x = P a (B t σ < a x Brown B t P ( sup B s a = 2P (B t a, a, t >. s t : P (m t a = P (B t < a m t + P (B t a 2.3 x = 1 P (B t > a P (B t = a = Brown B t a σ {a} := 1 a2 inf{ t > ; B t = a } e 2t, t > 2πt (Ω, F, P F filtration (F t t 2.6 X = (X t (DL a > { X σ a ; σ stopping time } 21

22 2.1 (Doob-Meyer (DL (M t A = (F t - (A t X t = M t +A t, t (A t (A t (A t t s A t A s a.s. (M t E[ M (,t sda s = E[ M (,t s da s (M t X t = Mt 2 (X t Doob- Meyer 9 M t (X t stopping time σ [ E[ X σ a, X σ a λ E[ X a, X σ a λ E X a, sup X t λ. t a Doob (ii P (sup t a X t λ 1 E[ X λ a (X t (DL A t : (A t A = a.s., (F t -adapted A t1 A t2 < a.s., t 1 < t 2 A +,c A c := { A 1 A 2 ; A 1, A 2 A + } M p c := { M = (M t ; M E[ M t p <, t } p 1, A A c a.a. ω Ω A t (ω ( 2.7 M M 2 M M A +,c M M 2 (quadratic variation 2.11 M = (M t M M 2 c A c M t = M, t a.s. : M = : = t < t 1 < < t n = t = max 1 i n {t i t i 1 } E[M 2 t = n E[Mt 2 i Mt 2 i 1 = i=1 E [ max i M ti M ti 1 n E[(M ti M ti 1 2 i=1 n M ti M ti 1 i=1 M t = A 1 t A 2 t A c, A 1, A 2 A +,c σ k := inf{ t > ; A 1 t + A 2 t > k } (inf = 9 [N : [KS p

23 2.1 σ k stopping time 2.7 Mt k := M t τk n i=1 M t k i Mt k n i 1 i=1 ( A1 t i τ k A 1 t i 1 τ k + A 2 t i τ k A 2 t i 1 τ k k ω Ω Ms k (ω [, t E[(Mt k 2 ke[max Mt k i i Mt k i 1 as. Mt k = a.s. k τ k (k M t = a.s. : = t < t 1 < < t n < t n+1 < t n < t t n+1 Q t (M; := n (M ti M ti (M t M tn 2, Q (M; = i=1 Brown 1.8 Q t (B; t in L (2 Bt 2 t 2.12 M M 4 c M = ( M t A +,c Q t (M; M t in L 2, t M 2 M M 2 A A A +,c 2.13 M M 4 c C > E[Q t(m; 2 C : M t K, K > : = s < s 1 < < s l < t < s l+1 = t { l } 2 Q t (M; 2 = (M sk+1 M sk 2 k= l = sk+1 M sk k=(m (M sj+1 M sj 2 (M sk+1 M sk 2 j<k l = sk+1 M sk k=(m (M sj+1 M sj 2 (Q t (M; Q sj+1 (M; j l = sk+1 M sk k=(m (Q sj+1 (M; Q sj (M; (Q t (M; Q sj+1 (M; j E[Q t (M; Q sj+1 (M; F sj+1 = E[(M t M sj+1 2 F sj+1 E[Q t (M; 2 [ l = E (M sk+1 M sk j k= E[ (max E[(Q sj+1 (M; Q sj (M; (M t M sj+1 2 j l M s j+1 M sj max j l M t M sj+1 2 Q t (M; 12K 2 E[Q t (M; = 12K 2 E[M 2 t M 2 12K 4. 23

24 Mt = sup s t M s max j M sj+1 M sj 2 4(Mt 2 E[Q t (M; 2 E[12(M t 2 Q t (M; E[12 2 (M t 4 1/2 E[Q t (M; 2 1/2. 2 E[Q t (M; 2 Doob (iii E[Q t (M; E[(M t (4/3 4 E[M 4 t < t := M τk t, τ K = inf{ s ; M s > K } Fatou M (K 2.14 Y (n = (Y s (n s [,T (F t -adapted [ lim E sup Y s (n Y s (m 2 = n,m k s T s T (F t -adapted (Y s {Y (n } n {Y (nk } k ( [ P lim sup Y (n k s Y s = = 1 lim E Y (n k s Y s 2 = k sup s T [ : n k n k+1 E sup s T Y s (n Y s (m 2 < 1/2 3k, n, m > n k { A k := sup s T Y (n k+1 s Y (n k s > 1 2 k } Chebyshev [ P (A k 2 2k E P (Ω = 1. sup s T Y (n k+1 s Y (n k s 2 < 1 2 k. k P (A k < Borel-Cantelli Ω = m=1 k=m Ac k ω Ω m = m(ω k m n j n i m sup s T Y (n k+1 s Y (n k s 1 2 k sup Y (n i s Y (n j s s T j 1 l=i l 2. i 1 Y (nk C([, T Cauchy Y = (Y s sup s T Y (n k s Y s, k. [ [ lim E sup Y (n k s Y s 2 = lim E lim sup Y (n k s Y (n j s 2 k s T k j s T [ lim lim E Y (n k s Y (n j s 2 = k j sup s T Fatou 24

25 2.12 : ( Mt 2 A t, Mt 2 Ãt A, Ã A +,c A t Ãt = (Mt 2 Ãt (Mt 2 A t M 2 c A c 2.11 A t Ãt = A Ã =, t a.s. ( Q t (M; L 2 - Cauchy : = t < t 1 < < t n < t n+1 <, t n < t t n+1 t k < s t k+1 E[(M tk+1 M tk 2 F s = E[(M tk+1 M s 2 F s + (M s M tk 2 E[Q t (M; F s = = M 2 t k (M ti+1 M ti 2 + (M s M tk 2 i= +E[(M tk+1 M ts 2 + n 1 i=k+1 (M ti+1 M ti 2 + (M t M tn 2 F s k (M ti+1 M ti 2 + (M s M tk 2 + E[Mt 2 Ms 2 F s. i= E[Q t (M; Q s (M; F s = E[M 2 t M 2 s F s (2.8 Q t (M; Mt 2 Q t (M; L t := Q t (M; Q t (M; 2 (2.8 M L,, s = E[Q t (Q(M; Q(M; ; = E[L 2 t L 2 (2.9 Q t (Q(M; Q(M; ; 2Q t (Q(M; ; + 2Q t (Q(M; ; : s < s 1 < < s l < s l+1, s l t < s l+1 t j(k s k < s k+1 t j(k+1 Q sk+1 (M; Q sk (M; = (M sk+1 M tj(k 2 (M sk M tj(k 2 = (M sk+1 M sk (M sk+1 + M sk 2M tj(k Q t (Q(M; ; = k (Q sk+1 (M; Q sk (M; 2 + (Q t (M; Q sl (M; 2 = k (M sk+1 M sk 2 (M sk+1 + M sk 2M tj(k 2 + (M t M sl 2 (M t + M sl 2M tn 2. Q t (Q(M; ; sup M sk+1 + M sk 2M tj(k 2 Q t (M; k (2.9 25

26 E[(Q t (M; Q t (M; 2 2E[Q t (Q(M; ; + 2E[Q t (Q(M; ; 2E[sup M sk+1 + M sk 2M tj(k E[Qt (M; k +2E[sup M sk+1 + M sk 2M t j(k E[Qt (M; k {t j} sup k M sk+1 + M sk 2M tj(k (Mt 4 Doob (iii Mt := sup s t M s 4 Lebesgue lim E[sup M sk+1 + M sk 2M t, j(k 4 = 2.13 k lim E[(Q t(m; Q t (M; 2 =, Cauchy t > n n, n (Q s (M; n Q s (M; m s [,t n, m E[ sup Q s (M; n Q s (M; m 2 4E[ Q s (M; n Q s (M; m 2 s t Q s (M; n { nk } 2.14 (F t -adapted M ( [ P lim sup Q s (M; nk M s = = 1, lim E Q s (M; nk M s 2 = k k s T sup s T 2 ( M s s T [, T s Q s (M; n s M s M A +,c Ms 2 Q s (M; n Ms 2 M s 2.5 M σ stopping time Mt σ = M σ t M σ M M 4 c M σ t = M σ t 2.7 (F t -adapted X = (X t τ n τ n+1, n, lim n τ n = ( t T lim n τ n = T stopping times {τ n } n (X τ n t X = (X t M loc, M c,loc 2.15 M M c,loc (1 M A +,c M 2 M M 26

27 (2 t > [, t { n } ( lim P sup Q s (M; n M s > ε =, ε >. (2.1 n s t (3 M = M M 2 c E[ M t <, t E[M t 2 = E[ M t : (1 stopping time {τ n } M τn σ n := inf{t; M t n} σ n M n := M ρ n ρ = σ n τ n 2.12 A n A +,c (M n 2 A n ((M n+1 2 A n+1 ρn = (M n 2 (A n+1 ρn (A n+1 ρ n = A n. M t := lim n A n t, t > : (M ρn t 2 M ρ n t = Mρ 2 n t M ρn t ρn = (Mt 2 A n t (1 (2 ρ n δ > P (ρ m t < δ m M ρm Q s (M; = Q s (M ρ m ;, s ρ m ( P Q s (M; M s > ε sup s t ( lim sup P M s = M ρm s, s ρ m. ( P (ρ m t + P sup s t sup s t Q s (M; M s > ε δ δ (2 (3 M M 2 c, M = E[(M ρ n 2 M ρ n t = t E[ M t = lim n E[ M ρ n t = lim n E[(M ρn t 2 E[M 2 t. Q s (M ρ m ; M ρ m s > ε (Mt 2 Fatou E[M 2 t lim inf n E[(M ρ n t 2 = lim inf E[ M ρ n n t = E[ M t 2.2 M M 2 c M A +,c M t 2 M t 2.16 M, N M c,loc M, N A c (1 MN M, N 27

28 (2 t > [, t { n } ( lim P sup Q s (M, N; n M, N s > ε =, ε >. n s t Q s (M, N; n = i:t i+1 <s (M t i+1 M ti (N ti+1 N ti +(M s M tn (N s N tn, : = t < t 1 < < t n <, t n s < t n+1 : M, N = 1 ( M + N M N M, N, L M c,loc (i M, N = N, M. (ii M + N, L = M, L + N, L. (iii a am, N = a M, N. (iv τ stopping time M τ, N τ t = M τ, N t = M, N τ t. : 2.15, 2.16 T > M T := { M = (M t t [,T ; M (F t - E[MT 2 < } 2.18 M T E[, T Hilbert : (, := E[, T , 2.16, 2.17 ( {M n } n M T E[ M n M m T (m, n Doob (iii 2.2 [ E Ms n Ms m 2 4E[ MT n MT m 2 = 4E[ M n M m T sup s T 2.14 (F t -adapted M E[sup s T Ms n M s 2, n ( M M n 2.1 (6 E[ M n M T = E[ M n T M T 2 E[, T M T Hilbert 1 M, N, L M T, α R : (M, M, (M, M = M = a.s. : (M + N, L = (M, L + (N, L, (αm, N = α(m, N, : (M, N = (N, M (cf

29 3 Brown 1.8 f s db s Stieltjes (F s - (M s f s s (F t - (cf. 1.2 f s dm s (Ω, F, P F filtration (F t t : p 1, T > M p c,t := { M = (M t t [,T E[ M T p < }, M p c := { M = (M t t ; M E[ M t p <, t } p = 2 M T = M 2 c,t, M = M2 c filtration(f t M T (F t, M(F t 2.18 (2 3.1 (1 M T M T := E[MT 21/2 Hilbert (2 M d(m, N := k= ( M N k 1/2 k : (1 M T = E[ M T 1/ (2 {M n } M d(m n, M m (m, n T N {(Mt n t [,T } M T Cauchy (1 M (T M T l T M (T t = M (l t ( t T a.s. M t = M [t+1 t M M d(m n, M (n 2.15 M M M A +,c M 2 M M M L 2 T ( M := { f ; f = f t (ω E[ fs 2 d M s < } T T L 2 ( M := { f ; f = f t (ω E[ fs 2 d M s <, T > } ( 1/2, M M f LT := E[ fs 2 d M s L 2 T = L2 T ( M, L2 = L 2 ( M 3.2 M M (1 L 2 T ( M L T Hilbert (2 L 2 ( M ρ(f 1, f 2 := k=1 ( f 1 f 2 L 2 k 1/2 k 29 T

30 : (1 m(a = E[ T 1 A(s, ω d M s, A B([, T F T ( σ- L 2 ([, T Ω, B([, T F T, dm 3.2 L 2 T ( M ( (2 3.1 (2 f t (ω = k j=1 ξ j 1(ω1 (tj 1,t j (t; = t < t 1 < < t k, k N ξ j F tj - f L 3.3 L L 2 ( M : f L 2 ( M Lebesgue f s f (s u(ω d M 1 n u M s M (s 1 n f s (ω = lim sup fs n (ω, fs n (ω := n f s fs n F s- : = t < t 1 < < t k k fs n, (ω = ft n j 1 (ω1 (tj 1,t j (s j=1 f n, L f n lim fs n, (ω = fs n (ω, (s, ω. T E[ fs n, fs n 2 d M s,. d M a.s. s lim n fs n (ω f s (ω T f s (ω d M s = T f s (ω d M s (cf. 2.4 E[ T f n s f s 2 d M s f n, f 3.1 f s (ω = k j=1 ξ j 1(ω1 (tj 1,t j (s L I(f t := ξ j 1 (M tj M tj 1 + ξ l (M t M tl, t l < t t l+1 (3.1 j:t j <t I(f t = f s dm s (3.1 ξ j F tj I(f M (1 I(f t = f 2 s d M s. (2 E[I(f 2 t = E[ f 2 s d M s. : I(f : f t = ξ 1 (ω1 (t1,t 2 (t, ξ 1 F t1 -, s t 1 E[I(f t F s = ξ 1 (E[M t t2 F s M t1 = ξ 1 (M s M t1 = I(f s. s < t 1 E[I(f t F s = E[ξ 1 (E[M t t2 F t1 M t1 F s =, I(f s =. 3

31 2 (ξ j (1: s t j < t k E[ξ j (M tj+1 M tj ξ k (M tk+1 M tk F s = E[ξ j (M tj+1 M tj ξ k E[M tk+1 M tk F tk F s = t m s < t m+1 t l t < t l+1 E[(I(f t I(f s 2 F s { l 2 Fs = E[ ξ j 1 (M tj M tj 1 + ξ l (M t M tl + ξ m (M tm+1 M s } j=m+2 = E[ξ 2 m(m tm+1 M s 2 F s + = E[ξ 2 m(m 2 t m+1 M 2 s F s + l j=m+2 l j=m+2 = E[ξ 2 m( M tm+1 M s F s + = E[ s f 2 u M u. E[ξ 2 j 1(M tj M tj 1 2 F s + E[ξ 2 l (M t M tl 2 F s E[ξ 2 j 1(M 2 t j M 2 t j 1 F s + E[ξ 2 l (M 2 t M 2 t l F s l j=m+2 E[ξ 2 j 1( M tj M tj 1 F s + E[ξ 2 l ( M t M tl F s I(f E[{I(f t I(f s } 2 F s = E[I(f 2 t I(f 2 s F s I(f 2 t fu M 2 u (1 (2 (1 s = 3.2 f L 2 ( M f n L T lim E[ fs n f s 2 d M s =, T > n 3.4 (2 {I(f n } n M Cauchy 3.1 X M d(i(f n, X (n X X t = I(f t = f s dm s f M (stochastic integral I(f f {f n } 3.2 f L 2 ( M E[I(f 2 T = E[ I(f T = E[ : L T f 2 s d M s 3.5 M, N M, f L 2 ( M, g L 2 ( N, t > ( 1/2 ( 1/2, f s g s d M, N s fs 2 d M s gs 2 d N s a.s. (3.2 : 2.17 M + rn = M + 2r M, N + r 2 N, r Q s2 s 1 d M + rn s = s2 s 1 d M s + 2r s2 s 1 d M, N s + r 2 s2 s 1 d N s, a.s. 31

32 r r R s2 ( s 2 1/2 ( s 2 1/2. d M, N s d M s d N s s 1 f = i ξ i 11 (ti 1,t i, g = i η i 11 (ti 1,t i L i f s g s d M, N s = ξ i 1 η i 1 d M, N s i t i 1 ( i 1/2 ( i 1/2 ξ i 1 η i 1 d M s d N s i t i 1 t i 1 ( i 1/2 ( i ξ i 1 2 d M s η i 1 2 d N s i t i 1 i t i 1 ( 1/2 ( 1/2 = fs 2 d M s gsd M 2 s a.s. s 1 f, g 3.3 L f, g Lebesgue 3.6 (1 M, N M, f L 2 ( M I(f t = I(f, N t = N M X, N t = M X I(f t = (2 I(f T = T s 1 1/2 f s dm s f s d M, N s, t > (3.3 f s dm s f s d M, N s (t > X = f s dm s I : L 2 T ( M M T T > : (1 f L 2 ( M {f n } n L f f n LT (n, T > E[ I(f n I(f T = E[ T f n s f s 2 d M s, n. E[ I(f n, N T I(f, N T = E[ I(f n I(f, N T E[ I(f n I(f 1/2 T N 1/2 T E[ I(f n I(f T 1/2 E[ N T 1/2 T ( T 3.5 (f s fs n 1/2 N d M, N s f s fs n 2 1/2 d M s T E[ T f s d M, N s T 3.4(1 I(f n, N t = f n s d M, N s, n. 32 fs n d M, N s (3.3

33 X M X, N t = f s d M, N s N M X X, N = N = X X X X =. X = X a.s. ( (1 M M, f, g L 2 ( M, a, b R (af s + bg s dm s = a f s dm s + b (2 M, N M, f L 2 ( M L 2 ( N, a, b R f s d(am + bn s = a f s dm s + b : (1 N M = a (af s + bg s dm, N t = f s dm s, N t + b (af s + bg s d M, N s = a g s dm s, N t = a g s dm s, t >. f s dn s, t >. f s dm s + b f s d M, N s + b g s dm s, N t. g s d M, N s 3.6 (2 3.5 L 2 ( M L 2 ( N L 2 ( am + bn L M = a f s d(am + bn s, L t = f s d M, L s + b f s d am + bn, L s f s d N, L s = a f s dm s + b f s dn s, L t. 3.3 ( M M c,loc (cf. 2.7 M ( T P fs 2 d M s < = 1, T > (3.4 f = (f s f s dm s 2.7 stopping time {σ n } σ n M t σn τ n = n inf{ t ; f s d M s n } τ n ρ n = σ n τ n = M t ρn, ft n (ω = f t (ω1 {ρn t}(ω M n t M n M, f n L 2 ( M n I(f n t = fs n dms n (iv I(f n t = I(f m t, t ρ n, n m ρ n (n I(f t = I(f n t, t ρ n I(f f M 33

34 3.3 ( 3.6 M M c,loc (3.4 f = (f s I(f t = f s dm s M c,loc ( M M c,loc, (3.4 (F t - f = (f s : = s < s 1 <... < s n = t ( t lim P f s dm s f(s i (M i+1 M si > δ =, δ > i 3.2 ( 11 (stochastic calculus 3.4 X = (X t X t = X + M t + A t, M M c,loc, A A c X F - M = a.s. A = a.s., X = (X t (semi-martingale 12 d 3.8 X t = (Xt 1,..., Xt d : X i t = X i + M i t + A i t, i = 1,, d. (3.5 f C 2 (R d f(x t d f d f(x t f(x = x (X s dm i f i s + x (X s da i i s i= d i,j=1 i=1 2 f x i x j (X s d M i, M j s. (3.6 : f i := f, f x i ij = 2 f x i x j τ n := inf{ t > ; X M t A t > n } inf = τ n (n X t τn (3.6 X, M t, A t f, f i, f ij : f + i f t + ij f ij K. [, t : = t < t 1 < < t n = t Taylor ξ k = Xt i k 1 + θ k (Xt i k Xt i k 1, θ k (, 1 d 11 x = (x t f C 1 (R dt f(x t = f (x t ẋ t f(x t f(x = f (x s ẋ s ds = f (x s dx s

35 f(x t f(x = = n k=1 n (f(x tk f(x tk 1 k=1 d f i(x tk 1 (Xt i k Xt i k i=1 n d k=1 i,j=1 f ij(ξ k (X i t k X i t k 1 (X j t k X j t k 1. d i=1 f x i (X s dm i s + d i=1 f x i (X s da i s ( n d k=1 i,j= n k=1 i,j=1 f ij(ξ k (M i t k M i t k 1 (M j t k M j t k 1 + d n d k=1 i,j=1 f ij(ξ k (A i t k A i t k 1 (A j t k A j t k 1 I 1 + I 2 + I 3 f ij(ξ k (M i t k M i t k 1 (A j t k A j t k 1 A i = A i,+ A i,, A i,+, A i, A +,c I 2 K sup M tk M tk 1 ( A + t + A t,, a.s. k I 3 K sup A tk A tk 1 ( A + t + A t,, a.s. k M t = (Mt 1,..., Mt d, A + t = (A 1,+ t,..., A d,+ t, A t = (A 1, t,..., A d, t I 1 (3.6 I 1 := 1 2 n d k=1 i,j=1 f ij(x tk 1 (M i t k M i t k 1 (M j t k M j t k Q t (M, I 1 I sup f ij(ξ l f ij(x tl 1 Mt i k Mt i k 1 M j t k M j t k 1 l k i,j 1 2 sup f ij(ξ l f ij(x tl 1 Q t (M m ; 1/2 Q t (M n ; 1/2 i,j,l m,n Schwarz 2 E[ I 1 I m,n m,n E [ sup f ij(ξ l f ij(x tl 1 Q t (M m ; 1/2 Q t (M n ; 1/2 i,j,l E [ sup f ij(ξ l f ij(x tl 1 2 1/2 [ E Qt (M m ; Q t (M n ; 1/2 i,j,l 1 2 E[ sup f ij(ξ l f ij(x tl 1 1/2 E [ Q t (M m ; 2 1/4 [ E Qt (M n ; 2 1/4 i,j,l m,n 35

36 2.13 I 1 := 1 2 n d k=1 i,j=1 f ij(x tk 1 ( M i, M j tk M i, M j tk 1 E[(Ms i 2 Ms i 1 (Ms j 2 Ms j 1 ( M i, M j s2 M i, M j s1 F s1 = E[ I 1 I 1 2 = 1 4 k E [( k i,j K 2 E [ M tk M tk i,j f ij(x tl 1 {(M i t k M i t k 1 (M j t k M j t k 1 ( M i, M j tk M i, M j tk 1 2 K 2 E [ sup M tk M tk 1 2 Q t (M i ; k i +K 2 E [ sup M i, M j tk M i, M j tk 1 ( M i, M j + t + M i, M j t k i,j E[ I 1 I 1 2 (. I I i,j i,j f ij(x s d M i, M j s in L1, as. k 2 d M i, M j s } t k 1 f ij(x s d M i, M j s (3.6 t a.s. t 1 t ( Brown B = (B t (F t -Brown (i B = (B t (F t - (ii s t B t B s F s 1.4 Brown F,B -Brown 3.5 B p t = p B p 1 p(p 1 s db s + Bs 2p 2 ds 2 E[B 2p t, p N ( : Brown (B t B t = t 3.1 B t x N Brown f(x = x m = ((x (x N 2 1/2, m 2 B t m x m = m N i=1 B i s B s m 2 db i s s (Nm + m(m 2 B s m 2 ds N 3 m = 2 N, σ n := { t ; B t 1/n } B t σn m x m = m N i=1 σn B i s B s m 2 db i s x σ n (n B t m N = 3, m = 1 3 Bessel 36

37 3.2 B t x N Brown f(x = x m = ((x (x N 2 1/2, m 2 B t m x m = m N i=1 B i s B s m 2 db i s (Nm + m(m 2 B s m 2 ds N 3 m = 2 N, σ n := { t ; B t 1/n } B t σn m x m = m N i=1 σn B i s B s m 2 db i s x σ n (n B t m N = 3, m = 1 3 Bessel 37

, Brown,, dn(t = a(tn(t, N( = N (1 dt N(t t, a(t t, Malthus {N(t} t, (1 a(t,, a(t = r(t + ( r(t,,,, Brown,,,,, Brown, Itô Calculus,,,,,, Kalman-Bucy,, (1, s t N(s Z(s, N(s, Z(s = N(s + (2 i {Z(s} s t {Z(s}

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,, Stochastic Integrals and Stochastic Differential Equations (Seiji HIRABA) 218 5 1 1 (Definition of Stochastic Processes) 1 1.1.................................. 1 1.2 Brown (Wiener )..............................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb Rough path analyi 1 x t ( t 1) R d path f(x) = t (f 1 (x),, f d (x)) R d R d - C x t 1 (f(x u), dx u ) Stieltje path x t p-variation norm (1 < p < 2) x p := { up D } 1/p N x ti x ti 1 p (D = { = t <

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information