Size: px
Start display at page:

Download ""

Transcription

1

2 v.s x ii

3 iii Poisson Heisenberg L

4 iv Klein-Gordon Dirac Dirac Dirac Poisson

5 1 1.1 v.s ψ(r) 2 ψ(r 1, r 2 ) 3 ψ(r 1, r 2, r 3 ) n ψ(r 1, r 2,, r n )

6 2 ψ(r 1, r 2 ) 1 2 ψ(r 2, r 1 ) Cψ(r 1, r 2 ). r 1 r 2 ψ(r 1, r 2 ) Cψ(r 2, r 1 ). ψ(r 1, r 2 ) C 2 ψ(r 1, r 2 ) C 2 1, or C ±1 2 1 ψ(r 1, r 2 ) ±ψ(r 2, r 1 ) ψ 1 (r 1 ), 2 1 ψ 2 (r 2 ) 2 ψ(r 1, r 2 ) ψ 1 (r 1 )ψ 2 (r 2 ) ψ(r 1, r 2 ) 1 2 [ψ 1 (r 1 )ψ 2 (r 2 ) ψ 1 (r 2 )ψ 2 (r 1 )] 1 ± boson, fermion 2 r r 1 r 2 r ψ(r, r) r ψ(r, r) ψ(r, r) 0

7 { 0 ( ), 1, 2, 3, } 0, p 1 p, p, p 2 p, p 0 p p, p â(p): p â (p): p 3 â(p ) p, p p, â(p) p 0, â(p) 0 0, â (p) 0 p, â (p ) p p, p, 2 n i ψ i (r i ) ψ(r 1, r 2,, r n ) 1 n! det [ψ i (r j )] i j 3 (â 0 0) p p â(p) p 0 (p p )

8 4 0 â (p) â(p) â(p)â (p) 0 0. (1.2.1) â (p)â(p) 0 0. (1.2.2) (â(p)â (p) â (p)â(p) ) 0 0 (1.2.3) â, â [ â(p), â (p) ] 1 (1.2.4) 4 [, ] ([A, B] AB BA) 1.3 p, p p, p â (p)â (p ) 0 p, p ± p, p ( ) â (p)â (p ) ±â (p )â (p) ( ) [ â (p), â (p ) ] 0 ( ) (1.3.1) {â (p), â (p )} 0 ( ) (1.3.2) {, } ({A, B} AB + BA) 4

9 5 (1.2.4) (1.2.1) (1.2.2) (1.2.3) (1.2.1) (1.2.2) (â(p)â (p) + â (p)â(p) ) 0 0 (1.3.3) â, â { â(p), â (p) } 1 (1.3.4) [ â(p), â (p ) ] δp,p (1.3.5) [ â (p), â (p ) ] 0 (1.3.6) [ â(p), â(p ) ] 0 (1.3.7) { â(p), â (p ) } δp,p (1.3.8) { â (p), â (p ) } 0 (1.3.9) { â(p), â(p ) } 0 (1.3.10) p 1 1 ψ(r) 2 1 ψ 1 (r 1 )ψ 2 (r 2 )

10 6 ) 3 ψ 1 (r 1 )ψ 2 (r 2 )ψ 3 (r 3 ) 1 r p

11 ) q i i 1, 2,, N) L(q i, q i ) L(q i, q i ) K(q i, q i ) V (q i ) (2.1.1) q i ( ) ( q i dq i /dt) K(q i, q i ) V (q i ) (Euler-Lagrange E-L eq.): d L L. (i 1, 2,, N) (2.1.2) dt q i q i q i p i p i L q i. (2.1.3) ( ) p i E-L eq. (2.1.2) p i E-L eq. dp i dt L (2.1.4) q i H H N p i q i L. (2.1.5) i1 7

12 8 H 1 dh N (dp i q i + p i d q i ) i1 N dp i q i i1 N i1 N i1 ( L d q i + L ) dq i q i q i L q i dq i. (2.1.6) 2 p i (2.1.3) d q i H q i p i q i p i H(q i, p i ) ( H dh(p i, p i ) N i1 H p i dp i + N i1 H q i dq i (2.1.7) (2.1.6) H p i q i, H q i L q i. E-L eq. (2.1.4) dq i dt H p i (2.1.8) dp i dt H. q i (2.1.9) ( ) q i, p i A A(q i, p i ), B B(q i, p i ) (Poisson bracket; Pb) : N ( A B {A, B} Pb A ) B. (2.1.10) q i p i p i q i i1 1 2 f(x, y) 3 df(x, y) f f dx + x y dy

13 9 q i, p i A q i p i N da dt ( A dq i q i1 i dt + A ) dp i p i dt N ( A H A ) H q i p i p i q i i1 2 (2.1.8), (2.1.9) A H A da dt {A, H} Pb. (2.1.11) A q i, p i (2.1.8), (2.1.9) dq i dt {q i, H} Pb (2.1.12) dp i dt {p i, H} Pb (2.1.13) (2.1.10) (i) {A, B} Pb {B, A} Pb (ii) (or ) {A, cb + c B } Pb c{a, B} Pb + c {A, B } Pb c, c (iii) ( ) {ca + c A, B} Pb c{a, B} Pb + c {A, B} Pb {A, BC} Pb {A, B} Pb C + B{A, C} Pb {AB, C} Pb {A, C} Pb B + A{B, C} Pb

14 10 (iv) {A, {B, C} Pb } Pb + {B, {C, A} Pb } Pb + {C, {A, B} Pb } Pb 0. (v) {q i, q j } Pb {p i, p j } Pb 0, { 1 (i j) {q i, p j } Pb {p i, q j } Pb δ ij 0 (i j) (2.1.10) (i) (ii) (iii) (iv) (v) 2.1 (2.1.10) (i) (iii) 2.2 (2.1.10) (v) 2.3 (2.1.10) (iv) 2.4 A D A D A X {A, X} Pb. (ii) (iii) D A 2.5 D A (iv) ( ) D A {B, C} Pb {D A B, C} Pb + {B, D A C} Pb or (i) (v) (i) (v) (2.1.10)

15 11 (i) (iii), (v) (2.1.10) 2 1 (N 1) ( (1) {A, 1} Pb 0. (iii) C 1 {A, B 1} Pb {A, B} Pb 1 + B{A, 1} Pb. B {q, 1} Pb 0, {p, 1} Pb 0. {A, 1} Pb 0 (2) {A, q n } Pb {A, q} Pb nq n 1, {A, p n } Pb {A, p} Pb np n 1 n n 0 0 (1) 0 n 1 n n + 1 (iii) 2, {A, q n+1 } Pb {A, q q n } Pb {A, q} Pb q n + q {A, q n } Pb {A, q} Pb q n + q {A, q} Pb nq n 1 {A, q} Pb (n + 1)q n n+1 {A, q n } Pb {A, q} Pb nq n 1 q n {A, p n } Pb {A, p} Pb np n 1 2 Q i F i (q j, p j ), P i G(q j, p j ) (Q i, P i ) (v) Poisson {A, B} Pb N ( A i1 Q i B A P i P i B Q i ).

16 12 (3) {A, B} Pb {A, p} Pb B/ p + {A, q} Pb B/ q B B(p, q) B n, m c nmp n q m (ii), (iii) {A, B} Pb n, m c nm {A, p n q m } Pb n, m c nm ({A, p n } Pb q m + p n {A, q m } Pb ) (2) ( c nm {A, p}pb np n 1 q m + p n {A, q} Pb mq m 1) n, m ( ) (p n q m ) (p n q m ) c nm {A, p} Pb + {A, q} Pb p q n, m B {A, p} Pb p + {A, q} B Pb q. (4) {A, p} Pb A/ q, {A, q} Pb A/ p (3) A p B A A {p, A} Pb {p, p} Pb p + {p, q} A Pb q A q 2 (v) {p, p} Pb 0, {p, q} Pb 1 (i) {A, p} Pb {p, A} Pb A q. (3) A q B A A {q, A} Pb {q, p} Pb p + {q, q} A Pb q A p. 2 (v) {q, p} Pb 1, {q, q} Pb 0 (i) {A, q} Pb {q, A} Pb A p. (5) {A, B} Pb A q (3) (4) B p A B p q B {A, B} Pb {A, p} Pb p + {A, q} B Pb q A q B p A p B q.

17 13 ( ) (4) A/ p 0 A/ q 0 A(p, q) f(q) A(p, q) g(p) {q, f(q)} Pb {f(q), q} Pb 0, (2.1.14) {p, g(p)} Pb {g(p), p} Pb 0. (2.1.15) m 1 V (x) L(x, ẋ) m 2 ẋ2 V (x). (2.1.16) E-L eq. m d2 x dt 2 (x) V x. (2.1.17) p p L ẋ mẋ. (2.1.18) H(p, x) pẋ L ( m ) mẋẋ 2 ẋ2 V (x) m 2 ẋ2 + V (x) p2 + V (x). (2.1.19) 2m p x

18 14 {A(p, x), B(p, x)} Pb p, x A(p, x) B(p, x) x p A(p, x) p B(p, x). (2.1.20) x {x, x} Pb 0, {p, p} Pb 0 (2.1.21) {x, p} Pb {p, x} Pb 1. (2.1.22) (2.1.12), (2.1.13) (2.1.20) (2.1.21), (2.1.22) (i) (iii) dx dt {x, H} Pb { } p 2 x, 2m + V (x) Pb 1 2m {x, p2 } Pb + {x, V (x)} Pb (H ) 1 2m ({x, p} Pbp + p{x, p} Pb ) m 2p p m. ((2.1.22) ) ( (ii) ) ( (iii) {x, f(x)} Pb 0 ) (2.1.23) 4 {x, f(x)} Pb 0 (i) (iii) (2.1.21) (2.1.14) dp dt {p, H} Pb { } p 2 p, 2m + V (x) Pb (H ) 1 2m {p, p2 } Pb + {p, V (x)} Pb ( (ii) ) V (x) 0 ((2.1.21), (2.1.22) (i) (iii) ) x V (x) x (2.1.24) 4 {p, V (x)} Pb V (x)/ x 12 (4) (i) (iii) (v)

19 A, B Â, ˆB Â ˆB ˆBÂ, Â ˆB ˆBÂ 0. 0 (or ) [Â, ˆB] Â ˆB ˆBÂ (2.2.1) Â ˆB ˆBÂ [Â, ˆB] 0 (2.2.2) Â ˆB ˆBÂ + [Â, ˆB] (2.2.3) (i) (ii) ( ) [Â, ˆB] [ ˆB, Â] [Â, c ˆB + c ˆB ] c[â, ˆB] + c [Â, ˆB ] [câ + c Â, B] c[â, ˆB] + c [Â, ˆB] c, c (c ) (iii) ( ) [Â, ˆBĈ] [Â, ˆB] Ĉ + ˆB[Â, Ĉ] [Â ˆB, C] [Â, Ĉ] ˆB + Â[ ˆB, Ĉ] (iv) [Â, [ ˆB, Ĉ]] + [ ˆB, [Ĉ, Â]] + [Ĉ, [Â, ˆB]] 0.

20 (2.2.1) (i) 2.8 (2.2.1) (ii) 2.9 (2.2.1) (iii) 2.10 (2.2.1) (iv) ( [Â, [ ˆB, Ĉ]] [Â, [ ˆB, Ĉ]] [Â, ˆBĈ] [Â, Ĉ ˆB] (iii) 2.11 Â L A ˆX L A ˆX [ Â, ˆX]. (ii) (iii) L A 2.12 L A (iv) L A L A [ ˆB, Ĉ] [L A ˆB, Ĉ] + [ ˆB, L A Ĉ] 2.13 L A A, B Â, ˆB i {A, B} [Â, ˆB] (i) (iv) (i) (iv)

21 17 (i) (iii) (v) q i p i (i 1, 2,, N) ˆq i, ˆp i (Canonical Commutation Relation; CCR) [ˆq i, ˆq j ] [ˆp i, ˆp j ] 0 [ˆq i, ˆp j ] [ˆp i, ˆq j ] i δ ij (2.2.4) i i dˆq i dt [ˆq i, Ĥ] i dˆp i dt [ˆp i, Ĥ] (2.2.5) Ĥ H(p i, q i ) Ĥ H(ˆp i, ˆq i ) V (x) 1 1 H(p, x) p2 2m + V (x) x p x, p [ˆx, ˆp] i ˆx, ˆp Ĥ ˆp2 2m + V (ˆx)

22 18 i dˆx dt [ˆx, Ĥ] [ ] ˆp 2 ˆx, 2m + V (ˆx) 1 (Ĥ ) 2m [ˆx, ˆp2 ] + [ˆx, V (ˆx)] ( (ii) ) ( ) [ˆx, ˆp] ˆp + ˆp [ˆx, ˆp] + 0 ( (iii) [ˆx, V (ˆx)] 0 ) 1 2m 1 2m 2i ˆp i ˆp m ( ) 4 [ˆx, V (ˆx)] 0 [ˆx, ˆx n ] 0 (iii) [ˆx ˆx] 0 i dˆp dt [ˆp, Ĥ] [ ] ˆp 2 ˆp, 2m + V (ˆx) (Ĥ ) 1 2m [ˆp, ˆp2 ] + [ˆp, V (ˆx)] ( (ii) ) [ˆp, V (ˆx)]) 2m ( ) i V (ˆx) ( ) V (ˆx) x V (x) V (x) V (x)/ x x ˆx V (x) c n x n n0 V (x) V (x) x c n nx n 1 n1

23 19 x ˆx V (ˆx) 3 V (ˆx) c n n ˆx n 1. [ˆp, V (ˆx)] i V (ˆx) n1 [ˆp, ˆx n ] i nˆx n 1 (iii) [ˆp, ˆx] i dˆx dt ˆp m dˆp dt V (ˆx) 2.14 ˆx, ˆp 1 1 [ˆx, ˆp] i 3 V (ˆx) [ˆx, ˆx n ] 0, [ˆx, f(ˆx)] 0, [ˆx, ˆp n ] i nˆp n 1, [ˆx, g(ˆp)] [ˆx, ˆp] g p (ˆp), [ˆp, ˆp n ] 0, [ˆp, g(ˆp)] 0, [ˆp, ˆx n ] i nˆx n 1, [ˆp, f(ˆx)] [ˆp, ˆx] f x (ˆx). V (ˆx) c n ˆx n n0

24 20 f(x) n f n x n, g(p) n g n p n f(ˆx) g(ˆp) f nˆx n, n0 g nˆp n, n0 f x (ˆx) nf n ˆx n 1, n1 g p (ˆp) ng n ˆp n 1. n1

25 ) (Schrödinger picture) Ĥ ψ(t) S i d dt ψ(t) S Ĥ ψ(t) S. (2.3.1) ÔS d dtôs 0. (2.3.2) ˆq ˆp 4 ψ(t) S e iĥt/ ψ(0) S. (2.3.3)  etâ d dt etâ Âet (2.3.4) 2.15  ( ) t tâ e tâ e tâ n0 t n n! Ân 1 + tâ + t2 2! Â2 +. (2.3.5) 4 ˆq, ˆp ÔS ˆq S, ˆp S Ĥ S

26 ψ ψ d dt etâ Âet e tââ. (2.3.6) (Heisenberg picture) ψ H ψ H ψ(t) S (2.3.3) ψ H e itĥ/ ψ(t) S. (2.3.7) ψ H ψ(0) S (2.3.8) ψ H ÔS ÔH(t) Ô H (t) e itĥ/ Ô S e itĥ/ (2.3.9) i d dtôh(t) i d ) (e itĥ/ Ô S e itĥ/ dt (i ddt ) eitĥ/ Ô S e itĥ/ + e itĥ/ Ô S (i ddt ) e itĥ/ ĤeitĤ/ Ô S e itĥ/ + e itĥ/ Ô S e itĥ/ Ĥ ĤÔH(t) + ÔH(t)Ĥ [ÔH(t), Ĥ] (2.3.10) ÔH(t) Ĥ H (t) e itĥ/ Ĥ e itĥ/ e itĥ/ e itĥ/ Ĥ Ĥ ( ĤS).

27 23 t 0 ψ(0) S ψ H (2.3.11) t 0 Ô H (0) ÔS (2.3.12) ψ(t) S ψ H ÔS ÔH(t) Ô S ψ(t) S ÔH(t) ψ H ) ) Ô H (t) ψ H (e itĥ/ Ô S e (e itĥ/ itĥ/ ψ(t) S e itĥ/ Ô S e itĥ/ e itĥ/ ψ(t) S ( ) e itĥ/ Ô S e itĥ/ e itĥ/ ψ(t) S ) e (ÔS itĥ/ ψ(t) S (2.3.13) ÔS ψ(t) S ÔS Ô S ÔH(t) Ô H (t) ÔSÔ S Ô H (t)ô H (t) ) Ô H (t)ô H(t) (e itĥ/ Ô S e (e itĥ/ itĥ/ Ô Se ) itĥ/ e itĥ/ Ô S e itĥ/ e itĥ/ Ô Se itĥ/ ( ) e itĥ/ Ô S e itĥ/ e itĥ/ e itĥ/ Ô Se itĥ/ ) e (ÔS itĥ/ Ô S e itĥ/ (2.3.14) ÔSÔ S ÔS f(ˆp S, ˆq S ) ÔH(t) f(ˆp H (t), ˆq H (t)) Ĥ H(ˆp S, ˆq S ) H(ˆp H (t), ˆq H (t)). ÔS Ô S ÔH(t) Ô H (t) [ÔS, Ô S ] [ÔH(t), Ô H (t)] [ÔH(t), Ô H(t)] e itĥ/ [ÔS, Ô S]e itĥ/ (2.3.15)

28 24 [ˆq Si, ˆq Sj ] 0, [ˆp Si, ˆp Sj ] 0 [ˆq Si, ˆp Sj ] [ˆp Si, ˆq Sj ] i δ ij (2.3.16) [ˆq Hi (t), ˆq Hj (t)] 0, [ˆp Hi (t), ˆp Hj (t)] 0 [ˆq Hi (t), ˆp Hj (t)] [ˆp Hi (t), ˆq Hj (t)] i δ ij. (2.3.17) ψ(t) S ψ H ÔS ÔH(t) : H ψ ÔH(t) ψ H S ψ(t) ÔS ψ(t) S. (2.3.18) { ) } { } } S ψ(t) (e itĥ/ e itĥ/ Ô S e {e itĥ/ itĥ/ ψ(t) S S ψ(t) e itĥ/ e itĥ/ Ô S e itĥ/ e itĥ/ ψ(t) S S ψ(t) ÔS ψ(t) S ψ(t) S ψ H ψ (t) S ψ H 2.16 (2.3.12) 2.17 (2.3.15) 2.18 (2.3.16) (2.3.17) 2.19 (2.3.19) H ψ ψ H S ψ(t) ψ (t) S. (2.3.19) 2.20 ÔS {ˆp S } n {ˆq S } m ÔH(t) {ˆp H (t)} n {ˆq H (t)} m f(p, q) n,m c nmp n q m f(ˆp S, ˆq S ) f(ˆp H (t), ˆq H (t))

29 3 3.1 m ω L(x, ẋ) m 2 ẋ2 mω2 2 x2 (3.1.1) m d2 x dt 2 mω2 x (3.1.2) x A sin(ωt α) (3.1.3) p L ẋ mẋ. (3.1.4) H pẋ L mẋẋ m 2 ẋ2 + mω2 2 x2 1 2m p2 + mω2 2 x2 ( ) m 2 ẋ2 mω2 2 x2 H(p, x) p2 2m + mω2 2 x2. (3.1.5) x p {x, x} Pb 0, {p, p} Pb 0 (3.1.6) {x, p} Pb {p, x} Pb 1. (3.1.7) 25

30 x, p ˆx, ˆp x ˆx p ˆp [ˆx, ˆx] 0, [ˆp, ˆp] 0 (3.2.1) [ˆx, ˆp] [ˆp, ˆx] i. (3.2.2) H(p, x) Ĥ H(ˆp, ˆx) Ĥ ˆp2 2m + mω2 2 ˆx2. (3.2.3) : i d ψ(t) Ĥ ψ(t). (3.2.4) dt Ĥ Ĥ E n E n E n (3.2.5) E n E n (3.2.4) ψ(t) c n e ient/ E n (3.2.6) n c n (3.2.5) 3.1 (3.2.6) ψ(t) (3.2.4)

31 Ĥ ˆp2 2m + mω2 2 ˆx2. (3.3.1) Ĥ E n E n E n (3.3.2) Ĥ ˆx ˆp [ˆx, ˆp] i (3.3.3) H p2 2m + mω2 2 x2 ( ) ( ) mω 2 1 mω 2 x + i 2m p x i 2m p Â,  mω 2  2 mω  ˆx + i ˆp, (3.3.4) 2m 1 ˆx i ˆp. (3.3.5) 2m   [ mω [Â, 2 1  ] ˆx + i 2 2m ˆp, mω 2 2 ] 1 ˆx i 2m ˆp i mω 2 2 i ω 2 i + iω 2 ( i ) 1 [ˆx, ˆp] + i 2m 1 mω 2 2m 2 [ˆp, ˆx] ω. (3.3.6) ˆx ˆp 2

32 28 Â Â Â ω â, Â ω â â â mω 1 â 2 ˆx + i ˆp, (3.3.7) 2mω mω 1 â 2 ˆx i ˆp (3.3.8) 2mω [â, â ] 1 (3.3.9) (3.3.7), (3.3.8) (3.3.1) ˆx 2mω (â + â ), (3.3.10) ˆp 1 mω (â â ) (3.3.11) i 2 Ĥ ˆp2 2m + mω2 2 ˆx2 1 2m ( 1)mω (â â ) 2 + mω2 2 2 ω { (â + â ) 2 (â â ) 2} 4 ω 4 2mω (â + â ) 2 {â2 + ââ + â â + â 2 (â 2 ââ â â + â 2 ) } ω 2 (ââ + â â) (3.3.12) ( ω â â + 1 ) (3.3.13) 2 [â, â ] 1 ( Ĥ ω â â + 1 ), (3.3.14) 2 [â, â ] 1 (3.3.15) Ĥ E n E n E n (3.3.16)

33 29 Ĥ Ĥ â â ˆN ˆN â â (3.3.17) ( Ĥ ω ˆN + 1 ) 2 (3.3.18) Ĥ ˆN ˆN ν ν ν (3.3.19) ˆN â â ν (ν 0) ν (3.3.19) ν ν ˆN ν ν ν ν ν. φ â ν ν ˆN ν ν â â ν ν â â ν φ φ φ φ 0 (3.3.20) φ â ν 0 ˆN â, â ˆN â ν â ν â ν 0 ν > 0, (3.3.21) â ν 0 ν 0 (3.3.22) [ ˆN, â ] â, (3.3.23) [ ˆN, â] â. (3.3.24) ˆN ( â ν ) ˆNâ ν (â ˆN + [ ˆN, â ]) ν (â ˆN + â ) ν (â ν + â ) ν (ν + 1) ( â ν ). (3.3.25)

34 30 ˆN (â ν ) (â ˆN + [ ˆN, â]) ν (â ˆN â) ν (ν 1) (â ν ). (3.3.26) â ν â ν ˆN ν +1 ν 1 â ν ν + 1, â ν ν 1. â ˆN 1 â 1 ν â ν â ν + 1 â ν + 2 â ν + 3 â â ˆN (3.3.21), (3.3.22) â (n + 1 ) ν â ν 1 â ν 2 â â ν n â 0. n + 1 â ν n 0 â 0 â â ν n ˆN ν n ν n 0 ν n ν n ν n ˆN ν ˆN ν ν ν ν 0, 1, 2, 3,. (3.3.27) ˆN (number operator) ˆN (ν )n n n 0 0 â 0 0 (3.3.28)

35 31 0 â 0 â 1 â 2 â 3 â n n n (â ) n c â 0 1 c c c 0 â â (3.3.29) c 2 0 (â â + [â, â ]) 0 c 2 0 [â, â ] 0 ( â 0 0) c ( [â, â ] 1) c 2. c 1 1 â 0. (3.3.30) 2 c â 1 2 c c c 1 â â 1 c 2 1 (â â + [â, â ]) 1 c 2 1 (1 + [â, â ]) 1 ( â â 1 ˆN ) c ( [â, â ] 1) 2 c 2. c 1/ â (â ) 2 0. (3.3.31)

36 32 n n 1 n! (â ) n 0 (3.3.32) ˆN n n n, (3.3.33) n n 1 (3.3.34) n m δ nm, (3.3.35) â n n n 1, (3.3.36) â n n + 1 n + 1 (3.3.37) 3.2 n (3.3.32) (3.3.33) (3.3.37) ˆN Ĥ Ĥ ( Ĥ ω ˆN + 1 ) 2 ˆN n Ĥ E n Ĥ n ω(n + 1/2) n E n n (3.3.38) E n ( n + 1 ) ω (n 0, 1, 2, ) (3.3.39) 2 0 ( E 0 1 ω (3.3.40) 2

37 ψ(x) ˆp i / x ψ(x) 2 ˆx n ˆx n ˆx ˆx 2 x x 2 (ˆx ˆx ) 2 ˆx 2 ˆx 2. ˆx n ˆx n (3.3.10) ˆx 2mω (â + â ) n ˆx n 2mω n (â + â ) n ( n n n 1 + n ) n + 1 n + 1 2mω 0. n ˆx 2 n 2mω n (â + â ) 2 n 2mω n â2 + (â ) 2 + ââ } {{ + â â } n 2 ˆN+1 n (2n + 1) n 2mω (2n + 1). 2mω 3.3 (3.3.11) ˆp, ˆp n ˆp 2 mω2 n n ˆx 2 n ω 2m 2 2 ( n + 1 ) 2

38 x ψ ψ(x) ψ(x) x ψ (3.4.1) x x ψ(x) ψ x 1 [ x ] ψ(x) 2. x x ˆx x x 2 ˆx x x x. (3.4.2) ˆx x x δ(x x ). (3.4.3) ψ x x ψ c(x) x ψ c(x ) c(x) x dx. c(x) x x dx c(x)δ(x x) dx 1 ψ φ φ ψ 2 φ ψ 2 2  ψ  ψ a ψ. ψ  a  A

39 35 c(x) ψ x ψ(x) ψ ψ(x) x dx. (3.4.4) ψ ψ(x) x ψ ˆp ψ x ˆp ψ x ψ ψ(x) (3.4.4) x ˆp ψ x ˆp ψ(x ) x dx ψ(x ) x ˆp x dx (3.4.5) x ˆp x ˆp ˆx [ˆx, ˆp] i x x x [ˆx, ˆp] x i x x. x ˆxˆp x x ˆpˆx x i δ(x x ). x ˆx x x, ˆx x x x 3 (x x ) x ˆp x i δ(x x ) (3.4.6) (x x ) δ (x x ) δ(x x ) (3.4.7) x ˆp x i δ (x x ) (3.4.8) x ˆp x (3.4.5) x ˆp ψ i x ψ(x ) ( i δ (x x )) dx ψ(x ) δ(x x ) dx 3 x δ(x) 0 δ(x) i ψ(x) (3.4.9) x δ(x) + x δ (x) 0

40 36 ψ x ˆp ψ i x ψ (3.4.10) x ψ ψ(x) ˆp ψ ( /i) ψ(x)/ x p i x x 0 (ψ 0 (x) x 0 ) 0 ψ 0 (x) x 0 â x â 0 ( ) mω 1 x 2 ˆx + i 2mω ˆp, 0 ( ) mω 1 2 x + i x 0 2mω i x ( mω 2mω x + ) x 0. x ψ 0 (x) x mω x ψ 0(x) (3.4.11) ( ψ 0 (x) C exp mω ) 2 x2 (3.4.12) C

41 37 ψ 1 (x) x 1 ψ 1 (x) x â 0 ( ) mω 1 x 2 ˆx i 2mω ˆp 0 ( ) mω 1 2 x i x 0 2mω i x ( mω 2mω x x C x exp ( mω 2 x2 ) ) ( C exp mω ) 2 x2 (3.4.13) n ψ n (x) 1 x (â ) n 0 n! ( mω x ) n ( exp mω ) x 2 x2 (3.4.14)

42 4 1 u(x, t) x x u(x, t) t u(x, t) 4.1 x L (tension)t ) σ (x 0 x L) u(x, t) u(0, t) u(l, t) 0. N N N u n u n+1 x x 0 0 x 1 x 2 x n x n+1 x N L x N x x n x n nl N (n 0, 1,, N) L N x x x n+1 x n L N (4.1.1) 38

43 39 δm δm σ x (4.1.2) δm ( ) x n N 1 1 x n u(x, t) u(x n, t) u n u n u(x n, t). (4.1.3) u n ( ) u n u n t u(x n, t). (4.1.4) L(u 1, u 2, ; u 1, u 2, ) K U n K δm 2 u2 n σ 2 u2 n x N 1 n1 N 1 δm σ 2 u2 n 2 u2 n x (4.1.5) n1 u n u n+1 u n+2 x n x n+1 x n+2 1 ( )

44 40 n n + 1 n l x n + 1 u n u n+1 u n x l T x l U n T (l x) x l ( x u n ) ( u n x l l ( x) 2 + ( u n ) 2 [ ( ) ] 2 1/2 un x 1 + x [ x ( ) ] 2 un 2 x x ( ) 2 un x x 2 n n + 1 U n U n T 2 ( ) 2 un x x U N 1 n0 T 2 ( ) 2 un x (4.1.6) x L K U [ σ 2 u2 n T 2 n ( ) ] 2 un x (4.1.7) x 2 x 1 (1 + x) α 1 + αx

45 41 N x 0 u n u(x, t)/ t, u n / x u(x, t)/ x n x dx L L 0 [ σ 2 ( ) 2 u T t 2 ( ) ] 2 u dx (4.1.8) x L L L σ 2 L 0 L dx, (4.1.9) ( ) 2 u T t 2 ( ) 2 u. (4.1.10) x S t2 t 1 t2 t 1 t 1 t2 Ldt dtdxl L dt dx 0 L dt dxδ 0 [ σ 2 ( ) 2 u T t 2 ( ) ] 2 u. (4.1.11) x u(x, t) u(x, t) + δu(x, t) 3 S [ t2 ( ) 2 σ u δs T ( ) ] 2 u 2 t 2 x t 1 t2 t 1 dt dt L 0 L 0 [ dx σ u [ dx σ u t ( ) u t δ t u δu T t x T u x δ x δu ( )] u x ] (4.1.12) δu(x, t 1 ) δu(x, t 2 ) 0 δu(0, t) δu(l, t) 0 [ ] δs dtdx σ 2 u t + T 2 u δu(x, t). (4.1.13) 2 x 2 3 t t 1, t 2 u δu(x, t 1 ) δu(x, t 2 ) 0.

46 42 δu(x, t) δs 0 u(x, t) σ 2 u t T 2 u 0, (4.1.14) 2 x2 c T/σ 1 2 u c 2 t 2 u 0, (4.1.15) 2 x2 c u(x, t) f(x ct) + g(x + ct) (4.1.16) (D Alembert ) f(x), g(x) 1 f(x ct) c (x ) g(x + ct) c (x ) 4.1 u(x, t) (4.1.16) (4.1.15) (4.1.7) u n p n p n L u n σ u n x (4.1.17) N x 0 p n 0 p n x π n π n σ u n, (4.1.18) p n π n x (4.1.19) N π n π n σ u(x, t)/ t

47 43 p n u n H n n n n p n u n L σ u 2 n x [ σ 2 u2 n T 2 n [ σ 2 u2 n + T ( ) ] 2 un x 2 x [ ) 2 x] p 2 n 2σ x + T 2 ( un x ( ) ] 2 un x x (4.1.20) N p n u n π n u n H [ πn 2 2σ + T ( ) ] 2 un x (4.1.21) 2 x n N [ L π 2 H 2σ + T ( ) ] 2 u dx (4.1.22) 2 x 0 H H L 0 H π2 2σ + T 2 H dx, (4.1.23) ( ) 2 u. (4.1.24) x π π n π n π(x, t) π n σ u n u(x, t) π(x, t) σ t π n x p n L/ u n L π L u (4.1.25) u u/ t

48 Poisson p n π n {u n, u m } Pb 0, (4.1.26) {p n, p m } Pb 0, (4.1.27) {u n, p m } Pb δ nm, (4.1.28) {u n, u m } Pb 0, (4.1.29) {π n, π m } Pb 0, (4.1.30) {u n, π m } Pb 1 x δ nm, (4.1.31) N ( x 0) x n x, x m x lim N 1 x δ nm { 0 (x x ) + (x x ) (4.1.32) x, x Dirac lim N 1 x δ nm C δ(x x ). C x Cδ(x x ) dx C. (n ) [ ] 1 dx lim N x δ nm [ ] 1 lim x N x δ nm lim N 1 C 1 lim N n n δ nm 1 x δ nm δ(x x ). (4.1.33)

49 45 (π(x, t), u(x, t)) Poisson {u(x, t), u(x, t)} Pb 0, (4.1.34) {π(x, t), π(x, t)} Pb 0, (4.1.35) {u(x, t), π(x, t)} Pb δ(x x ). (4.1.36) u n (n 1, 2, ) q n n n 1 1 x n 2, 3 1 y z n 4, 5, 6 2 x, y, z ) u n n x x n u n u(x n, t). x (x ) u(x) (u(x, t)) ( ) φ(x, y, z; t) φ x (x, y, z) x (x, y, z) x (x, y, z) q n n. 4 q n (t) φ(x, t) ( ) ( ) 4 n d 3 x δ mn δ(x x )

50 ) Poisson i u(x, t) û(x, t) π(x, t) ˆπ(x, t) ( ) [û(x, t), û(x, t)] 0, (4.2.1) [ˆπ(x, t), ˆπ(x, t)] 0, (4.2.2) [û(x, t), ˆπ(x, t)] i δ(x x ), (4.2.3) Heisenberg Ĥ Ĥ Ĥ L 0 Ĥdx, ˆπ(x, t)2 2σ + T 2 ( ) 2 û(x, t) (4.2.4) x (Heisenberg picture Ô(t) Heisenberg i dô(t) dt [Ô(t), Ĥ] (4.2.5)

51 47 Heisenberg û(x, t) ˆπ(x, t) û(x, t) i t [û(x, t), Ĥ] [ û(x, t), L 0 L 0 1 2σ 0 L 0 ] H(y) dy dy [û(x, t), Ĥ(y)] [ ˆπ(y, t)2 dy û(x, t), + T ( ) ] 2 û(y, t) 2σ 2 y L dy [û(x, t), ˆπ(y, t) 2 ] + T [ L ( ) ] 2 û(y, t) dy û(x, t),. (4.2.6) 2 y [û(x, t), ˆπ(y, t) 2 ] [û(x, t), ˆπ(y, t)]ˆπ(y, t) + ˆπ(y, t)[û(x, t), ˆπ(y, t)] 2i δ(x y) ˆπ(y, t), (4.2.7) [ ( ) ] 2 [ ] [ ] û(y, t) û(y, t) û(y, t) û(y, t) û(y, t) û(x, t), û(x, t), + û(x, t), y y y y y ˆπ(x, t) i t L 0 1 2σ T 2 û(y, t) [û(x, t), û(y, t)] + y y 0 û(y, t) y [û(x, t), û(y, t)] y 0. (4.2.8) û(x, t) i t 1 2σ i σ dy [ˆπ(x, t), Ĥ(y)] L 0 L 0 L 0 û(x, t) t ˆπ(x, t). dy 2i δ(x y)ˆπ(y, t) dy [ˆπ(x, t), ˆπ(y, t) 2 ] + T 2 dy 2 û(y, t) y ˆπ(x, t). (4.2.9) σ L 0 [ ( ) ] 2 û(y, t) dy ˆπ(x, t), y (4.2.10) [ˆπ(x, t), û(y, t)] (4.2.11) y i T 2 û(x, t) x 2. (4.2.12)

52 48 ˆπ(x, t) t (4.2.9) t (4.2.13) 2 û(x, t) t 2 T 2 u(x, t) x 2. (4.2.13) 1 ˆπ(x, t) σ x T 2 û(x, t) σ x 2 σ 2 û(x, t) t 2 T 2 û(x, t) x 2 (4.2.14) 4.2 (4.2.10) (4.2.11) 4.3 (4.2.11) (4.2.12) 4.3 φ(x, t) φ L L(φ, φ, φ ) (4.3.1) φ φ/ t, φ φ/ x δs δ dt dx L 0 φ L φ π π L φ (4.3.2)

53 49 H π φ L (4.3.3) H H(π, φ) H dx H. (4.3.4) φ, π {φ(x, t), φ(y, t)} Pb 0, (4.3.5) {π(x, t), π(y, t)} Pb 0, (4.3.6) {φ(x, t), π(y, t)} Pb δ(x y). (4.3.7) (φ ˆφ, π ˆπ) (CCR) [ ˆφ(x, t), ˆφ(y, t)] 0, (4.3.8) [ˆπ(x, t), ˆπ(y, t)] 0, (4.3.9) [ ˆφ(x, t), ˆπ(y, t)] i δ(x y). (4.3.10) H(π, φ) Ĥ H(ˆπ, ˆφ) (4.3.11) H Ĥ dx Ĥ. (4.3.12) Heisenberg picture Heisenberg i dô(t) dt [Ô(t), Ĥ] (4.3.13) φ(x, t) 3 φ(x, y, z, t) φ(x, t)

54 ψ(x, t) ( ) ψ(x, t) i t [ 2 2m ] 2 x + V (x) ψ(x, t) (5.1.1) 2 ψ(x, t) ψ(x, t) h ( x, x) 1 h ( x, x) 2 2m 2 + V (x). (5.1.2) x2 h ( x, x) ψ(x, t) i t h ( x, x) ψ(x, t) (5.1.3) (Remark) (N ) 1 ψ(x, t) 1 V ψ(x, t) 2 d 3 x 1 h ( x, x) 1 50

55 51 1 V N N N ) V N V ρ(x, t) ψ(x, t) 2 ψ N ψ(x, t) 2 d 3 x (5.1.4) ρ(x, t) ψ(x, t) 2 (5.1.5) ψ(x, t) (5.1.4) h ψ (x, t)h ( x, x) ψ(x, t) d 3 x (5.1.6) p ψ (x, t) i x ψ(x, t) d3 x (5.1.7) 1 h N 1 N (5.1.3) Euler-Lagrange δs 0, S L dt L d 3 xdt (5.2.1) (5.1.3) L [ L ψ ψ(x, t) (x, t) i h ( ] t x, x) ψ(x, t). (5.2.2)

56 52 L ψ δs 0 ψ ψ 1, ψ 2 ψ ψ 1 + iψ 2 ψ ψ 1 iψ 2 δs {A δψ 1 + B δψ 2 } d 3 x dt 0 A 0, B 0. (5.2.3) A 0 B 0 Euler-Lagrange ψ (ψ + ψ ) ψ 2 1 2i (ψ ψ ) δs A δψ 1 + B δψ 2 A 1 2 (δψ + δψ ) + B 1 2i (δψ δψ ) 1 2 (A ib) δψ + 1 (A + ib) δψ 2 δψ δψ δs 0 { { A ib 0 A 0 (5.2.4) A + ib 0 B 0 ψ ψ ψ ψ ψ ψ ψ ψ (5.2.2) S S Ld 3 xdt ψ [i t h( x, x)] ψ(x, t)d 3 xdt (5.2.5)

57 53 [ 0 δs δψ (x, t) i t h( x, x)] ψ(x, t)d 3 xdt [ + ψ (x, t) i t h( x, x)] δψ(x, t)d 3 xdt. (5.2.6) δψ [ i t h( x, x)] ψ(x, t) 0 (5.2.7) (5.1.3) δψ (5.2.6) δψ [ (5.2.6) ψ i ( )] t δψ 2 2m 2 δψ + V δψ d 3 xdt )] [ i ( ψ t 2 2m 2 ψ + V ψ δψ d 3 xdt ] [ i ψ t h( x, x) ψ δψ(x, t) d 3 xdt. (5.2.8) 0 δψ i ψ (x, t) h ( t x, x) ψ (x, t) 0 (5.2.9) (5.2.7) ψ (5.2.2), L i ψ (x, t) ψ(x, t) ψ (x, t) h ( x, x) ψ(x, t) (5.2.10) π L ψ i ψ. (5.2.11) ψ ψ π ψ ψ L ψ L ψ 0 ψ π i ψ ψ ψ 2 2

58 H π ψ L i ψ ψ ψ (i ψ h ( x, x) ψ) ψ h ( x, x) ψ. (5.2.12) H H d 3 x ψ (x, t) h ( x, x) ψ(x, t) d 3 x (5.2.13) h {ψ(x, t), π(y, t)} Pb δ 3 (x y), {ψ(x, t), ψ(y, t)} Pb {π(x, t), π(y, t)} Pb 0, (5.2.14) π(x, t) i ψ (x, t) π ψ i {ψ(x, t), ψ (y, t)} Pb δ 3 (x y), {ψ(x, t), ψ(y, t)} Pb {ψ (x, t), ψ (y, t)} Pb 0, (5.2.15) ψ(x, t) ˆψ(x, t), (5.3.1) π(x, t) ˆπ(x, t). (5.3.2) ψ ψ ψ (x, t) ˆψ (x, t). (5.3.3) π i ψ ˆπ(x, t) i ψ (x, t)

59 55 ˆπ ˆψ [ ˆψ(x, t), ˆπ(y, t)] i δ 3 (x y), [ ˆψ(x, t), ˆψ(y, t)] [ˆπ(x, t), ˆπ(y, t)] 0. (5.3.4) [ ˆψ(x, t), ˆψ (y, t)] δ 3 (x y), [ ˆψ(x, t), ˆψ(y, t)] [ ˆψ (x, t), ˆψ (y, t)] 0 (5.3.5) H Ĥ, Ĥ ˆψ (x, t) h ( x, x) ˆψ(x, t)d 3 x. (5.3.6) Ô i Ô [Ô, Ĥ] (5.3.7) ˆψ ˆψ i ˆψ(x, t) [ ˆψ(x, t), Ĥ] [ ˆψ(x, t), ˆψ (y, t) h ( ] y, y) ˆψ(y, t) d 3 y d 3 y [ ˆψ(x, t), ˆψ (y, t) h ( y, y) ˆψ(y, t) ] d 3 y { [ ˆψ(x, t), ˆψ (y, t) ] h ( y, y) ˆψ(y, t) + ˆψ (y, t) [ ˆψ(x, t), h ( y, y) ˆψ(y, t) ] }

60 56 { [ d 3 y ˆψ(x, t), ˆψ (y, t) ] h ( y, y) ˆψ(y, t) + ˆψ (y, t) h ( y, y)[ ] ˆψ(x, t), ˆψ(y, } t) d 3 y δ 3 (x y) h ( y, y) ˆψ(y, t) h ( x, x) ˆψ(x, t). (5.3.8) i ˆψ (x, t) [ ˆψ (x, t), Ĥ] [ ˆψ (x, t), (5.3.8) (5.3.9) ˆψ (y, t) h ( ] y, y) ˆψ(y, t) d 3 y d 3 y [ ˆψ (x, t), ˆψ (y, t) h ( y, y) ˆψ(y, t) ] d 3 y { [ ˆψ (x, t), ˆψ (y, t) ] h ( y, y) ˆψ(y, t) + ˆψ (y, t) [ ˆψ (x, t), h ( y, y) ˆψ(y, t) ] } d 3 y { [ ˆψ (x, t), ˆψ (y, t) ] h ( y, y) ˆψ(y, t) + ˆψ (y, t) h ( y, y)[ ˆψ (x, t), ˆψ(y, t) ]} d 3 y ˆψ (y, t) h ( y, y) δ 3 (x y) { d 3 y h ( } y, y) ˆψ (y, t) δ 3 (x y) h ( x, x) ˆψ (x, t) h ( x, x) ˆψ (x, t). (5.3.9) i ˆψ(x, t) t i ˆψ (x, t) t h ( x, x) ˆψ(x, t), (5.3.10) h ( x, x) ˆψ (x, t) (5.3.11) (5.2.7), (5.2.9) ψ ψ ˆψ ˆψ 3 3 ψ L/ ψ 0 ψ ψ ψ ( i ) Heisenberg

61 57 (Remark) ˆψ ˆψ Heisenberg (5.3.8) (5.3.8) Ĥ (5.3.6) x y 3 y 4 [A, BC] [A, B]C + B[A, C] 5 h ( y, y) 6 (5.3.5) 7 δ(x y) 5.1 (5.3.8) (5.3.9) (5.1.4) (5.1.7) ˆN, ˆP ˆN ˆψ (x, t) ˆψ(x, t) d 3 x, (5.3.12) ˆP ˆψ (x, t) i x ˆψ(x, t) d 3 x. (5.3.13) 1

62 58 1 A ( x, x) A A ψ (x, t)a ( x, x)ψ(x, t) d3 x (5.3.14) ψ, ψ ˆψ, ˆψ Â Â ˆψ (x, t)a ( x, x) ˆψ(x, t) d 3 x. (5.3.15) V (x) 0 ˆψ(x, t), ˆψ (x, t) [ ˆψ(x, t), ˆψ (y, t)] δ(x y), [ ˆψ(x, t), ˆψ(y, t)] [ ˆψ (x, t), ˆψ (y, t)] 0 (5.4.1) Ĥ ˆψ (x, t)h ( x, x) ψ(x, t) dx (5.4.2) h ( x, x) h ( x, x) 2 2m 2 x 2 (5.4.3) ˆψ i ˆψ(x, t) t 2 2 ˆψ(x, t), (5.4.4) 2m x 2 ˆψ x ψ(x, t) L ψ(x + L, t) ψ(x, t) (5.4.5)

63 59 L/2 < x L/2 (5.4.2) Ĥ L/2 L/2 ˆψ (x, t)h ( x, x) ψ(x, t) dx (5.4.6) 1 i ˆψ(x, t) t 1 2 ˆψ(x, t), (5.4.7) 2m x (5.4.7) ψ(x, t) e i(px Et) 4 1 2m ψ(x, t) i t E p i( ie)e i(px Et) Eψ(x, t), 2 ψ(x, t) 1 x 2 2m ( p2 )e i(px Et) p2 ψ(x, t), 2m E p2 2m (5.4.8) (5.4.5) p (5.4.5) e i[p(x+l) Et] e i(px Et) e ipl 1. p p n 2πn L (n ) (5.4.9) 4 e i(kx ωt) k ω 1 p k k E ω ω k ω p E

64 60 p ( n ϕ n (x, t) 1 L e ie nt+ip n x (n ) (5.4.10) p n (5.4.9) E n E n p n 2 2m (5.4.11) ϕ n (x, t) ψ(x, t) ψ(x, t) i 1 2 ψ(x, t) (5.4.12) t 2m x 2 ϕ n(x, t) ψ (x, t) i ψ (x, t) 1 2 ψ (x, t) (5.4.13) t 2m x 2 ϕ n (x, t) L/2 L/2 ϕ n(x, t)ϕ l (x, t) dx δ nl (5.4.14) n l n l ( ) 1 L L/2 L/2 L/2 L/2 1 L ei(en E l)t 1 L ei(e n E l )t ϕ n(x, t)ϕ l (x, t) dx e ie nt ip n x e ie lt+ip l x dx L/2 L/2 L/2 L/2 e i(p l p n)x dx e i2π(l n)x/l dx 0 ( ). (5.4.15) (5.4.12) : ψ(x, t) a n ϕ n (x, t). (5.4.16) n

65 61 a n ( ) ψ a n : a n L/2 L/2 ( ) L/2 L/2 L/2 L/2 l l ϕ n(x, t)ψ(x, t) dx. (5.4.17) ϕ n(x, t)ψ(x, t) dx ϕ n(x, t) l a l ϕ l (x, t) dx L/2 a l ϕ n(x, t)ϕ l (x, t) dx a l δ nl L/2 a n. (5.4.18) ψ (5.4.16) n l ψ ˆψ (5.4.16) a n â n ˆψ a n â n. ˆψ(x, t) n â n ϕ n (x, t) (5.4.19) ˆψ ˆψ (x, t) n â n ϕ n(x, t). (5.4.20)

66 62 ˆψ â n â n L/2 L/2 ϕ n(x, t) ˆψ(x, t) dx (5.4.21) â n â n L/2 L/2 ϕ n (x, t) ˆψ (x, t) dx (5.4.22) ˆψ(x, t), ˆψ (x, t) (5.4.1) â n, â n (5.4.21), (5.4.22) [ L/2 [â n, â l ] ϕ n(x, t) ˆψ(x, t) dx, L/2 L/2 L/2 L/2 L/2 ϕ l (y, t) ˆψ(y, t) dy dx dy ϕn(x, t) ϕ l (y, t) [ ˆψ(x, t), ˆψ(y, t)] L/2 L/2 }{{} 0 0. (5.4.23) [â n, â l ] 0. (5.4.24) ] [ L/2 [â n, â l ] ϕ n(x, t) ˆψ(x, t) dx, L/2 L/2 L/2 L/2 L/2 dx L/2 L/2 L/2 L/2 ϕ l (y, t) ˆψ (y, t) dy dy ϕ n(x, t) ϕ l (y, t) [ ˆψ(x, t), ˆψ (y, t)] }{{} δ(x y) ϕ n(x, t) ϕ l (x, t) dx δ nl. (5.4.25) ] [â n, â l ] 0, [â n, â l ] δ nl, (5.4.26) [â n, â l ] 0.

67 63 n l 1 [â 1, â 1 ] [â 1, â 1] 0 [â 1, â 1] 1, (3.3.9) 5.2 â n, â n (5.4.26) (5.4.19), (5.4.20) ˆψ(x, t), ˆψ (x, t) (5.4.1) e i2πn(x y)/l Lδ(x y). n Ĥ â n, â l (5.4.20) Ĥ (5.4.6) (5.4.19), Ĥ L/2 L/2 L/2 L/2 ˆψ (x, t)h ( x, x) ψ(x, t) dx dx n l n â n ϕ n(x, t) h ( x, x) â n â l L/2 L/2 l â l ϕ l (x, t) dx ϕ n(x, t) h ( x, x) ϕ l (x, t) h ( x, x) ϕ l (x, t) p2 l 2m ϕ l(x, t) E l ϕ l (x, t) n l n L/2 â n â l E l dx ϕ n(x, t) ϕ l (x, t) L/2 } {{ } δ nl E n â n â n. (5.4.27) Ĥ E n â n â n (5.4.28) n

68 64 â n, â l ˆN ˆP ˆN ˆP L/2 L/2 n L/2 L/2 n ˆψ (x, t)ψ(x, t) dx â n â n, (5.4.29) ( 1 ˆψ (x, t) i ) ψ(x, t) dx x p n â n â n, (5.4.30) 5.3 ˆN ˆP â n 0 0 for all n (5.4.31) Ĥ 0 0 (5.4.32) 0 Ĥ 0 ˆP 0 0 (5.4.33) 0 ˆP 0 0 0

69 p n Ĥ p n l l p n â n 0 (5.4.34) E l â l âl â n 0 E l â l E n â n 0 (â n â l 0 ) + [â l, â }{{ n] 0 } δ ln E n p n (5.4.35) ˆP p n p n p n (5.4.36) p n E n p 2 n/(2m) p n p n m 1 p n ˆN p n ˆN p n p n, (5.4.37) (5.4.30), (5.4.29) (5.4.36) (5.4.37) 1 â n p n, p l â n â l 0 p n, p l p n, p l 2 p n + p l Ĥ p2 n + p2 l 2m 2m ˆN 2

70 66 Ĥ, ˆN, ˆP â n, â n [ ] [Ĥ, â n] E l â l a l, â n l l l E l [â l âl, â n] ) E l ([â l, â n] â l + â l [â l, â n] l E l (0 + â l δ ln) E n â n. (5.4.38) [Ĥ, â n] E n â n, (5.4.39) [ ˆP, â n ] p n â n, [ ˆP, â n] +p n â n, (5.4.40) [ ˆN, â n ] â n, [ ˆN, â n] +â n (5.4.41) E Ĥ E Ĥ E E E. Ĥ ( â n E ) ( â nĥ + [Ĥ, ) â n] E E E n â n (E + E n ) ( â n E ) (5.4.42) â n E Ĥ E + E n â n E n (5.4.40) (5.4.41) ˆP ˆN â n p n 1 p n, p l p n +p l Ĥ p2 n + p2 l 2m ˆN 2 p n1, p n2,..., p nl â n 1 â n 2 â n l 0 2m

71 67 Ĥ p n1,..., p nl (E n1 + + E nl ) p n1,..., p nl, ˆP p n1,..., p nl (p n1 + + p nl ) p n1,..., p nl, ˆN p n1,..., p nl l p n1,..., p nl 5.5 (5.4.40), (5.4.41) p n, p n â nâ n 0 [â n, â n ] 0 p n, p n p n, p n (5.4.43) 1 2 l p n1, p n2,..., p nl â n 1 â n 2 â n l 0 (5.4.26) 5.5 L x L p n 2πn L (n 0, ±1, ±2, ) (5.5.1)

72 68 L p n p n+1 p n 2π L 0 (5.5.2) p ˆψ(x, t) â n ϕ n (x, t) 1 â n e i(pnx Ent) n L n n p p n 2π/L dp L ˆψ(x, t) â n e i(p nx E n t) 2π 2π L n 1 ( ) L e i(p nx E n t) p n (5.5.3) 2π L ( p n 0) n ˆψ(x, t) 1 2π 2π ân â(p) e i(px E pt) dp (5.5.4) E p p 2 /(2m) â(p) p n p L 2π ân â(p) (5.5.5) ˆψ (x, t) ˆψ (x, t) 1 2π p n p â (p) e i(px E pt) dp (5.5.6) L 2π â n â (p) (5.5.7) p â(p) â (p) [ L [â(p), â (p )] lim L 2π ân, ] L 2π â n lim L L 2π δ nn δ(p p ) (5.5.8)

73 69 p n p, p n p 1 δ nn L ( ) L 2π δ nn p n n n 2π δ nn dp L 2π δ nn δ(p p ) [â(p), â (p )] δ(p p ), [â(p), â(p )] [â (p), â (p )] 0 (5.5.9) (5.5.9) (5.5.4), (5.5.6) ˆψ ˆψ ] [ ˆψ(x, t), ˆψ (y, t)] [ 1 2π 1 2π 1 2π 1 2π dp dp dp e ip(x y) â(p) e i(px E pt) dp, 1 2π dq e i(px E pt) i(qy E q t) [â(p), â (q)] dq e i(px Ept) i(qy Eqt) δ(p q) â (q) e i(qy E qt) dq δ(x y) (5.5.10) L (5.4.28) (5.5.7) Ĥ n E n â nâ n n n E n L 2π â n E n L 2π â n L 2π ân E p â (p) â(p) dp 2π L L 2π ân p n Ĥ E p â (p)â(p) dp. (5.5.11)

74 70 (5.4.30) (5.4.29) ˆP ˆN p â (p)â(p) dp., (5.5.12) â (p)â(p) dp. (5.5.13) (5.5.9) Ĥ, ˆP, ˆN â(p), â (p) p 1 [Ĥ, â(p)] E p â(p), [Ĥ, â (p)] + E p â (p), (5.5.14) [ ˆP, â(p)] p â(p), [ ˆP, â (p)] + p â (p), (5.5.15) [ ˆN, â(p)] â(p), [ ˆN, â (p)] + â (p), (5.5.16) p, p p â (p) 0 (5.5.17) p p δ(p p ) (5.5.18) p, p â (p) â (p ) 0 (5.5.19) p, p p, p (5.5.9) â (p)

75 ˆx ˆp [ˆx, ˆp] i (5.6.1) ( 1 ) x, p ˆx x x x, x y δ(x y), (5.6.2) ˆp p p p, p p δ(p p ) (5.6.3) (5.6.1) x p x p 1 2π e ipx (5.6.4) (3.4.1 ) x ˆp y 1 i ϕ x ˆp ϕ 1 i ϕ x ϕ(x) δ(x y) (5.6.5) x x ϕ (5.6.6) x ϕ(x) x ϕ (5.6.7) (5.6.6) ϕ ˆp x ϕ ϕ(x) ˆp ϕ 1 i x ϕ(x) p â (p) 0

76 72 ˆP ˆψ (x, t) 1 i x ˆψ(x, t) dx (5.6.8) p â (p)â(p) dp (5.6.9) ˆP p p p (5.6.10) [â(p), â (p )] δ(p p ) p p δ(p p ) (5.6.11) 1 p p x 1 x p 1 2π e ipx x dp p p x 1 dp p e ipx 2π x 1 2π 1 2π e ipx p dp e ipx â (p) 0 dp ˆψ (x, 0) (5.5.6) ˆψ (x, 0) 0 (5.6.12) ˆψ (x, t) 1 2π t 0 â (p) e i(px E pt) dp

77 73 1 ˆψ (x, 0) t 0 ÔH(t 0) ÔS ˆψ (x, 0) ˆψ (x) ˆψ ˆψ(x) ˆX ˆP x ˆψ (x) 0 (5.6.13) ˆψ (x) 1 i x ˆψ(x) dx ˆX ˆψ (x) x ˆψ(x) dx (5.6.14) [ [ ˆX, ˆψ ] (x)] ˆψ (y) y ˆψ(y) dy, ˆψ (x) dy [ ˆψ (y) y ˆψ(y), ˆψ (x)] ( dy [ ˆψ (y), ˆψ (x)] y ˆψ(y) + ˆψ (y) y [ ˆψ(y), ˆψ (x)] dy ˆψ (y) y δ(y x) x ˆψ (x) (5.6.15) ˆX x ˆX ˆψ (x) 0 ( ˆψ (x) ˆX + [ ˆX, ˆψ (x)] 0 x ˆψ (x) 0 x x (5.6.16) ˆX 0 0 ˆψ(x) x ˆX )

78 74 x x y 0 ˆψ(x) ˆψ (y) 0 0 [ ˆψ(x), ˆψ (y)] 0 δ(x y) 0 0 δ(x y) (5.6.17) x 1 ˆψ (x) 0 ϕ ϕ(x) (5.6.7) ϕ(x) x ϕ x 0 ˆψ(x) 1 ϕ ϕ(x) ϕ(x) 0 ˆψ(x) ϕ (5.6.18) ϕ(x) ϕ ϕ ϕ(x) ˆψ (x) 0 dx (5.6.19) 5.6 (5.6.15) 5.7 (5.6.15) ˆN [ ˆX, ˆψ(x)] x ˆψ(x) (5.6.20) ˆN [ ˆX, ˆP ] i ˆN (5.6.21) ˆψ (x) ˆψ(x) dx 1 ˆN 1 ˆX ˆP 1

79 [ ˆψ(x), ˆP ] (1/i) ˆψ(x)/ x ϕ ϕ(x) x ϕ x ˆP ϕ 1 i ϕ(x) x x x 0 ˆψ(x). 5.9 ϕ ϕ ϕ, t e iĥt ϕ ϕ(x, t) 0 ˆψ(x) ϕ, t ϕ(x, t) 0 ˆψ(x, t) ϕ ϕ(x, t) ˆψ (x) 0 x 1 Ĥ Ĥ(x) ˆψ (x) h ( x, x) ˆψ(x). (5.6.22) x ˆψ (x) 0 x y Ĥ(x) y 0 ˆψ(y) ˆψ (x) h ( x, x) ˆψ(x) ˆψ (y ) 0. ˆψ(x) ˆψ (y ) 0 [ ˆψ(x), ˆψ (y )] 0 δ(x y ) 0 0 ˆψ(y) ˆψ (x) y Ĥ(x) y 0 δ(y x) h (, x) δ(x y ) 0 x δ(y x) h ( { 0 (x y y, x) δ(x y ) ) x 0 (otherwise) (5.6.23) y y

80 76 h (, x) x (5.6.19) Ĥ(x) ϕ Ĥ(x) ϕ dy y ϕ (y) Ĥ(x) dy ϕ(y ) y dy dy ϕ (y)ϕ(y ) y Ĥ(x) y dy dy ϕ (y)ϕ(y )δ(y x)h (, x) δ(x y ) x dy ϕ (x)ϕ(y )h (, x) δ(x y ) x ϕ (x)h ( x, x) dy ϕ(y )δ(x y ) ϕ (x)h ( x, x) ϕ(x). ϕ(x) x x 0 x x 0 ˆψ (x) x ˆψ(x) x x, y ˆψ (x) ˆψ (y) 0 x y ˆψ (x) x ˆψ(x) x (Remark) g ˆψ (x) ˆψ(x) ˆφ(x). x φ ψ ψ φ ψ x φ ψ g g [ ] [ ]

81 6 6.1 p, p p, p p, p p, p â (p)â(p ) 0 [â (p), â (p )] 0 3 p, p, p â (p) â (p ) â (p ) 0 (5.5.9) 6.2 (5.5.9) ˆψ(x, t) ˆψ (x, t) (5.4.1) (5.4.1) 77

82 78 ˆψ(x, t) ˆψ (x, t) { ˆψ(x, t), ˆψ (y, t)} δ(x y), { ˆψ(x, t), ˆψ(y, t)} { ˆψ (x, t), ˆψ (y, t)} 0. (6.2.1) {Â, ˆB} Â ˆB + ˆBÂ (6.2.2) (5.4.1) â(p), â (p ) (5.5.9) (6.2.1) â(p), â (p ) ˆψ(x, t) ˆψ (x, t) (5.5.4), (5.5.6) ˆψ(x, t) 1 2π ˆψ (x, t) 1 2π â(p) e i(px E pt) dp, (6.2.3) â (p) e i(px Ept) dp, (6.2.4) â(p) 1 2π â (p) 1 2π ˆψ(x, t) e i(px E pt) dx, (6.2.5) ˆψ (x, t) e i(px Ept) dx, (6.2.6) { 1 {â(p), â (p )} ˆψ(x, t) e i(px Ept) 1 } dx, ˆψ (y, t) e i(p y E t) p dy 2π 2π 1 dx dy e i(px Ept) e i(p y E t) p { 2π ˆψ(x, t), ˆψ (y, t)} 1 dx dy e i(px Ept) e i(p y E t) p δ(x y) 2π 1 dx e i(p p )x e i(e p E p )t 2π e i(ep E p )t δ(p p ) δ(p p ) {â(p), â (p )} δ(p p ), {â(p), â(p )} {â (p), â (a )} 0. (6.2.7)

83 79 â(p), â (p ) (6.2.7) p, p â (p) â (p ) 0 p, p p, p p, p 1. ˆψ(x, t) 2. â (p) 0 p E p p 2 /2m  ˆB {Â, ˆB} (6.2.2) {Â, ˆB}  ˆB + ˆBÂ. (6.2.2)  ˆB  ˆB ˆB  ˆB  ˆB ˆB {Â, ˆB} 0 (6.3.1)  ˆB ˆB + {Â, ˆB} (6.3.2)

84 80 (i) (ii) ( ) {Â, ˆB} { ˆB, Â} {Â, c ˆB + c ˆB } c{â, ˆB} + c {Â, ˆB } {câ + c Â, B} c{â, ˆB} + c {Â, ˆB} c, c (c ) (iii) ( ) [Â, ˆBĈ] {Â, ˆB} Ĉ ˆB{Â, Ĉ} [Â ˆB, C] Â{ ˆB, Ĉ} {Â, Ĉ} ˆB (iv) [Â, { ˆB, Ĉ}] + [ ˆB, {Ĉ, Â}] + [Ĉ, {Â, ˆB}] 0. (i) (ii) (6.2.2) (iii) 1 (iii) [Â, ˆBĈ] [Â, ˆB] Ĉ + ˆB[Â, Ĉ] (6.3.3) (iii) [Â, ˆBĈ] Â ˆBĈ ˆBĈÂ Â ˆBĈ + ˆBÂĈ ˆBÂĈ ˆBĈÂ (Â ˆB + ˆBÂ)Ĉ ˆB(ÂĈ + ĈÂ) {Â, ˆB} Ĉ ˆB{Â, Ĉ}. [Â, ˆBĈ] {Â, ˆB} Ĉ ˆB{Â, Ĉ}. (6.3.4) (6.3.3) 1 (iv) (iii)

85 81 1. Â, ˆB, Ĉ 2. ˆBĈ Â ˆBĈ 2 3. (6.3.4) Â ˆBĈ 4. (6.3.4) A, B, C ABC ABC BAC A B Â, ˆB, Ĉ 1 5. (iii) [Â ˆB, Ĉ] Â{ ˆB, Ĉ} {Â, Ĉ} ˆB. (6.3.5) 6.1 (6.3.5) 6.2 (iii) [Â, { ˆB, Ĉ}] [Â, ˆBĈ] + [Â, Ĉ ˆB] (6.3.6) (iv) ψ(x, t) ψ (x, t) ψ(x, t) ˆψ(x, t) ψ (x, t) ˆψ (x, t).

86 82 { ˆψ(x, t), ˆψ (y, t)} δ(x y), { ˆψ(x, t), ˆψ(y, t)} { ˆψ (x, t), ˆψ (y, t)} 0. (6.4.1) Ĥ Ĥ ˆψ (x, t)h ( x, x) ˆψ(x, t) dx (6.4.2) ˆP ˆN ˆP ˆψ (x, t) 1 i x ˆψ(x, t) dx, (6.4.3) ˆN Ô(t) ˆψ (x, t) ˆψ(x, t) dx. (6.4.4) i [Ô(t), Ĥ] tô(t) ˆψ(x, t) (6.4.1) i ˆψ(x, t) t [ ˆψ(x, t), Ĥ] [ ˆψ(x, t), ˆψ (y, t)h ( y, y) ˆψ(y, t) dy ] dy [ ˆψ(x, t), ˆψ (y, t)h (, y) ] ˆψ(y, y t) ( dy { ˆψ(x, t), ˆψ (y, t)}h (, y) ˆψ(y, y t) ˆψ (y, t) { ( ˆψ(x, t), h, y) } ) ˆψ(y, y t) ( dy { ˆψ(x, t), ˆψ (y, t)}h (, y) ˆψ(y, y t) ˆψ (y, t)h ( ), y) { ˆψ(x, t), ˆψ(y, t)} y dy δ(x y)h ( y, y) ˆψ(y, t) h ( x, x) ˆψ(x, t). (6.4.5)

87 83 i ˆψ (x, t) t [ ˆψ (x, t), Ĥ] [ ˆψ (x, t), ˆψ (y, t)h ( y, y) ˆψ(y, t) dy ] dy [ ˆψ (x, t), ˆψ (y, t)h (, y) ] ˆψ(y, y t) ( dy { ˆψ (x, t), ˆψ (y, t)}h (, y) ˆψ(y, y t) ˆψ (y, t) { ˆψ (x, t), h (, y) } ) ˆψ(y, y t) ( dy { ˆψ (x, t), ˆψ (y, t)}h (, y) ˆψ(y, y t) ˆψ (y, t)h ( ), y) { ˆψ (x, t), ˆψ(y, t)} y dy ˆψ (y, t)h (, y) δ(x y) y ( dy h (, y) ˆψ ) (y, t) y δ(x y) h ( x, x) ˆψ (x, t) h ( x, x) ˆψ (x, t). (6.4.6) i ˆψ(x, t) t i ˆψ (x, t) t h ( x, x) ˆψ(x, t), (6.4.7) h ( x, x) ˆψ (x, t) (6.4.8) (5.3.8) (6.4.5), (6.4.6)

88 ˆψ(x, t), ˆψ (x, t) ˆψ(x, t) 1 2π ˆψ (x, t) 1 2π â(p) e i(px E pt) dp, (6.4.9) â (p) e i(px E pt) dp, (6.4.10) E p p 2 /(2m) (6.2.5), (6.2.6) â(p), â (p ) {â(p), â (p )} δ(p p ), {â(p), â(p )} {â (p), â (a )} 0. (6.4.11) Ĥ, ˆP, ˆN â(p), â (p) Ĥ (6.4.9), (6.4.10) (6.4.2) Ĥ 1 2π ˆψ (x, t)h ( x, x) ˆψ(x, t) dx dx 1 2π dx dp dp dp â (p) e i(px Ept) h (, x) 1 dp â(p ) e i(p x E p t) x 2π dp E p â (p)â(p) dp. dp â (p) â(p ) e i(px Ept) E p e i(p x E p t) dp E p â (p) â(p ) e i(e p Ep)t 1 2π dp E p â (p) â(p ) e i(e p E p)t δ(p p) dx e i(p p)x â(p), â (p) ˆP ˆN Ĥ ˆP E p â (p)â(p) dp, (6.4.12) p â (p)â(p) dp, (6.4.13)

89 85 ˆN â (p)â(p) dp. (6.4.14) â(p), â (p) Ĥ â(p), â (p) [ ] [Ĥ, â(p)] E p â (p )â(p ) dp, â(p) dp E p [â (p )â(p ), â(p)] dp E p dp E p E p â(p) ( ) â (p ){â(p ), â(p)} {â (p ), â(p)} â(p ) ( ) â (p ) 0 δ(p p)â(p ) [Ĥ, â(p)] E p â(p) (6.4.15) [Ĥ, â (p)] E p â (p) (6.4.16) [ ˆP, â(p)] p â(p), [ ˆP, â (p)] p â (p) (6.4.17) [ ˆN, â(p)] â(p), [ ˆN, â (p)] â (p) (6.4.18) â(p) 0 0 for all p, (6.5.1)

90 86 Ĥ 0 0, (6.5.2) ˆP 0 0, (6.5.3) ˆN 0 0 (6.5.4) 0 1 p â (p) 0 (6.5.5) Ĥ p Ĥâ (p) 0 ( ) â Ĥ + [Ĥ, â (p)] 0 ( ) â Ĥ + E p a (p) 0 E p â (p) 0 E p p (6.5.6) ˆP p p p, (6.5.7) ˆN p p (6.5.8) p p E p p 2 /(2m) m 1 p p 0 â(p) â (p ) 0 0 â(p) â (p ) + â (p ) â(p) 0 0 {â(p), â (p )} 0 0 δ(p p ) 0 δ(p p ) (6.5.9)

91 87 2 p, p â (p) â (p ) 0 (6.5.10) ( ) p Ĥ p, p 2 2m + p 2 p, p, 2m (6.5.11) ˆP p, p (p + p ) p, p, (6.5.12) ˆN p, p 2 p, p (6.5.13) p p 1 p, p p, p p 1, p 2,..., p n â (p 1 )â (p 2 ) â (p n ) 0 Ĥ p 1, p 2,..., p n (E p1 + E p2 + E pn ) p 1, p 2,..., p n (6.5.14) ˆP p 1, p 2,..., p n (p 1 + p 2 + p n ) p 1, p 2,..., p n (6.5.15) ˆN p 1, p 2,..., p n n p 1, p 2,..., p n (6.5.16) n p j j 1, 2,..., n) ϕ ϕ(x) ϕ(x) 0 ˆψ(x) ϕ

92 88 1 x x ˆψ (x) 0 ˆψ (x) x 2 φ 2 φ(x 1, x 2 ) φ(x 1, x 2 ) 0 ˆψ(x 1 ) ˆψ(x 2 ) φ ˆψ φ(x 1, x 2 ) φ(x 2, x 1 ) , 1/2, 3/2,

93 m step 1) E p E p2 2m. (7.1.1) step 2) E p E i t, (7.1.2) p i x. (7.1.3) step 3) step 1) i ( 1 ψ(x, t) t 2m i ) 2 ψ(x, t). (7.1.4) x ψ(x, t) 2 d 3 x (7.1.5) 89

94 90 t x d 3 x dxdydz ) 1 ψ(x, t) 2 d 3 x 1. (7.1.6) ψ(x, t) t 1 d dt ψ(x, t) 2 d 3 x 0 (7.1.7) ρ(x, t) ρ(x, t) ψ(x, t) 2. (7.1.8) d ρ(x, t) d 3 x 0 dt j(x, t) j(x, t) ( ) ψ ψ(x, t) (x, t) ψ (x, t) ψ(x, t). (7.1.9) 2mi x x ρ(x, t) j(x, t) ρ t + divj 0. (7.1.10) d ρ(x, t) d 3 ρ(x, t) d 3 x dt V V t divj(x, t) d 3 x V j(x, t) ds (7.1.11) S 3 V ds S ( ) V S ψ(x, t) j(x, t) S d dt S ρ(x, t) d 3 x 0 (7.1.12)

95 /2 up down 2 ψ(x, t) ( ψ (x, t) ψ (x, t) ) (7.1.13) ψ (x, t) 2 x ψ (x, t) 2 x x ψ (x, t) 2 + ψ (x, t) 2 (7.1.14) ) ψ (x, t) (ψ (x, t) ψ (x, t) (7.1.15) ψ (x, t) ψ (x, t) ψ(x, t) (7.1.16) ( ) ( ) ψ (x, t) ψ(x, t) ψ (x, t) ψ (x, t) ψ (x, t) ψ (x, t) ψ (x, t)ψ (x, t) + ψ (x, t)ψ (x, t) ψ (x, t) 2 + ψ (x, t) 2 (7.1.17) (7.1.14) ψ (x, t) ψ(x, t) d 3 x (7.1.18) d ψ (x, t) ψ(x, t) d 3 x 0 (7.1.19) dt i ψ(x, t) Ĥψ(x, t) (7.1.20) t

96 92 Ĥ 2 Ĥ 2 + V (x) (7.1.21) 2m x2 2 V (x) 2 2 ψ(x, t) V V V V V ( ) ( ) ( ) V 11 V 12 V V V11 V21. V 21 V 22 V12 V22 V ρ(x, t) ψ (x, t)ψ(x, t) (7.1.22) j(x, t) j(x, t) 2mi ( ψ ψ(x, t) (x, t) x ) ψ (x, t) ψ(x, t) x (7.1.23) ρ t + div j 0 (7.1.24) ρ t ( ψ ψ ) t ψ ψ ψ + ψ t t 1 ) ( 2 2 ψ i 2m x + V ψ ψ + ψ 1 ) ( 2 2 ψ 2 i 2m x + V ψ 2 ( ) 2 ψ 2mi x ψ 2 ψ 2 ψ 1 ( (V ψ) ψ ψ V ψ ) x 2 i ( ) 2 ψ 2mi x ψ 2 ψ 2 ψ x 2 ( ) ψ 2mi x ψ ψ ψ x x div j (7.1.25)

97 V (V ψ) ψ V ψ V ŝ (ŝ x, ŝ y, ŝ z ) 1/2 2 2 ŝ x 2 σ 1, ŝ y 2 σ 2, ŝ z 2 σ 3. (7.1.26) σ 1, σ 2, σ 3 ( ) ( ) i σ 1, σ 1, σ i 0 ( ) (7.1.27) 3 ŝ x, ŝ y, ŝ z [ŝ x, ŝ y ] i ŝ z, [ŝ y, ŝ z ] i ŝ x, [ŝ z, ŝ x ] i ŝ y, (7.1.28) [σ 1, σ 2 ] 2iσ 3, [σ 2, σ 3 ] 2iσ 1, [σ 3, σ 1 ] 2iσ 2, (7.1.29) σ 1 σ 2 σ 2 σ 1 iσ 3, σ 2 σ 3 σ 3 σ 2 iσ 1, σ 3 σ 1 σ 1 σ 3 iσ 2. (7.1.30) (σ 1 ) 2 (σ 2 ) 2 (σ 3 ) 2 1. (7.1.31) σ i 2 {σ i, σ j } 2δ ij (7.1.32) {, } 7.1 (7.1.27) (7.1.30), (7.1.31) 1 I 1 1 δ ij i j δ ij 1 1

98 Klein-Gordon m E p (c ) E E 2 p 2 c 2 + m 2 c 4 (7.2.1) E ± p 2 c 2 + m 2 c 4 (7.2.2) E p 2 c 2 + m 2 c 4 (7.2.3) (7.2.3) step 1) E p 2 c 2 + m 2 c 4. step 2) E p E i t, p i x. step 3) step 1) i t ψ(x, t) 2 c m 2 c 4 ψ(x, t). (7.2.4) 2 ψ(x, t) 2 Einstein 2 2

99 95 t x (7.2.1) step 1) E 2 p 2 c 2 + m 2 c 4. step 2) E p E i t, p i x. step 3) step 1) ( i t) 2 ( ) ] 2 i ψ(x, t) [c 2 + m 2 c 4 ψ(x, t). [ 1 c 2 2 t ( mc ) ] 2 ψ(x, t) 0. (7.2.5) Klein-Gordon 3 1 c 2 2 t 2 2 (7.2.6) Klein-Gordon [ + ( mc ) ] 2 ψ(x, t) 0 (7.2.7) 2 4 Klein-Gordon 3 Klein-Gordon

100 96 t x ψ(x, t) 2 ρ j i ( ψ ψ ) 2mc 2 t ψ t ψ ( ) ψ ψ ( ψ ) ψ 2mi Klein-Gordon ρ j (7.2.8) (7.2.9) ρ t + j 0 (7.2.10) ( ψ 2 ρ(x, t) d 3 x (7.2.11) ρ(x, t) ρ ρ ( ψ 2 ) ψ(x, t) e iωt u(x) ρ ω mc 2 u(x) 2 ω ρ ρ Klein-Gordon 2 ρ t 1 Klein-Gordon ψ e i(et p x)/ Klein-Gordon E2 2 c + p2 2 + m2 c

101 97 E 2 p 2 c 2 + m 2 c 4 E E ± p 2 c 2 + m 2 c 4 4 or E p 2 c 2 + m 2 c 4 p E Klein-Gordon Klein-Gordon 2 Klein-Gordon Dirac Klein-Gordon 2 ρ 1 ρ ψ ψ 0 Dirac 1 (7.2.4) 1 1 4

102 98 E E 2 p 2 c 2 + m 2 c 4 (7.2.1) E α p c + βmc 2 (7.3.1) p 1 5 α (α 1, α 2, α 3 ) β 1 α, β (7.3.1) 2 (7.2.1) c 1 p (p x, p y, p z ) (p 1, p 2, p 3 ) (p i ) E 2 (α p + βm) 2 (7.2.1) 6 1 (7.3.2) (α p) 2 + (α p)βm + βm(α p) + β 2 m 2 (α p) 2 p 2 (7.3.2) (α p)β + β(α p) 0 (7.3.3) β 2 1 (7.3.4) ( ) (α p) 2 (α 1 p 1 + α 2 p 2 + α 3 p 3 + mβ) 2 α 1 2 p α 2 2 p α 3 2 p α 1 p 1 α 2 p 2 + α 2 p 2 α 1 p 1 + α 2 p 2 α 3 p 3 + α 3 p 3 α 2 p 2 + α 3 p 3 α 1 p 1 + α 1 p 1 α 3 p 3 (α 1 ) 2 p (α 2 ) 2 p (α 3 ) 2 p (α 1 α 2 + α 2 α 1 )p 1 p 2 + (α 2 α 3 + α 3 α 2 )p 2 p 3 + (α 3 α 1 + α 1 α 3 )p 3 p 1 5 α β c )

103 99 p ( ) p 2 p p p 3 (α 1 ) 2 (α 2 ) 2 (α 3 ) 2 1 α 1 α 2 + α 2 α 1 0 α 2 α 3 + α 3 α 2 0 α 3 α 1 + α 1 α 3 0 (7.3.5) 7 2 (7.3.3) (α 1 p 1 + α 2 p 2 + α 3 p 3 )β + β(α 1 p 1 + α 2 p 2 + α 3 p 3 ) 0. (α 1 β + βα 1 )p 1 + (α 2 β + βα 2 )p 2 + (α 3 β + βα 3 )p 3 0 p α 1 β + βα 1 0 α 2 β + βα 2 0. (7.3.6) α 3 β + βα (7.3.4) (i j 1, 2, 3 ) α i α j + α j α i 2δ ij α i β + βα i 0. (7.3.7) β β, α 1, α 2, α 3 2 H(p, x) α p + βm α i, β 7 1 1

104 100 (7.1.32) ( ) 0 σ α, β σ 0 ( ) (7.3.8) α ( ) ( ) ( ) 0 σ 1 0 σ 2 0 σ 3 α 1, α 2, α 3 σ 1 0 σ 2 0 σ 3 0 (7.3.9) α i β (7.3.7) 7.2 A, B, C, D X ( ) A B X C D X X ( X A C ) ( ) B A C D B D (7.3.10) X X 2 2 A, B, C, D ( ) ( ) A B X X A B C D C D ( XX A C ) ( ) ( ) B A B AA + BC AB + BD D C D CA + DC CB + DD (7.3.11) 7.4 (7.3.11)

105 (7.3.8) (7.3.9) 4 α i, β (7.3.10) 7.6 (7.3.8) (7.3.9) 4 α i, β (7.3.7) (7.3.11) (7.1.32) 7.7 (7.3.7) {, } {α i, α j } 2δ ij {α i, β} 0 (7.3.12) {β, β} α i (7.3.7) 1 or (7.3.12) 1 ) (α p) 2 p 2 ( 3 (α p) 2 i1 3 α i p i i1 3 i1 3 i1 3 i1 3 i1 3 i1 α i p i ) 2 3 α j p j j1 3 α i α j p i p j j1 3 α j α i p j p i j1 3 α j α i p i p j j1 3 j1 1 2 (α iα j + α j α i ) p i p j 3 δ ij p i p j j1 3 p i p i i1 3 (p i ) 2 i1 p 2

106 102 (7.3.8) α i, β E p x H(p, x) p 1 : H(p, x) α p + βm c H(p, x) α p c + βmc 2 (7.3.13) step 1) E H(p, x) α p c + βmc 2. step 2) E p E i t, p i x i. step 3) step 1) i t ψ(x, t) ( i c α + βmc 2) ψ(x, t) (7.3.14) (7.3.14) α β 4 4 ψ(x, t) 4 ψ ψ 1 ψ 2 ψ 3 ψ 4. (7.3.15) Dirac 1 1 ρ(x, t) ψ (x, t)ψ(x, t) (7.3.16)

107 103 ρ/ t Dirac ψ i t ψ i c α ψ + βmc2 ψ (7.3.14) i ψ t i c ψ α + mc 2 ψ β (7.3.17) α β ρ t t (ψ ψ) ψ t 1 i ψ ψ + ψ t ( i c ψ α + mc 2 ψ β ) ψ + 1 ( i ψ i c α ψ + βmc 2 ψ ) c( ψ αψ + ψ α ψ) + 1 i (mc2 ψ βψ ψ βmc 2 ψ) (ψ αcψ). (7.3.18) j(x t) j(x, t) ψ (x, t)αc ψ(x, t) (7.3.19) ρ t + j 0 (7.3.20) d ρ(x, t) d 3 x 0 dt ρ ( ) ρ ψ ψ ψ1 ψ2 ψ3 ψ4 ψ 1 ψ 2 ψ 3 ψ 4 ψ 1ψ 1 + ψ 2ψ 2 + ψ 3ψ 3 + ψ 4ψ 4 ψ ψ ψ ψ

108 Dirac 1, c 1 Dirac i ψ iα ψ + βmψ (7.3.21) t ψ(x, t) u t x 4 ψ(x, t) e i(et p x) u (7.3.22) u (7.3.22) (7.3.21) u u 1 u 2 u 3 u 4 E e i(et p x) u α p e i(et p x) u + βm e i(et p x) u. H(p)u Eu, (7.3.23) (7.3.22) ψ Dirac H(p) H(p) α p + βm (7.3.24) 4 4 H(p) (7.3.23) p 0 H(p) H(0) m m 0 0 H(0) βm (7.3.25) 0 0 m m E ±m u (1) 0 0, 1 u(2) 0, 0 u(3) 1, 0 u(4) (7.3.26) u (1) u (2) E +m u (3) u (4) E m p 0 Dirac

109 105 p 0 p H(p) 2 2 ( ) m σ p H(p) (7.3.27) σ p m ( ) m σ p u Eu (7.3.28) σ p m E ±Ep ± p 2 + m 2 (7.3.29) 2 χ (s) (s 1, 2) ( ) ( ) χ (1) 1, χ (2) (7.3.30) u (s) (p) N χ (s) σ p Ep + m χ(s), (7.3.31) σ p u (s+2) (p) N Ep + m χ(s) (7.3.32) u (1) (p) u (2) (p) E +Ep u (3) (p) u (4) (p) E Ep N N Ep + m (7.3.33) χ (s) u (s) (p) u (s ) (p) 2Ep δ ss, (s, s 1, 2, 3, 4) (7.3.34) 7.9 (7.3.31), (7.3.32) (7.3.28) u (1) (p) u (2) (p) E +Ep u (3) (p) u (4) (p) E Ep 7.10 N Ep + m (7.3.31), (7.3.32) (7.3.34)

110 Klein-Gordon Diraqc equation No! Yes No! No (?) (E ± m 2 c 4 + p 2 c 2 ) E mc 2 ( ) 0 mc 2 ( ) 7.1: Dirac Klein-Gordon Dirac sea)

111 107 E mc 2 0 γ mc 2 γ γ 7.2: 1 (hole) e +e p E Ep p +Ep Dirac sea Dirac positron) Dirac Klein-Gordon Dirac Klein-Gordon

112 108 E mc 2 0 mc 2 7.3: Dirac sea: E mc 2 0 γ mc 2 7.4: (hole) Dirac Dirac sea Klein-Gordon Dirac equation No! Yes No! Dirac sea 1 N.A. OK OK

113 Dirac Klein-Gordon

114 Klein-Gordon φ(x) φ(x, t) φ Klein-Gordon ( + m 2 )φ 0 (8.0.1) c 1 2 / t 2 2 m Klein-Gordon Euler-Lagrange φ L φ φ φ φ m 2 φ φ (8.1.1) φ φ/ t L S L d 3 x dt L d 4 x φ 110

115 111 φ δφ 0 δs δl d 4 x { δ φ } φ δφ φ m 2 δφ φ d 4 x δφ ( φ ) + 2 φ m 2 φ d 4 x δφ (x)( + m 2 )φ(x) d 4 x δφ (x) φ ( + m 2 )φ(x) 0 δφ φ (x) Klein-Gordon ( + m 2 )φ (x) 0 φ, φ Klein-Gordon S L d 4 x φ ( + m 2 )φ d 4 x (8.1.2) ( + m 2 )φ φ d 4 x (8.1.3) δφ φ Klein-Gordon δφ φ Klein-Gordon φ φ 1 (φ 1 + iφ 2 ) (8.1.4) 2 φ 1 (φ 1 iφ 2 ) (8.1.5) 2 φ 1 φ 2 φ L 1 { } φ2 2 1 ( φ 1 ) 2 m 2 2 φ { } φ2 2 2 ( φ 2 ) 2 m 2 2 φ 2

116 112 1 ϕ L 1 { ϕ 2 ( ϕ) 2 m 2 ϕ 2} 2 Euler-Lagrange K-G (8.1.1) φ π φ φ π φ (8.1.1) π φ L φ φ (8.1.6) π φ L φ φ. (8.1.7) H π φ φ + πφ φ L φ { } φ + φ φ φ φ φ φ m 2 φ φ φ φ + φ φ + m 2 φ φ. H π φ π φ + φ φ + m 2 φ φ (8.1.8) (πφ H H d 3 x π φ + φ φ + m 2 φ φ ) d 3 x. π φ φ ( φ) (π φ ) H H (H 0) Poisson φ, φ π φ π φ {φ(x, t), π φ (y, t)} Pb δ 3 (x y), (8.1.9) {φ (x, t), π φ (y, t)} Pb δ 3 (x y), (8.1.10)

117 113 {φ(x, t), φ(y, t)} Pb {φ(x, t), φ (y, t)} Pb {φ (x, t), φ (y, t)} Pb 0, (8.1.11) {φ(x, t), π φ (y, t)} Pb {φ (x, t), π φ (y, t)} Pb 0, (8.1.12) {π φ (x, t), π φ (y, t)} Pb {π φ (x, t), π φ (y, t)} Pb {π φ (x, t), π φ (y, t)} Pb 0. (8.1.13) φ, φ π φ π φ φ(x, t) ˆφ(x, t), (8.2.1) φ (x, t) ˆφ (x, t), (8.2.2) π φ (x, t) ˆπ φ (x, t), (8.2.3) π φ (x, t) ˆπ φ (x, t). (8.2.4) π φ (π φ ) ˆπ φ (x, t) ˆπ φ (x, t) (8.2.5) i ( ) [ ˆφ(x, t), ˆπ φ (y, t)] iδ 3 (x y), (8.2.6) [ ˆφ (x, t), ˆπ φ (y, t)] iδ 3 (x y), (8.2.7) [ ˆφ(x, t), ˆφ(y, t)] [ ˆφ(x, t), ˆφ (y, t)] [ ˆφ (x, t), ˆφ (y, t)] 0, (8.2.8) [ ˆφ(x, t), ˆπ φ (y, t)] [ ˆφ (x, t), ˆπ φ (y, t)] 0, (8.2.9) [ˆπ φ (x, t), ˆπ φ (y, t)] [ˆπ φ (x, t), ˆπ φ (y, t)] [ˆπ φ (x, t), ˆπ φ (y, t)] 0. (8.2.10) ˆφ ˆπ φ ˆφ ˆπ φ

118 (8.2.5) H Ĥ ˆπ φˆπ φ + ˆφ ˆφ + m 2 ˆφ ˆφ, (8.2.11) Ĥ Ĥ d 3 x. (8.2.12) ˆπ φ ˆπ φ H d i[ĥ, Ô(t)] (8.2.13) dtô(t) ˆφ(x, t) i[ĥ, ˆφ(x, t)] i[ Ĥ(y, t)d 3 y, ˆφ(x, t)] i d 3 y[ĥ(y, t), ˆφ(x, t)] i d 3 y[ˆπ φ (y, t)ˆπ φ (y, t) + ˆφ (y, t) ˆφ(y, t) + m 2 ˆφ (y, t) ˆφ(y, t), ˆφ(x, t)] i d 3 y[ˆπ φ (y, t), ˆφ(x, t)]ˆπ φ (y, t) i d 3 y( i)δ 3 (y x)ˆπ φ (y, t) ˆπ φ (x, t). (8.2.14) ˆφ (x, t) i[ĥ, ˆφ(x, t)] ˆπ φ (x, t), (8.2.15) ˆπ φ (x, t) i[ĥ, ˆπ φ(x, t)] ( 2 m 2 ) ˆφ (x, t), (8.2.16) ˆπ φ (x, t) i[ĥ, ˆπ φ (x, t)] ( 2 m 2 ) ˆφ(x, t). (8.2.17)

119 115 ˆφ(x, t) ( 2 m 2 ) ˆφ(x, t), (8.2.18) ˆφ (x, t) ( 2 m 2 ) ˆφ (x, t), (8.2.19) ˆφ, ˆφ Klein-Gordon ( + m 2 ) ˆφ(x, t), (8.2.20) ( + m 2 ) ˆφ (x, t), (8.2.21) 8.1 (8.2.15) (8.2.21) Klein-Gordon ψ(x, t) e i(p x Et) Klein-Gordon [ ] 2 t m 2 ψ(x, t) 0 [ E 2 + p 2 + m 2] e i(p x Et) 0 E p E 2 p 2 + m 2 Ep + p 2 + m 2 (8.2.22) E E ±Ep (8.2.23) ψ(x, t) exp [ i(p x Ep t) ], p p E p Ep

120 116 ψ(x, t) exp [ i(p x Ep t) ], 4 p (p 0, p) (Ep, p) 4 x (x 0, x) (t, x) p x 4 px p 0 x 0 p x Ep t p x (8.2.24) Klein-Gordon ψ(x) e ipx (8.2.25) x, y, z L p p 2πn L 2π L (n x, n y, n z ), (n x, n y, n z ) (8.2.26) p ϕp(x) 1 V 2E p e ipx (8.2.27) ϕ p(x) 1 V 2E p e+ipx (8.2.28) V V L 3 ( ) ϕ p(x, t) ϕp (x, t) d3 x 1 2Ep δ pp (8.2.29) ϕp(x, t) ϕp (x, t) d3 x 1 2Ep δ p, p exp( 2iE p t) (8.2.30) ϕ p(x, t) ϕ p (x, t) d3 x 1 2Ep δ p, p exp(+2ie p t) (8.2.31) V L 3 (x, y, z L/2 +L/2) 8.2 (8.2.29) (8.2.31)

121 117 (8.2.29) (8.2.31) exp(±2iep t) Klein-Gordon i ϕ 1(x) 0 ϕ 2 (x) d 3 x (8.2.32) 0 / t ϕ 1(x) 0 ϕ 2 (x) ϕ 1(x) 0 ϕ 2 (x) 0 ϕ 1(x) ϕ 2 (x) ϕ 1(x) ϕ 2 (x) ϕ 1(x) ϕ 2 (x). (8.2.33) i i i ϕ p(x, t) 0 ϕp (x, t) d3 x δpp, (8.2.34) ϕp(x, t) 0 ϕp (x, t) d3 x 0, (8.2.35) ϕ p(x, t) 0 ϕ p (x, t) d3 x 0, (8.2.36) ϕp(x, t) 2Ep 8.3 ϕ 1 (x) ϕ 2 (x) Klein-Gordon ( + m 2 )ϕ j (x) 0 (j 1, 2) (8.2.32) t ( x 0 ) 8.4 (8.2.34) (8.2.36) Klein-Gordon ( L ) ψ(x) ψ(x, t) ϕp(x) ϕ p(x) ψ(x) p { } a(p) ϕp(x) + b (p) ϕ p(x). a(p) b (p)

122 118 b b ψ (8.2.34) (8.2.36) i ϕ p(x) 0 ψ(x) d 3 x i d 3 x ϕ p(x) } 0 {a(p )ϕp (x) + b (p )ϕ p (x) {a(p ) i p p p { a(p ) δpp + b (p ) 0 } ϕ p(x) 0 ϕp (x) d3 x + b (p ) i ϕ p(x) } 0 ϕ p (x) d3 x a(p) (8.2.37) ˆφ(x) ˆφ (x) Klein-Gordon ϕp(x) ϕ p(x) ˆφ(x) { â(p) ϕp(x) + ˆb } (p) ϕ p(x), (8.2.38) p ˆφ (x) { â (p) ϕ p(x) + ˆb(p) } ϕp(x). (8.2.39) p ˆφ(x) ˆφ (x) â(p) ˆb(p) â (p) ˆb (p) (8.2.34) (8.2.36) â(p) i ϕ p(x) 0 ˆφ(x) d 3 x, (8.2.40) ˆb(p) i ϕ p(x) ˆφ 0 (x) d 3 x, (8.2.41) â (p) i ˆφ (x) 0 ϕp(x) d 3 x, (8.2.42) ˆb (p) i ˆφ(x) 0 ϕp(x) d 3 x. (8.2.43) 0 ˆφ(x) ˆπφ ˆφ (x) ˆπ φ { â(p) i ϕ p(x)ˆπ φ (x) ϕ p(x) ˆφ(x) } d 3 x, (8.2.44) { ˆb(p) i ϕ p(x)ˆπ φ (x) ϕ p(x) ˆφ } (x) d 3 x, (8.2.45) { } â (p) i ˆφ (x) ϕp(x) ˆπ φ (x)ϕp(x) d 3 x, (8.2.46) { } ˆb (p) i ˆφ(x) ϕ p(x) ˆπ φ (x)ϕp(x) d 3 x (8.2.47)

123 119 â(p) ˆb(p) â (p) ˆb (p) [â(p), â (p )] [ { i ϕ p(x)ˆπ φ (x) ϕ p(x) ˆφ(x) } { } ] d 3 x, i ˆφ (y) ϕp (y) ˆπ φ(y)ϕp (y) d 3 y, { d 3 xd 3 x ϕ p(x) ϕp (y)[ˆπ φ (x), ˆφ (y)] + ϕ p(x)ϕp (y)[ ˆφ(x), } ˆπ φ (y)] { } d 3 xd 3 x +ϕ p(x) ϕp (y)( i)δ3 (x y) + ϕ p(x)ϕp (y)iδ3 (x y) } i d 3 x {ϕ p(x) ϕp (x) ϕ p(x)ϕp (x) i d 3 xϕ p(x) 0 ϕp (x) δpp. (8.2.48) x y x (x, t) y (y, t) ( 8.3 ) [â(p), ˆb(p )] [ { i ϕ p(x)ˆπ φ (x) ϕ p(x) ˆφ(x) } } i d 3 x {ϕ p(x) ϕ p (x) ϕ p(x)ϕ p (x) i d 3 xϕ p(x) 0 ϕ p (x) { d 3 x, i ϕ p (y)ˆπ φ(y) ϕ p (y) ˆφ } ] (y) d 3 y, { d 3 xd 3 x ϕ p(x) ϕ p (y)[ˆπ φ (x), ˆφ (y)] ϕ p(x)ϕ p (y)[ ˆφ(x), } ˆπ φ (y)] { } d 3 xd 3 x ϕ p(x) ϕ p (y)( i)δ3 (x y) ϕ p(x)ϕ p (y)iδ3 (x y) 0. (8.2.49) [â(p), â (p )] [ˆb(p), ˆb (p )] δpp, (8.2.50) [â(p), ˆb (p )] [â (p), ˆb(p )] 0, (8.2.51) [â(p), â(p )] [ˆb(p), ˆb(p )] [â(p), ˆb(p )] 0. (8.2.52) a(p) b(p) a (p) b (p)

124 (8.2.50) (8.2.52) (8.2.12) â(p) ˆb(p) â (p) ˆb (p) Ĥ Ĥ {ˆπ φˆπ φ + ˆφ ˆφ } + m 2 ˆφ ˆφ d 3 x { ˆφ (x) ˆφ(x) ˆφ (x)( 2 m 2 ) ˆφ(x) } d 3 x { ˆφ (x) ˆφ(x) ˆφ (x) ˆφ(x) } d 3 x ˆφ (x) 0 ˆφ(x) d 3 x (8.2.53) 1 2 ˆπ φ ˆφ, ˆπ φ ˆφ 3 ˆφ Klein-Gordon ˆφ (8.2.38) ϕp iep ϕp { â(p) ϕp(x) + ˆb } (p) ϕ p(x) ˆφ(x) p p { ( iep) â(p)ϕp(x) ˆb } (p)ϕ p(x). (8.2.54) (8.2.53) Ĥ ˆφ (x) 0 ( iep) p { Ep i p p p { â(p)ϕp(x) ˆb (p)ϕ p(x) ˆφ (x) 0 ϕp(x) d 3 x â(p) i { Ep â (p)â(p) + ˆb(p)ˆb } (p) { Ep â (p)â(p) + ˆb } (p)ˆb(p) + 1 } d 3 x } ˆφ (x) 0 ϕ p(x) d 3 x ˆb (p) (8.2.55) ˆb(p) ˆb (p ) Ĥ Ĥ { Ep â (p)â(p) + ˆb } (p)ˆb(p) + E 0, (8.2.56) p E 0 p Ep. (8.2.57)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

0 4/

0 4/ 04 II 6 7 5 0 4/8 0............................. 0.... 0.3............................ 0.4................... 5 0.5.................... 5 7.......................... 7............................ 7........................

More information

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π) ( ) 2 S 3 ( ) ( ) 0 O 0 O ( ) O ϕ(x) ϕ (x) d 3 p (2π) 3 2Ep (a p e ipx + b pe +ipx ) ϕ (+) (x) + ϕ ( ) (x) d 3 p (2π) 3 2Ep (a pe +ipx + b p e ipx ) ϕ ( ) (x) + ϕ (+) (x) (px p 0 x 0 p x E p t p x, E p

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information