4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )

Size: px
Start display at page:

Download "4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )"

Transcription

1 4. 粘土の圧密 4. 圧密試験 沈下量 問 以下の問いに答えよ ) 図中の括弧内に入る適切な語句を答えよ ) ( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U9% の時間 9 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) と実験曲線を重ね合わせて圧密度 5% の 5 を決定する ( 6 ) 法がある ) 層厚 の粘土層がある この粘土層上の載荷重により粘土層の初期間隙比. から.6 に変化した この粘土層の沈下量を求めよ Pc: ( ) c:( 4 ) ( ) 領域 ( ) 領域 log p 問 - 解答 ) 圧密降伏応力 過圧密 正規圧密 4 圧縮指数 ) 5 6 曲線定規 ) 粘土層の初期間隙比. であり 圧密後の間隙比は.6 であるから 最終圧密沈下量 S c は..6 Sc h.875( ) + +. 問 内径 6 c 高さ c の飽和粘土の供試体に載荷重 78.4 kn/ を加えて圧密したところ供試体の高さは.75 c となった この粘土供試体の初期間隙比 圧密後の間隙比 を求めよ また この試料の体積圧縮係数 を求めよ ただし 土粒子の密度はρ s.64 g/c 試料の乾燥重量は 4.g とする 問 - 解答 土粒子部分の高さ hs は ρ V s s s s より h h A s s s 4..54( c) ρs A π よって 初期間隙比 は h.. 7 圧密後の間隙比は h h s h s 体積圧縮係数 は (.7.4) +.7 ε +.59 p p ( /kn)

2 問 文章中の空欄を埋めよ 飽和粘性土に荷重が載荷されたとき 時間遅れを伴って密度を増加する現象を () という 圧密試験は 実地盤から採取した乱さない試料を用いて 実地盤の沈下量の推定に必要な () や沈下時間の推定に必要な () などの圧密定数を求めることを目的として行われる また 過圧密領域と正規圧密領域との境界の圧密圧力 すなわち (4) を求めることも圧密試験の重要な目的の一つである 圧密試験の中で 最も一般的に行われる試験に段階載荷による圧密試験 (JIS A 7) がある この試験は通称 (5) と呼ばれ 通常 直径 6c 高さ c の供試体を用いて行う (6) 変位を拘束し 上下面の排水を (7) 状態で 荷重を初期値から 倍ずつ段階的に載荷していく方法である 各段階において 4 時間放置し その間の時間と圧密量を測定するのが正式な方法である 基本的には 8 段階の載荷を行うため 試験終了までに 8 日間要する 短時間で圧密を打ち切る方法として (8) がある 問 - 解答 圧密 圧縮性 圧密速度 4 圧密降伏応力 5 標準圧密試験 6 測方 7 許した 8 法

3 4. 圧密現象 テルツァギー圧密理論 問 下記のような地盤に等分布荷重 Δp を載荷した 粘土地盤内の有効応力 σ と間隙水圧 u の分布図を示 せ ただし 載荷前の状態も示すこと また それぞれの分布図は載荷直後 圧密中 終了時 の三つの場合について記すこと 片面排水 p 両面排水 p 圧密 砂 γ 砂 γ 粘土 γ sa 粘土 γ sa 不透水層 砂 問 - 解答

4 問 上下が砂層に挟まれた厚さ 8. の飽和粘土地盤がある この地盤の沈下予測を行うために圧密試験を行ったところ 圧密係数は c /sc であった この粘土層に荷重を加えたとき 最終沈下量の 9% の沈下が生じるまでに要する日数を求めよ ただし 圧密度 U9% のとき時間係数 T.848 である ( 日 の単位で答えよ ) 問 - 解答 上下面ともに砂層にはさまれていることから排水距離 ' 圧密度 U9% の時 時間係数 T.848 となる 圧密係数が 5. 4 ( c / sc) 5. 4 ( / day) 4. ( / day) より 最終沈下量の 9% の沈下が生じるまでに要する日数 9 は 8 5 T ( 日 ) 4. 問 粘土の圧密試験を行い ある荷重段階で次のような結果を得た 載荷前の供試体の高さ.76c 載荷後の供試体の高さ.6c 9% 圧密時間 9.in このときの圧密係数 を求めよ また 層厚 h6 の同じ粘土層が上下を砂層に挟まれて存在する 上記の圧密試験と同様な段階での荷重を受けたとき 5% 圧密するのに要する時間 5 とそのときの沈下 S 5 を求めよ 問 - 解答 両面排水より ' 時間係数 T.848 圧密時間 9.(in).76(c) から T ( c / in) ( / day). ( / day) 6 5% 圧密するのに要する時間 5 は 5 T ( 日 ). ここで 圧密試験において 最終沈下量 S f (c) であるから.6 現場における最終沈下量 S f は S f 6.545( ).76 よって 時間 5 のときの沈下量は S 5 USf ( )

5 4.. 現場での沈下現象 問 福岡市人工島の開発に伴って Δp kn/ の新しいビルが建設されることになった 人工島には厚い粘土層があるため 工事を進めるにあたり粘土地盤の沈下予測を行うことになった 次の問いに答えよ ) 現場より実験試料を採取して 圧密試験を行ったところ 表 - に示す結果を得た 実験結果に従って圧縮曲線を図に示せ 表 - p (kn/ ) 間隙比 圧密圧力 p(kn/ ) ) ) で作成した図より c を求めよ ) 建物の建設予定地の地盤調査を行ったところ 右図に示すよ 4 砂質土 γ 9kN/ うな地盤であることが分かった 分布図を描き 建物が建つ前の粘土層中央部の地盤内応力 ( 有効応力 )p を求めよ ただし γ wkn/ とする 4) ) で作成した図と 4) で求めた p からこの粘土層の初期間隙比 4 砂 γ sa kn/ を求めよ 粘土 γ sa 6kN/ 5) 地盤上にΔp kn/ の建物が建設された際の沈下量 S c を c を用いて求めよ 6) この粘土層の圧密係数を.6 /day とするとき この 砂 粘土層の時間 - 圧密度曲線をかけ ただし 時間係数 T は表 - を参照のこと ( 表中に各圧密 度における時間 ( 日数 ) を記入すること ) 表 - 時間 ( 日 ) U (%) T ( 日 ) 圧密度 U(%) 9.848

6 問 - 解答 ) 表 - p (kn/ ) 間隙比 圧密圧力 p(kn/ ) ) ) の -logp 曲線より 正規圧密領域における近似直線から p ( kn / ) のとき. p ( kn / ) のとき. が得られる ゆえに圧縮指数 c は.. c... 7 p log log p ) 4 砂質土 γ 9kN/ 76 σp9 476(kN/ ) 4 砂 γ sa kn/ 4 56 σ (kN/ ) u4 4(kN/ ) 粘土 γ sa 6kN/ σ (kN/ ) u(4+) 4(kN/ ) 砂 粘土層中央部の全応力をσ 間隙水圧を u とすると 全応力 σ ( kn / ) 間隙水圧 u (4 + ) 4( kn / ) ゆえに有効応力 p は p σ σ u ( kn / ) 4) ) の -logp 曲線より p 76( kn / ) のときの間隙比より. 95 5) Δp kn/ ) より圧縮指数 c.7 4) より p 76( kn / ). 95 より S c c + log p + p.7 log p ( ) 76

7 6) 両面排水より ' 圧密係数を.6 /day より 圧密度 U% の時 時間係数 T.8 T.8. 4( 日 ).6 圧密度 U% の時 時間係数 T.7 T ( 日 ).6 圧密度 U5% の時 時間係数 T.97 5 T ( 日 ).6 圧密度 U7% の時 時間係数 T.4 7 T ( 日 ).6 圧密度 U9% の時 時間係数 T T ( 日 ).6 よって 表 - U (%) T ( 日 ) 圧密度 U(%) 時間 ( 日 )

8 問 図に示すように 4 の砂層の下に 8 の粘土層がある この粘土層に荷重 p 8 kn/ を載荷し た場合の沈下と沈下時間について考える 以下の問に答えよ ) 載荷前の粘土層中央部の鉛直有効応力 p を求めよ p 8 kn/ ) 粘土層のから試料を採取し 圧密試験をしたところ この粘土の間隙比 と有効応力 p との関係が次式のように得られた 載荷前の粘土層の間隙比 を求めよ 4 砂層 γ 8. kn/.84.6log p ) この粘土層の最終沈下量を求めよ 4) この粘土層の圧密係数が 4c /day のとき この粘土層砂層が圧密度 U5% および 9% に達するまでの時間を求めよ 8 粘土層 γ sa. kn/ 問 - 解答 ) 載荷前 p であり 粘土層中央部の深さは砂層より 4( ) であるから 全応力 σ γ + γ ( kn / ) sa u γ w 4 4( kn / 間隙水圧 ) よって粘土中央部の地盤内応力は p σ u 5 4 ( kn / ) ) 載荷前の有効応力は ) より p (kn/ ) であるから 載荷前の間隙比 は p.84.6log.84.6log.8 ) この粘土層の載荷後の間隙比 は 有効応力 p p + p + 8 9( kn / ) より p.84.6log.84.6log 9.74 ) より載荷前の間隙比は. 8であり 粘土層 h8() であるから最終沈下量を S c は Sc.8.74 h 8.5( ) 沈下するのは粘土層のため 砂層を含めないように注意すること! 4) この粘土層の上層下層共に砂層のため 両面排水となり 排水距離 ' となる また 圧密度 U5% の時 時間係数 T.97 圧密度 U9% の時 時間係数 T.848 であるから 圧密係数が 4 (c /day) より T ( 日 ) 9 T.848 9( 日 ) 4 4 圧密係数の単位に注意し 排水距離を から c に変換することを注意すること!

9 問 上下面ともに砂層にはさまれた厚さ. の飽和粘土層が堆積する地盤上に盛土をして広い面積の宅地を造成することにした この粘土層の間隙比は. 圧密係数は. / day であった また 盛土によって粘土層は圧密され 間隙比は.7 になると予想されている ) 粘土層の最終圧密沈下量を求めよ ) 最終沈下量の半分の沈下量に達する日数を求めよ ただし 圧密度 5% の時の時間係数は. とする 問 - 解答 ) 粘土層の初期間隙比. であり 圧密後の間隙比は.7 であるから最終圧密沈下量 S c は Sc..7 h.( + +. ) 上下面ともに砂層にはさまれていることから排水距離 ' となる 圧密度 U5% の時 時間係数 T. 圧密係数が. ( /day) より ) ( ) 最終沈下量の半分の沈下量に達する日数 5 は 5 T. 5( 日 ). 問 4 同じ力学的性質を持つ飽和粘土層がある その層厚が.5 倍になったとき 同じ圧密度に達するの に要する日数は何倍になるか 理由 ( 根拠となる式など ) を付して答えよ 問 4- 解答 圧密時間 粘土層の厚さ 圧密係数 時間係数 T とするとき T 粘土層が.5 倍になることから粘土層は.5 となる.5 ゆえに ( ) T.5 T 同じ力学的性質を持つことから 圧密係数 一定 時間係数 T 一定であることから粘土層が.5 倍になった場合 同じ圧密度に達する日数は.5 倍となる 両面排水で考えた場合も T T に対して.5 の時 4 同じ圧密度に達する日数は.5 倍となる.5 T.5 T となり 4

10 問 5 大学の創立記念事業の一環として工学部新棟 (ΔpkN/ ) が建設されることになった しかし 建設予定地の地盤内には厚さ の粘土層があるため 工事を請け負った建設会社は設計するに当ってこの粘土地盤の沈下対策を行うことになった 社会デザイン工学科 道路土質研究室では 当現場からの依頼により 現場採取試料による圧密試験を行い 表に示すような結果を得た 以下の問い に答えよ 表 工学部新棟 p ( kn / ) p kn / 砂 γ 8 kn / γ 8 kn / sa 粘土 γ kn / sa 砂 ) 実験結果に従って -logp 関係を図に示せ ) ) の関係から圧縮指数 c を求めよ ) 建設予定地の地盤は図に示すような構成になっている 載荷前の粘土層 中央部の有効応力 p を求めよ また ) で描いた図より粘土層中央部の 間隙比 を求めよ ただし γ wkn/ とする 4) ) で求めた間隙比 を初期状態における粘土地盤の平均的な間隙比とし て 粘土地盤の最終沈下量 S c を c 法と 法 (-logp 曲線から圧密前後 の間隙比を求めて沈下量を推定する方法 ) で求めよ 5) 圧密試験に用いた粘土試料の大きさは 直径が 6.c 厚さが.c で あった ( 圧密試験は両面排水条件で行った ) また この試料が圧密度 9% に達するまでに 95 分の時間を要した この粘土の圧密係数 を求 めた上で 建設予定地の厚さ の粘土層が圧密度 5% および 9% に達 するまでに要する時間 ( 日数 ) を求めよ なお 圧密度 U 5% に対す る時間係数はT.97 であり 圧密度 U 9% に対する時間係数は T.848 である

11 問 5- 解答 ) 間隙比 圧密圧力 p (kn/ ) ) ) の -logp 曲線より 正規圧密領域における近似直線から p ( kn / ) のとき. 8 p ( kn / ) のとき. が得られる ゆえに圧縮指数 c は c p log log p ) 粘土層中央部の全応力をσ 間隙水圧を u とすると 全応力 σ ( kn / ) 間隙水圧 u ( + 5) 7( kn / ) ゆえに有効応力 p は p σ σ u 7 7 ( kn / ) また ) の -logp 曲線より p ( kn / ) のときの間隙比より. 8 4) c 法を用いる場合 法を用いる場合 S c c + log p + p p.5 log ( ) 圧密後の有効応力 : p + p 4kN / 圧密後の間隙比 (-logp 曲線より ):. 59 S c.8.59.( ) 5) 両面排水条件より T より T ( c / in) 単位換算すると 8.96 ( c / in) ( 6 4).85 ( / day) 圧密度 U5% に達するまでの日数 : 5 T ( day) 圧密度 U9% に達するまでの日数 : 9 T ( day)

12 問 6 以下の問いに答えよ ) 荷重載荷前における 粘土層中央部の有効応力 p を求めよ ) 地表面にΔp kn/ の荷重を載荷した この粘土層の沈下量 S c を求めよ ) 圧密係数 8c /day とするとき この粘土層が圧密度 U 9% に達するまでに要する時間を求めよ ただし U 9% のとき 時間係数 T.848 である 8 p kn/ 砂 γ 8 kn/ 粘土 γ sa kn/.7 c.45 岩盤 問 6- 解答 ) 粘土層中央部の全応力をσ 間隙水圧を u とすると 全応力 σ ( kn / ) 間隙水圧 u 4 4( kn / ) ゆえに有効応力 p は p σ σ u ( kn / ) ) 載荷重は Δp kn/ であり 粘土の圧縮指数 c.45 初期間隙比.7 より S c c + log p + p p.45 8 log ( ) 94 ) 圧密係数 8c /day U 9% のとき時間係数 T.848 であり 下層が岩盤であることから片面排水となり であるから ( 8 9 T 日 )

13 問 7 図に示すように 粘土層上に の砂質土による盛土を行う工事の計画がある ) 盛土前の粘土層中央部での有効応力 p を 求めよ ただし w kn / ) 盛土による単位面積当たりの載荷重 Δp を求めよ γ とする ) 粘土層の初期間隙比が.4 圧縮指数 が c.75 のとき 粘土層の圧密沈下量を求めよ 4) 粘土層よりサンプリングした試料に対し 圧密試験を行ったところ 圧密度 U 9% に達するまでに 8 分間の時間を要した 圧密 度 U 9% に対する時間係数をT.848 として 圧密係数 を c / day の単位で求めよ ただし 試験は 直径 6c 高さ c の供試体に対し 両面排水条件で行ったもの とする γ sa. kn/ 粘性土 砂質土 ( 盛土前 ) 5) 図に示す層厚 の粘土地盤が圧密度 9% に達するまでの日数を求めよ 砂質土 γ sa 8. kn/ γ sa. kn/ 粘性土 砂質土 ( 盛土後 ) 問 7- 解答 ) 粘土層中央部の深さは 5( ) であるから 全応力 σ γ 5.( kn / ) sa 間隙水圧 γ 5 5.( kn / ) u w よって粘土中央部の地盤内応力は p σ u ( kn / ) ) 盛土による単位面積当たりの載荷重 p は γ ' γ γ 8 8( kn / ) より p γ ' 8 4( kn / ) sa w ) 粘土層の初期間隙比が.4 圧縮指数が c.75 であり ),) より p 5.( kn / ) p 4( kn / ) であるから 粘土の圧密沈下量 S c は Sc c p + Δp log log.76( ) + p 沈下するのは粘土層のため 砂層を含めないように注意すること!

14 問 7- 解答 4) 圧密試験は両面排水で行われたことにより 排水距離 ' となる T より T ここで 圧密度 U9% の時 時間係数 T.848 (c) また 時間 8 分は 8 8 ( 分 ) ( 日 ) であるから 6 4 T ( c / day) 圧密係数の単位に注意し 圧密時間を ( 分 ) から ( 日数 ) に 変換することを注意すること! 5) 盛土後の粘土層の上下層は砂層であるから両面排水となり 排水距離 ' となるから T 図より粘土層厚さ ()(c) 圧密度 U9% の時 時間係数 T.848 また 4) より圧密係数が 5.64 (c /day) より T ( day) 5.64 圧密係数の単位に注意し 排水距離を から c に変換することを注意すること!

15 問 8 図 - に示す地盤で 高さ の広大な造成盛土を行う計画がある 盛土の圧密沈下に関する次の問 いに答えよ サント マット 粘土 シルト混り砂 砂礫. 造成盛土 深度 (GL-) 粘土 シルト混り砂 砂礫 表 - 圧密圧力 p(kn/ ) 間隙比 図 図 - ) 圧密試験の結果から表 - となり -logp 曲線は図 - のようになった 表 - と図 - より概略の圧密降伏応力 pc を求めよ ) 地上面上にサンドマットを敷き 盛土を地表面から の高さまで施工した 盛土の荷重によって生じる粘土層の圧密による最終沈下量 S c を図 - に示す -logp 曲線から求めよ 盛土は広い範囲で施工されたと考え 一次元の圧密沈下のみを考える 粘土層の単位体積重量 γ sa4.4kn/ サンドマットを含む盛土材 γ 8.6kN/ 地下水 γ w9.8kn/ として計算せよ ) 盛土による沈下量が最終圧密沈下量の 9% になるのに要する日数を求めよ ただし 圧密係数 c /day とし 粘土層下位に分布するシルト混り砂が排水層となる場合 ( 両面排水条件 ) と ならない場合 ( 片面排水条件 ) に分けて計算せよ 圧密度 9% における時間系係数は T.848 とする 4) 工事完成後十数年が経過したとき この場所の地下水が数 低下したとする この時どのような現象が起きるか 地下水位低下と地盤の挙動との関連において記述せよ

16 問 8- 解答 ) c p c 間隙比.5.5 A 点 p c c ' c '' A 点.5 イメージ拡大図 4 圧密圧力 p(kn/ ) 図 - の -logp 曲線より 正規圧密領域における近似直線から p ( kn / ) のとき. 88 p ( kn / ) のとき. 77 が得られる ゆえに圧縮指数 c は c p log log p 三笠法より ' となる勾配を持つ直線と圧縮曲線の接 c c A 点を求める A 点を通って '' ' / になる勾配を持つ直線と圧縮曲線の正規圧密領域の最 c c 急勾配を代表する直線の延長と交差する点の圧密圧力を圧密降伏応力 p c とする よって 図面から読み取ると p c8. (kn/ ) ) 盛土前の粘土中央部の有効応力を p とすると全応力 σγ sa (kn/ ) 間隙水圧 uγ w (kn/ ) 有効応力 p (kN/ ) また 図 - より 初期における間隙比は.7 盛土による載荷荷重を p とすると p γ (kN/ ) また ) より圧縮指数 c. より求める最終沈下量 S c は Sc c p log + + Δp p log.4( )

17 ) 圧密係数 c /day 圧密度 9% における時間系係数は T.848 より 両面排水条件の場合 75 ' 9 T ( 日 ) 片面排水条件の場合 ' 75 9 T ( 日 ) 圧密係数の単位に注意し 排水距離を から c に 変換することを注意すること! 4) 地下水位内にある土は 上部の土の荷重と水圧力を受けている ( 全応力 ) このうち全方向に作用する力 ( 水圧 ) を除いたものが有効応力であり 地下水位の低下が生じると 水圧は低下して有効応力が増加することにより土の重さが元に戻る その際 下部に軟弱な粘性土がある場合 地盤に作用する有効応力が増加して圧密沈下が生じる

土の三軸圧縮試験

土の三軸圧縮試験 J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti

More information

土木建設技術シンポジウム2002

土木建設技術シンポジウム2002 軟弱地盤上の盛土工事における圧密後の地盤性状について 赤塚光洋 正会員戸田建設株式会社土木工事技術部 ( 4-8388 東京都中央区京橋 -7-) 軟弱地盤上の盛土工事において, 供用開始後の残留沈下を抑制する目的でバーチカルドレーンによる圧密沈下促進工法が用いられることが多い. また, 粘性土地盤は圧密によって強度が増加するので, バーチカルドレーン工法は盛土基礎地盤の強度発現を早める安定対策としても用いられている.

More information

土の段階載荷による圧密試験

土の段階載荷による圧密試験 J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫

More information

H23 基礎地盤力学演習 演習問題

H23 基礎地盤力学演習 演習問題 せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力

More information

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D> 断面積 (A) を使わずに, 間隙率を使う透水係数の算定 図に示したような 本の孔を掘って, 上流側から食塩を投入した 食塩を投入してから,7 時間後に下流側に食塩が到達したことが分かった この地盤の透水係数を求めよ 地盤の間隙比は e=0.77, 水位差は 0 cmであった なお, この方法はトレーサ法の中の食塩法と呼ばれている Nacl 計測器 0 cm 0.0 m 断面積 (A) を使わずに,

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

スライド 1

スライド 1 1. 右図のように透水係数 (k) 断面積(A) 厚さ(L) が異なる 種の砂からなる 層試料 ( 砂 砂 ) に対して 図示された条件で定水位透水試験を行った その結果 Q0.18m /hrの流量速度を得た 断面変化部の影響は無視でき 試料内では流れはすべて鉛直方向に一次元的に生じていると仮定して 以下の問に答えよ 尚 二つの砂とも単位体積重量はγ at 0kN/m 水の単位体積重量はγ kn/m

More information

<94F E4F8EB25F >

<94F E4F8EB25F > JGS 5 土の三軸試験の供試体作製 設置 初期状態% 設)炉容器 No. 後供試体を用いる試験の基準番号と名称 JGS 51-9 土の繰返し非排水三軸試験 試 料 の 状 態 1) 乱さない 土粒子の密度 ρ s g/cm 供 試 体 の 作 製 ) トリミング 液 性 限 界 w L ) % 土 質 名 称 礫まじり粘土質砂 塑 性 限 界 w P ) % 1 5.1.96.98 質量 m i

More information

Microsoft PowerPoint - H24 aragane.pptx

Microsoft PowerPoint - H24 aragane.pptx 海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー

More information

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード] 圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)

More information

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63> 第 7 章 地盤調査 地盤改良計画 第 1 節地盤調査 1 地盤調査擁壁の構造計算や大規模盛土造成地の斜面安定計算等に用いる土質定数を求める場合は 平成 13 年 7 月 2 日国土交通省告示第 1113 号地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件 ( 以下 この章において 告示 という

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度

More information

<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>

<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145> 円形標準マンホール 上部斜壁 + 床版タイプ 浮上がりの検討. 設計条件 () 設計地震動 地震動レベル () 概要図 呼び方内径 都型 ( 内径 0cm) 00 00 0 600 0 0.00.0 0.0 0.0.0.70 0 60 00 60 60 00.0.0 00 00 00 00 00 P () マンホール条件 ) 寸法諸元 6 7 種類 呼び名 高さ モル 上部 下部 タル 外径 内径

More information

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63> 7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力

More information

<4D F736F F D20332E874192B789AA8B5A89C891E E592CB8CE52E646F6378>

<4D F736F F D20332E874192B789AA8B5A89C891E E592CB8CE52E646F6378> 中越 中越沖地震における宅地地盤の繰り返し液状化に関する現地調査 長岡技術科学大学教授大塚悟 1. はじめに新潟県中越地域では 2004 年の新潟県中越地震と 2007 年の中越沖地震により甚大な被害を生じた 短期間に同一地域でマグニチュード 6.8 もの地震を 2 回も経験する事例は過去にもあまり例がない 震源断層は異なるものの,2 つの地震で繰り返し被害を受けた地域が存在する 新潟県柏崎市及び刈羽村は海岸沿いに砂丘が広範囲に分布する特徴があり,

More information

<90E096BE8F912E786477>

<90E096BE8F912E786477> セメント系固化材による地盤改良の計算 概要書 地下水位 地盤改良 W ( 有 ) シビルテック 2013.05.21 セメント系固化材による地盤改良計算 について 1. 本計算ソフトの概要 本計算ソフトは 軟弱な地盤上に設置される直接基礎の地盤改良の必要性の確認 およびセメント系固化材による地盤改良を行なった場合の改良仕様 ( 改良深さ 改良幅 改良強度 ) を計算するものです [ 適用可能な地盤改良の種類

More information

積粘土と同様に上下で低く 中央で高い弓形分布を示す 図 () の I L は 長田 新庄 門真で 1 以上を示し 東大阪地域の沖積粘土の特徴である超鋭敏性が伺える ただし 鴫野の I L はかなり低い 図 (3) () の c v は 先の w L が反映されているが 特に新庄の中央部の圧縮性が高い

積粘土と同様に上下で低く 中央で高い弓形分布を示す 図 () の I L は 長田 新庄 門真で 1 以上を示し 東大阪地域の沖積粘土の特徴である超鋭敏性が伺える ただし 鴫野の I L はかなり低い 図 (3) () の c v は 先の w L が反映されているが 特に新庄の中央部の圧縮性が高い 大阪市立大学大学院都市系専攻 修士論文梗概集 7 年 3 月 大阪地域の沖積 洪積粘土層の土質特性の地域性と地下水位再低下可能量の予測 地盤工学分野 M5TD9 金谷泳知 1. 研究の目的昭和 ~3 年代にかけて大阪地域では 地下水の過剰汲上げによって地盤沈下が生じた その後 地下水汲上げ規制によって地盤沈下は収束したが 現在では地下水位が過大に回復し 諸問題を引き起こしている これを解決するためには

More information

平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00

平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00 平成 31 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1, 2 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 1 枚配付 試験日時 : 平成 30 年 8 月 20 日 ( 月 ) 13:00 14:00 専門科目 ( 一 ) 数学 [ 数学 ] 1. 行列 A= -1 2 2 2 について以下の問に答えなさい.

More information

Microsoft Word - CPTカタログ.doc

Microsoft Word - CPTカタログ.doc 新しい地盤調査法のすすめ CPT( 電気式静的コーン貫入試験 ) による地盤調査 2002 年 5 月 ( 初編 ) 2010 年 9 月 ( 改訂 ) 株式会社タカラエンジニアリング 1. CPT(Cone Peneraion Tesing) の概要日本の地盤調査法は 地盤ボーリングと標準貫入試験 ( 写真 -1.1) をもとに土質柱状図と N 値グラフを作成する ボーリング孔内より不攪乱試料を採取して室内土質試験をおこない土の物理

More information

第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす

第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす 目 次 まえがき iii 第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1 1. 軟弱地盤の長期沈下と二次圧密 1 2. 弾塑性一次元圧密 FE 解析例 3 3. 二次圧密モデルと一次元圧密方程式 5 4. 二次圧密を考慮した一次元圧密 FE 解析 7 4.1 土質定数の決定法 7 4.2 計算例 ~ 1; 単一層, 均質地盤 : 両面排水条件 Consol A.xlsm 8 4.3

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点. 函体形状.. スパン ブロッ

目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点. 函体形状.. スパン ブロッ 柔構造樋門の設計 サンプルデータ 出力例 Sample 連矩形 PC 可とう性継手門柱形式 : 柱 胸壁 : なし翼壁 : 逆 T 型計算例 目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点.

More information

Microsoft PowerPoint - 1.せん断(テキスト用)

Microsoft PowerPoint - 1.せん断(テキスト用) 応用地盤力学 同演習 ( 担当 : 佐藤 ) ~2 年生後期, 火曜, 木曜 1 限目 教育目標 : 1) 基礎地盤力学で修得した知識を用いて実際の問題を解く考え方と開放のテクニックを修得する. 2) 土構造物を設計 ( 土圧, 地盤内応力, 支持力, 斜面安定計算 ) できる基礎知識を習得する. 3) 地盤改良などの土の特性を用いた改良技術のメカニズムを修得する. 4) 地震による地盤災害と液状化のメカニズムを知る.

More information

Microsoft PowerPoint - 水と土の科学④

Microsoft PowerPoint - 水と土の科学④ 降雨 地下水汚染 蒸発 揚水量 河川 地盤掘削 ダム 涵養 斜面崩壊 地すべり 漏水 地下水の塩水化 シールドトンネル 浸透圧 井戸地盤沈下 浸透量 浸透破壊湧水 流動 地下水に関する問題 トンネル掘削湧水, 周辺地下水低下 吸着水 地下水面 重力水 毛管水 不飽和領域 土粒子 地下水 飽和領域 土中水の存在形態 重力水は雨水, 地表面の貯留水, 流水などが地下に浸透し, 重力の作用により, 地下水面に向かって移動する水である

More information

<95F18D908F912E4F5554>

<95F18D908F912E4F5554> 1 基礎設計書 山田太郎様邸新築工事 2014 年 7 月 1 日 株式会社設計室ソイル 目次 2 1 建物条件 2 1-1 建物概要 2 1-2 平面図 2 1-2-1 基礎の節点座標 3 1-2-2 基礎外周の節点番号 3 1-2-3 スラブを示す4 点の節点番号 3 1-3 荷重条件 4 1-3-1 基礎寸法 4 1-3-2 荷重条件 4 2 スウェーデン式サウンディング試験 5 2-1 調査点

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

Microsoft PowerPoint - ppt8.pptx

Microsoft PowerPoint - ppt8.pptx 地盤材料 学 地盤材料 6/11 1:3 12: 地盤材料 3 授業計画 ( 案 ) 曜 2 限 : 地盤材料 学 ( 藏 )W2-319 第 1 回 (4/9) 授業の概要 第 2 回 (4/16) 砂と粘 ( 圧縮特性 ) 第 3 回 (4/23) 砂と粘 ( 圧縮特性, クリープ, 応 緩和 ) 第 4 回 (5/7) 砂と粘 ( 排 条件とせん断挙動 ) 第 5 回 (5/14) 砂と粘 (

More information

<4D F736F F D20834A C C7997CA89BB298B5A8F708E9197BF28914F94BC AAE90AC816A2E646F63>

<4D F736F F D20834A C C7997CA89BB298B5A8F708E9197BF28914F94BC AAE90AC816A2E646F63> 5-8 埋設断面および土被り表 1) 突出型 (1) 埋設条件項 目 (1) (2) (3) ト ラ ッ ク 荷 重 後輪片側 100kN 後輪片側 100kN 後輪片側 100kN 裏 込 め 材 料 良質土 φ450 以下 砕石 4 号 5 号 φ500 以上 砕石 3 号 4 号 土の反力係数 (E ) 300 700 1400( 転圧十分 ) 変形遅れ係数 (Fd) 1.5 1.5 1.25

More information

<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>

<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376> ボックスカルバートの地震時設計 浮き上がりの検討. 設計条件 () 設計地震動 地震動 レベル () 概要図 400 3900 3000 3000 4000 (3) ボックスカルバート条件 ) 寸法諸元形状 内幅 B(mm) 内高 H(mm) 頂版厚 T(mm) 底版厚 T(mm) 左側壁厚 T3(mm) 右側壁厚 T4(mm) 外幅 B0(mm) 外高 H0(mm) 頂版ハンチ高 C(mm) 底版ハンチ高

More information

土量変化率の一般的性質 ❶ 地山を切土してほぐした土量は 必ず地山の土量 1.0 よりも多くなる ( 例 ) 砂質土 :L=1.1~2.0 粘性土 :L=1.2~1.45 中硬岩 :L=1.50~1.70 ❷ 地山を切土してほぐして ( 運搬して ) 盛土をした場合 一般に盛土量は地山土量 1.0

土量変化率の一般的性質 ❶ 地山を切土してほぐした土量は 必ず地山の土量 1.0 よりも多くなる ( 例 ) 砂質土 :L=1.1~2.0 粘性土 :L=1.2~1.45 中硬岩 :L=1.50~1.70 ❷ 地山を切土してほぐして ( 運搬して ) 盛土をした場合 一般に盛土量は地山土量 1.0 土量計算の考え方 (1) 土量の変化率 土は一般に 地山の土量 ( 自然状態のままの土 ) ほぐした土量 ( 掘削したままの土 ) 締固めた土量 ( 締固めた盛土の土 ) 等それぞれの状態でその体積が変化し 異なる ( 通常 ほぐすと体積が増え 締め固めると体積が小さくなる ) これらの状態の土量を 地山の状態の土量を 1.0 とした時の体積比で表したものを 土量 の変化率 という 土量の変化率は

More information

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63>

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63> 7.4.5 粘性土の一軸圧縮試験 利点 : 何と言っても 手軽に実施出来る ( 三軸圧縮試験と比較すると ) 従って 常に一軸圧縮強度 q u が原地盤内での非排水状態での圧縮強度 (σ 1 -σ 3 ) f と一致していれば こんなに便利なことはない しかし そうは問屋が卸さない 一軸圧縮試験に対する元々の考え方 : 次の条件が満たされていれば 一軸圧縮強度 q u = 原地盤内での非排水状態での圧縮強度

More information

液状化判定計算(道示編)V20-正規版.xls

液状化判定計算(道示編)V20-正規版.xls 道路橋示方書対応版 液状化の判定計算 (LIQCAL-D) シェアウエア 正規版 液状化判定基準 : 道路橋示方書 同解説 Ⅴ 耐震設計編 ( 平成 14 年 3 月 ) 最初にお読み下さい 計算へ進む > Ver 2.0 (2008.04.07) ( 有 ) シビルテック 本ソフトはシェアウエアソフト ( 有料 ) です 本ソフトは試用版として利用できますが 土の重量 ( 飽和重量と湿潤重量 )

More information

Microsoft Word - 数学表紙_0727修正

Microsoft Word - 数学表紙_0727修正 平成 28 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 2 枚 1,2 数学 解答用紙の枚数 3 枚 ただし, 計算用紙を 1 枚配付 試験時間 : 平成 27 年 8 月 24 日 ( 月 ) 13:00 14:00 専門科目 ( 一 ) 数学 [ 数学 ] 1. 以下の問に答えなさい. (1) 行列 A 1

More information

強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦

強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 1. 実験目的 大和建工株式会社の依頼を受け 地下建設土留め工事の矢板と腹起こしの間に施工する 強 化プラスチック製の裏込め材 の耐荷試験を行って 設計荷重を保証できることを証明する 2. 試験体 試験体の実測に基づく形状を次に示す 実験に供する試験体は3

More information

(1) 擁壁の設計 東京都 H=2.0m < 常時に関する計算 > 2000 PV w1 w2 w3 PH GL 350 1800 97 4 土の重量 16.0, コンクリートの重量 24.0 摩擦係数 0.30, 表面載荷 9.8 ( 土圧係数は直接入力による ) 安定計算用の土圧係数 0.500 壁体計算用の土圧係数 0.500 W1 = 12.6, W2 = 12.3, W3 = 78.1 PH

More information

<88AE3289F188CF88F589EF E786264>

<88AE3289F188CF88F589EF E786264> 液状化の検討方法について 資料 -6 1. 液状化の判定方法 液状化の判定は 建築基礎構造設計指針 ( 日本建築学会 ) に準拠して実施する (1) 液状化判定フロー 液状化判定フローを図 -6.1 に示す START 判定対象土層の設定 (2) 判定対象土層 液状化の判定を行う必要がある飽和土層は 一般に地表面から 2m 程度以浅の沖積層で 考慮すべき土の種類は 細粒分含有率が 35% 以下の土とする

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

2019/4/3 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒

2019/4/3 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒 土質力学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁谷啓 2019 年 4 月 9 日 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 平均単位体積重量 * *

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

1 圧密沈下計算 Ver 3.X.X 操作説明書 株式会社アライズソリューション 730-0833 広島市中区江波本町 4- Tel (08)93-131 Fax (08)9-075 URL http://www.aec-soft.co.jp Mail:support@aec-soft.co.jp 018.08 目次 1. システムの概要... 1 1-1 システムの概要... 1 1- システムの特徴...

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

<4D F736F F D20926E94D58D488A C F95B BC8FE9816A2E646F63>

<4D F736F F D20926E94D58D488A C F95B BC8FE9816A2E646F63> 河川堤防現地砂質材料の三軸試験による強度評価に関する考察 名城大学大学院学生会員岸賢吾名城大学国際会員小高猛司名城大学正会員板橋一雄建設技術研究所国際会員李圭太 1. はじめに河川堤防の詳細点検における浸透時のすべり破壊に対する検討においては, 非定常飽和 - 不飽和浸透流解析によって湿潤面を設定した後に, 全応力法の円弧すべり解析が通常用いられる 1) この際の強度定数の設定には全応力解析を念頭において,

More information

土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子

土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子 質 学 Ⅰ 土の基本的性質 (1) ( 土の組成 ) 澁 啓 2018 年 4 10 1 土の基本的性質 粒子の組合せ 内部の粒子の幾何学的配置 粒子の性質 外部からは見えない 連続体 + としてのマスの性質 工学 技術の対象 粒子の性質 粒子の詰まり方 ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子が占める体積

More information

Microsoft PowerPoint - 20_08_09_™n‚wŁÏ„`Š\‚ª_’¼flö_›¬flŠ.ppt

Microsoft PowerPoint - 20_08_09_™n‚wŁÏ„`Š\‚ª_’¼flö_›¬flŠ.ppt メタンハイドレート資源開発研究コンソーシアム平成 14 年度成果報告会 地層変形予測技術 環境影響評価 G 地層変形予測 SG 清水建設 ( 株 ) 関東天然瓦斯開発 ( 株 ) 財団法人 エンジニアリング振興協会 PhaseⅠ 全体工程 項 目 2001 年度 2002 年度 2003 年度 2004 年度 2005 年度 2006 年度 中間評価 マリック生産テスト 解析手法 解析パラメータの調査

More information

IT1815.xls

IT1815.xls 提出番号 No.IT1815 提出先御中 ハンドホール 1800 1800 1500 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 株式会社インテック 1 1. 設計条件奥行き ( 短辺方向 ) X 1800 mm 横幅 Y 1800 mm 側壁高 Z 1500 mm 部材厚 床版 t 1 180 mm 底版 t 150

More information

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例

More information

Microsoft PowerPoint - 水と土の科学④

Microsoft PowerPoint - 水と土の科学④ 降雨 地下水汚染 蒸発 揚水量 河川 地盤掘削 ダム 涵養 斜面崩壊 地すべり 漏水 地下水の塩水化 シールドトンネル 浸透圧 井戸地盤沈下 浸透量 浸透破壊湧水 流動 地下水に関する問題 トンネル掘削湧水, 周辺地下水低下 吸着水 地下水面 重力水 毛管水 不飽和領域 土粒子 地下水 飽和領域 土中水の存在形態 重力水は雨水, 地表面の貯留水, 流水などが地下に浸透し, 重力の作用により, 地下水面に向かって移動する水である

More information

Microsoft PowerPoint AMC_松島渡辺 受賞講演.pptx

Microsoft PowerPoint AMC_松島渡辺 受賞講演.pptx Granular Mch. & Gotchnical Eng. Lab, Univrity of Tukuba 応 学論 賞講演 高速圧縮破砕を受ける砂層に対するユゴニオ状態方程式の土質力学的解釈 筑波大学立命館大学 松島亘志渡辺圭子 24/5/ 第 7 回応 学シンポジウム in 沖縄 ( 琉球 学 PMEE(Particulat Mchanic for xtrm nvironmnt 米国ローレンスリバモア研究所

More information

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

15_layout_07.indd

15_layout_07.indd 第8章安全管理1 1 級土木 施工管理技士 テキスト 第 1 章土工 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 8 11 14 18 21 23 25 27 30 32 34 37 第 2 章コンクリート工 47 1. 2. 3. 4. 5. 6. 7. 8. 48 50 53 56 58 60 63 66 9. 10. 11. 12. 13. 69 75 79

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

マンホール浮き上がり検討例

マンホール浮き上がり検討例 マンホールの地震時液状化浮き上がり解析 ( 地震時せん断応力は 略算 で算定 ) 目次 (1) 基本方針 1, 本解析の背景 2 2, 構造諸元 2 3, 本解析の内容 2 4, 本解析の目的 2 5, 設計方針及び参考文献 2 6. 使用プログラム 3 7, 変形解析のフロー 3 8, 概要図 3 (2) 地盤概要 1, 地盤の概説 5 ( 一部省略 ) 2, ボーリング調査結果 5 3, 設計外力

More information

Microsoft PowerPoint - ‚æ2‘Í.ppt

Microsoft PowerPoint - ‚æ2‘Í.ppt 第 2 章力学的挙動と静的強度 目的 荷重が作用した際の金属材料の力学的挙動について理解する. 2.1 応力 - ひずみ曲線 2.1.1 公称応力 / ひずみと真応力 / ひずみ 2.1.2 応力 - ひずみ曲線 2.1.3 力学的性質 ( 機械的性質 ) 2.1.4 加工硬化 2.1.5 じん性 2.1.6 指標の意味 2.2 力学的性質を求める異なる方法 2.2.1 ヤング率の測定方法 2.2.2

More information

・ノンブルは、仮なので、通しセンター・ノンブル-123-の形式とする

・ノンブルは、仮なので、通しセンター・ノンブル-123-の形式とする 1. の鉛直載荷試験の区分 1.1 地盤工学会基準におけるの鉛直載荷試験 土木や建築の基礎構造として用いらている基礎の鉛直支持力性能を確認するためにの鉛直載荷試験 ( 以下 載荷試験 ) が実施されます 載荷試験は原位置試験の一つでの鉛直支持力特性を調べる試験方法です 実の 支持力を測定することから の支持力を確認するのに最も信頼性の高い方法です 以前は載荷試験と言えば載荷試験のことでした しかし

More information

Microsoft PowerPoint - 宅地液状化_印刷用

Microsoft PowerPoint - 宅地液状化_印刷用 戸建て住宅地の液状化被害メカニズムの解明と対策工の検討 名古屋大学大学院工学研究科社会基盤工学専攻中井健太郎 名古屋大学連携研究センター野田利弘 平成 27 年 11 月 14 日第 9 回 NIED-NU 研究交流会 1. 背景 目的 2. 建物による被害影響 材料定数, 境界条件 高さ 重量の影響 地盤層序と固有周期の影響 3. 被害に及ぼす隣接建物の影響 2 棟隣接時の隣接距離と傾斜方向の関係

More information

- 14 -

- 14 - - 13 - - 14 - - 15 - 14 15 2-3-1 14 (KP1.81.4) 4,000(m 3 /) 14 2-3-2 c b c a a b c - 16 - 2-3-1 15 1960 (Cs-137Pb-210) (KP1.42.5) 1960(KP-2.51.4) 132,000m 3 3,300m 3 / 116,000m 3 15,900m 3 Cs-137Pb-210

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

平成 28 年度 マスコンクリートにおける強度発現に注目した打設方法 札幌開発建設部千歳道路事務所工務課 梅津宏志札幌開発建設部千歳道路事務所大野崇株式会社砂子組名和紀貴 マスコンクリートの打設におけるひび割れ制御には 主にひび割れ指数が用いられるが 同指数は必ずしも実施工結果と一致しないのことが多

平成 28 年度 マスコンクリートにおける強度発現に注目した打設方法 札幌開発建設部千歳道路事務所工務課 梅津宏志札幌開発建設部千歳道路事務所大野崇株式会社砂子組名和紀貴 マスコンクリートの打設におけるひび割れ制御には 主にひび割れ指数が用いられるが 同指数は必ずしも実施工結果と一致しないのことが多 平成 8 年度 マスコンクリートにおける強度発現に注目した打設方法 札幌開発建設部千歳道路事務所工務課 梅津宏志札幌開発建設部千歳道路事務所大野崇株式会社砂子組名和紀貴 マスコンクリートの打設におけるひび割れ制御には 主にひび割れ指数が用いられるが 同指数は必ずしも実施工結果と一致しないのことが多い様である そこで実用的観点から コンクリートの発現強度に注目した打設方法を検討した テストピースによる要素試験において零時間からの発現強度を測定し

More information

DNK0609.xls

DNK0609.xls 提出番号 No.DNK0609 提出先御中 ハンドホール 600 600 900 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 カナフレックスコーポレーション株式会社 1 1. 設計条件奥行き ( 短辺方向 ) X 600 mm 横幅 Y 600 mm 側壁高 Z 900 mm 部材厚 床版 t 1 80 mm 底版 t

More information

DH1PJM.mcd

DH1PJM.mcd 1 実地 平成 24 年度 級土木施工管理技術検定実地試験問題 次の注意をよく読んでから解答してください 注意 1. これは実地試験の問題です 表紙とも 6 枚,6 問題あります 2. 解答用紙の上欄に試験地, 受験番号, 氏名を間違いのないように記入してください 3. 問題 は必須問題です 必ず解答してください 4. 問題 から問題 までは選択問題です このうち 問題を選択し, 解答してください

More information

<4D F736F F D CC8AEE967B934990AB8EBF205F8F43959C8DCF82DD5F2E646F63>

<4D F736F F D CC8AEE967B934990AB8EBF205F8F43959C8DCF82DD5F2E646F63> 第 1 章土の基本的性質 粒子の組合せ 粒子の性質 粒子の詰まり方 土塊内部の粒子の幾何学的配置 粒子の性質 外部からは見えないが土塊の性質を決定している ( 粒度分布 ) 異なる大きさの粒子の混じり具合 ( 個々の粒子の性質 ) 粒子の大きさ 粒子の比重 粒子の形 粒子の硬さ 強度 粒子が占める体積 空隙が占める体積 v a) 水 ( 間隙水 ) が占める体積 b) 空気が占める体積 a 粒子の相互配列(

More information

Microsoft PowerPoint - Soil_Mechanics_lec8

Microsoft PowerPoint - Soil_Mechanics_lec8 土中 ( 多孔質体 ) の中の流れ Darc s law: v k dl 透水係数 Q k i B () B => C で失われた水頭 ( 損失水頭 :head loss) h v: ( 流速 ) 流量速度 k: 透水係数 h: ( ピエゾ ) 水頭 l: 流管の長さ i: 動水勾配 h i l dl 断面積 A 透水係数 (k) の測定 定水透水試験 (constant head permeameter

More information

NC L b R

NC L b R GEOASIA -2-3 3 Vs 3m / sec ( ) () / () () () 7m 8.5m 6m 24.5m 237m 5.6m 276m 1:1.91 1:1.81 9.5 2334 247 2676 2834 6.5m 2289 2432 1m m 26.6m (As) 15m 1:1.75 (B) (Dg) (As) (W) -8.5m ~.m (B).m ~ 1.m (Ac1)

More information

. 既箇所での軟弱地盤対策工法の実施.1 工法の選定について前述した地盤条件下に計画盛土を施工した場合 建設段階時 ( 中 ) の安定確保 と 供用後の過大な残留沈下の発生 が問題となった この問題に対し 以下のように対策工法を実施することとした 建設段階時の安定確保は 緩速載荷工法で対処する 残留

. 既箇所での軟弱地盤対策工法の実施.1 工法の選定について前述した地盤条件下に計画盛土を施工した場合 建設段階時 ( 中 ) の安定確保 と 供用後の過大な残留沈下の発生 が問題となった この問題に対し 以下のように対策工法を実施することとした 建設段階時の安定確保は 緩速載荷工法で対処する 残留 動態観測結果による方法の合理化 山田一夫 1 高村直幸 1 新潟国道事務所工務第一課 ( 9-91 新潟県新潟市中央区南笹口 丁目 1 番 号 ) 新潟国道事務所工務第一課 ( 9-91 新潟県新潟市中央区南笹口 丁目 1 番 号 ). 白根バイパスは 全線にわたり腐植土や海成粘土が厚く分布しているため 建設時にはすべり破壊が 供用時には長期にわたる沈下の発生が問題となる道路である この対策として

More information

ボックスカルバートの沈下被害調査

ボックスカルバートの沈下被害調査 ボックスカルバート沈下被害の調査 目 次 (1) 基本方針 1. 本計算書の説明 2 2. 道路盛土構造諸元 2 3. 設計方針 2 4. 設計の目的 2 (2) 概要 1. 設計チャート図 5 2. 使用プログラム 5 3.FEM 解析条件 5 4,FEM モデル化の説明 6 5, 解析結果の使用目的 6 (3) 地盤 ( 材料 ) 定数 1. 地盤 ( 材料 ) 定数 7 (4) 作用加重 1.

More information

1. 設計手順 ディープウェル工事の設計は 下記に示す手順で実施する 掘削区域内への排水量の検討 ディープウェル仕様の仮定 ( 径 深さ ) ディープウェル 1 本当たりの揚水能力の検討 ディープウェル本数 配置の設定 井戸配置で最も不利な点を所要水位低下させるのに必要な各井戸の合計排水量の検討 -

1. 設計手順 ディープウェル工事の設計は 下記に示す手順で実施する 掘削区域内への排水量の検討 ディープウェル仕様の仮定 ( 径 深さ ) ディープウェル 1 本当たりの揚水能力の検討 ディープウェル本数 配置の設定 井戸配置で最も不利な点を所要水位低下させるのに必要な各井戸の合計排水量の検討 - 管理記号 : 0001 作成年月日 : 2018/6/18 工事名称 : 仮設計画ガイドブック ( 全日本建設技術協会 ) 工区名称 : page209~page214 設計条件 設計結果 ディープウェル工事設計計算書 1. 掘削寸法 ( 幅 )40.0m ( 長さ )40.0m ( 深さ )12.0m 2. 滞水層厚 D=19.0m 3. 地下水位 GL-3.0m 4. 計画水位 GL-13.0m

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 ここでは 5 章で示した方法により急傾斜地における崩壊する恐れがある層厚の面的分布が明らかとなった場合のがけ崩れ対策手法について検討する 崩壊する恐れがある層厚の面的な分布は 1 土砂災害警戒区域等における土砂災害防止対策の推進に関する法律( 以下

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

1 演習 :3. 気体の絶縁破壊 (16.11.17) ( レポート課題 3 の解答例 ) ( 問題 3-4) タウンゼントは平行平板電極間に直流電圧を印加し, 陰極に紫外線を照射して電流 I とギ ャップ長 d の関係を調べ, 直線領域 I と直線から外れる領域 II( 図 ) を見出し, 破壊前前駆電流を理論的 に導出した 以下の問いに答えよ (1) 領域 I における電流 I が I I expd

More information

4174 20106 2 () 19 21 18 20 I 4124 4124 : 1. 1 2. 3 2.1... 3 2.2... 4 2.3... 9 2.4... 9 3. 10 3.1... 10 3.2... 11 3.3... 14 4. 16 4.1... 16 4.2... 18 4.3 I... 22 4.4 I... 23 5. 25 5.1... 25 5.2... 33

More information

東海大学紀要 工学部.indd

東海大学紀要 工学部.indd Vol.8,No1,18,pp.6-1 東海大学紀要工学部 Vol., No., 18, pp. - K 過圧密粘土の有効応力経路と塑性ひずみ *1 今井誉人 * 吉富隆弘 *3 赤石勝 *4 外崎明 * 杉山太宏 Effective Stress Path and a Plastic Strain of K Over-Consolidated Clay by Yoshito IMAI *1, Takahiro

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

<4D F736F F D20926E89BA908588CA82CC8FE38FB882C994BA82A48AEE E94D E89BA8D5C91A295A882CC957388C092E890AB82C98AD682B782E

<4D F736F F D20926E89BA908588CA82CC8FE38FB882C994BA82A48AEE E94D E89BA8D5C91A295A882CC957388C092E890AB82C98AD682B782E 地下水位の上昇に伴う基礎地盤 地下構造物の不安定性に関する 1G 場模型実験 茨城大学学生会員 柴田はるか国際会員安原一哉村上哲小峯秀雄東武鉄道満山聖 1. はじめに都心に位置する鉄道のトンネルや地下駅の多くは, 不透水層下の洪積砂礫層等の深度に位置しており, 構造物は被圧地下水の影響を受けることになる. この被圧地下水の変動については, 図 -1 に示すように, 工業用水等の採取に対する規制強化が実施される

More information

<8E9197BF2D375F8DC489748FF389BB82CC8C9F93A295FB964081A695CF8D5882C882B52E786477>

<8E9197BF2D375F8DC489748FF389BB82CC8C9F93A295FB964081A695CF8D5882C882B52E786477> 再液状化の検討方法 1. 液状化の判定方法 液状化の判定は 建築基礎構造設計指針 ( 日本建築学会 ) に準拠して実施する (1) 液状化判定フロー 液状化判定フローを図 -7.1 に示す START (2) 判定対象土層 資料 -7 液状化の判定を行う必要がある飽和土層は 一般に地表面から 20m 程度以浅の沖積層で 考慮すべき土の種類は 細粒分含有率が 35% 以下の土とする ただし 埋立地盤など人口造成地盤では

More information

杭の事前打ち込み解析

杭の事前打ち込み解析 杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft Word - 特集準備資料1

Microsoft Word - 特集準備資料1 圧密 WG 珠玖 西村 柴田 圧密問題の逆解析 -- はじめに 地盤工学における逆解析の研究は 主として圧密沈下の問題を対象に進められてきた. この理由は定かではないが 日本の都市 人口が軟弱な粘性土地盤で構成される沖積平野に集中しており 建設工事にともなう地盤の 圧密 沈下量を精度よく予測したいというニーズがあったことと 地盤の沈下量が比較的計測しやすく 逆解析の研究に必要な観測データが容易に得られたということが理由として考えられる.

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information

75_30【論文】井戸理論を用いた多層地盤の水位低下予測

75_30【論文】井戸理論を用いた多層地盤の水位低下予測 大林組技術研究所報 No.75 2011 井戸理論を用いた多層地盤の水位低下予測 山田祐樹森尾義彦山本彰 Prdiction of Dwatring with Altrnat Ovrlaying Prmabl Layrs Using Wll Hydraulics Yuki Yamada Yoshihiko Morio Akira Yamamoto Abstract Th masurmnt of groundwatr

More information

01宅地液状化沈下(161008)

01宅地液状化沈下(161008) 造成宅地の液状化沈下量の推定 目次 (1) 基本方針 1, 本解析の説明 2 2, 構造諸元 2 3, 本解析の概要 2 4, 本解析の内容 3 5, 本解析の目的 3 6, 設計方針及び参考文献 3 7. 使用プログラム 3 8, 変形解析のフロー 3 9, 概要図 4 (2) 概要 1, 地盤の概説 5 2, 設計外力 5 3, 液状化の判定 5 (3)ALID 解析の概要 1,ALIDによる自重変形解析法の概説

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

<4D F736F F D E93788C9A927A8AEE916290DD8C768E6D88EA8E9F8E8E8CB181468AEE967B96E291E C882B5816A>

<4D F736F F D E93788C9A927A8AEE916290DD8C768E6D88EA8E9F8E8E8CB181468AEE967B96E291E C882B5816A> 受験番号 フリガナ 氏名 0 年度建築基礎設計士一次試験 基本問題 (0 年 月 日実施 ) ( ヘ ーシ 以降には 氏名等を書かないこと ) ( 事務局記入 ) 士採点番号一般社団法人基礎構造研究会建築基礎設計士試験運営委員会 ヘ ーシ A: 問題次の文章が正しければ を 誤っていれば をに記入したうえで 誤っているところに下線を引き に正しい語句等を記入しなさい ( 配点 : 点 各. 点 )

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

<4D F736F F D E93788C9A927A8AEE916290DD8C768E6D88EA8E9F8E8E8CB181468AEE967B96E291E82E646F6378>

<4D F736F F D E93788C9A927A8AEE916290DD8C768E6D88EA8E9F8E8E8CB181468AEE967B96E291E82E646F6378> 受験番号 フリガナ 氏名 08 年度建築基礎設計士一次試験 基本問題 (09 年 月 0 日実施 ) ( ヘ ーシ 以降には 氏名等を書かないこと ) ( 事務局記入 ) 士採点番号一般社団法人基礎構造研究会建築基礎設計士試験運営委員会 - 0 - 採点番号 ( 事務局記入 ) A: 訂正問題次の文章が正しければに 〇 を 誤っていれば誤っているところに下線を引き に正しい語句等を記入しなさい (

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

第 3 章切土, 盛土, 大規模盛土, のり面保護工, 自然斜面等 3.1 切土 1. 切土のり面勾配 切土のり面勾配は, のり高及びのり面の土質等に応じて適切に設定するものとします その設定にあたっては, 切土するのり面の土質の確認を前提として, 表.3-1 を標準とします 崖の高さが 5m 以下

第 3 章切土, 盛土, 大規模盛土, のり面保護工, 自然斜面等 3.1 切土 1. 切土のり面勾配 切土のり面勾配は, のり高及びのり面の土質等に応じて適切に設定するものとします その設定にあたっては, 切土するのり面の土質の確認を前提として, 表.3-1 を標準とします 崖の高さが 5m 以下 第 3 章切土, 盛土, 大規模盛土, のり面保護工, 自然斜面等 3.1 切土 1. 切土のり面勾配 切土のり面勾配は, のり高及びのり面の土質等に応じて適切に設定するものとします その設定にあたっては, 切土するのり面の土質の確認を前提として, 表.3-1 を標準とします 崖の高さが 5m 以下となる場合は, のり面の土質に応じた (A) 欄の角度以下とし, 崖の高さが 5m を超える場合は,

More information

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc 第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

Super Build/宅造擁壁 出力例1

Super Build/宅造擁壁 出力例1 宅造擁壁構造計算書 使用プログラム : uper Build/ 宅造擁壁 Ver.1.60 工事名 : 日付 : 設計者名 : 宅地防災マニュアル事例集 015/01/7 UNION YTEM INC. Ⅶ-1 建設地 : L 型擁壁の設計例 壁体背面を荷重面としてとる場合 *** uper Build/ 宅造擁壁 *** 160-999999 [ 宅地防災マニュアル Ⅶ-1] 015/01/7 00:00

More information

地盤工学ジャーナル Vol.6,No.3, 泥炭地盤の圧密沈下挙動と慣用予測式の適用性 山添誠隆 1, 田中洋行 2, 林宏親 3, 三田地利之 4 1 ( 株 ) シーウェイエンジニアリング 2 北海道大学大学院工学研究院 環境フィールド工学部門 3 ( 独 ) 土木研究所寒地土木研

地盤工学ジャーナル Vol.6,No.3, 泥炭地盤の圧密沈下挙動と慣用予測式の適用性 山添誠隆 1, 田中洋行 2, 林宏親 3, 三田地利之 4 1 ( 株 ) シーウェイエンジニアリング 2 北海道大学大学院工学研究院 環境フィールド工学部門 3 ( 独 ) 土木研究所寒地土木研 地盤工学ジャーナル Vol.6,No.3,395-414 泥炭地盤の圧密沈下挙動と慣用予測式の適用性 山添誠隆 1, 田中洋行 2, 林宏親 3, 三田地利之 4 1 ( 株 ) シーウェイエンジニアリング 2 北海道大学大学院工学研究院 環境フィールド工学部門 3 ( 独 ) 土木研究所寒地土木研究所 4 日本大学 生産工学部 概要泥炭地盤上での建設工事では, 大きな沈下が長期間に渡り発生するため,

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information