1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B

Size: px
Start display at page:

Download "1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B"

Transcription

1 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 第 章 :U() 群 SU() 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B R, G, B R, G, B u : 5 c :, 6 t :75,e 3 クォーク( quark ) : R, G, B R, G, B R, G, B è d : ø è s : ø èb : 5, øe 3 : : e» m» : ( epto ) t» レプトン : e :.5 m :5 è ø è ø è t :,7ø e ( 質量の単位はMeV) とまとめられる 重い素粒子は軽い素粒子に崩壊し 重い荷電レプトンは電子やニュートリ ノに崩壊し 重いクオークは u クォーク ( や d クォーク ) に崩壊する この崩壊過程では W ± の弱ボゾンが放出される これの放出過程は 行列を用いて記述され クォークやレプトンを x e u,, x e d è ø è ø è ø (.) x と表し 変化後を x と表すと 行列で演算でき è ø

2 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 行列 x x x x è ø è ø è ø ± W の寄与を表す (.) である この 行列での記述は U という群で表され 行列の大きさに従って ìu U íu U î 行列 3 3 3行列 4 4 4行列 5 5 5行列 とまとめられる 一般に ユニタリー群 : U ( ) という ここに U は ユニタリー (Utary) を表している 行列を持つ群は 群 (Utary Group) Ⅱ. 行列 :U() 群 U( ) 群に属する行列は 行 m 列 ( m, ) に要素 を持つ行列 m è ø で表す事ができ 全部で 個あるので (.3) (.4) U( ) 群に属する行列の総数は である 正確には この総数 を持つ群は 単位行列 それ以外の 個の行列と分けることができ 単位行列を除いた行列で作られる群を 特殊ユニタリー群 : SU( ) 群 (Speca Utary Group) という U ( ) 群とは次の関係 : U : ( ) : ì 個の行列個の行列 í îu 個の単位行列 SU : (.5)

3 3/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) があり ( ) U SU U (.6) と表記する U ( ) 群と SU( ) 群との数学的な違いは 後ほど説明する この行列表記を用いて素粒子の物理を記述するには ( 電荷などの ) 観測できる物理量が必要になる 素粒子は量子力学に従うので 物理量はエルミート演算子 ( 今の場合 エルミート行列 ) で表される 量子力学は 複素数の力学であるが 観測される物理量は 実数で表わせないといけない 量子力学では 観測される物理量は エルミート行列の固有値として定義されるので その結果 観測される物理量が実数であると自動的に保証がされる U ( ) 群 ( 或いは SU( ) 群 ) が 素粒子の理論になるために 個の行列をエルミート 行列に組み直す エルミート行列 A とは A A A T (.7) を満たす行列であり その固有値を a 固有状態を a とすると ( a ) a (.8) 多くの場合 U ( ) では a は 列ベクトルとして表され a x x è ø (.9) であり a は T x a ( a ) ( x x ) ( x x ) (.) x è ø なので ( ) a x x (.) と表される エルミート行列 A に対して成立する

4 4/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) T a a T a a a A a a a Þ A a a a Þ a A a a a a (.) を用いると A a a a に対して a A a a a a a a a (.3) 一方 a A a a に対して (.7) の A A を用いると A A a A a a a a a a a Þ a A a a A a a a a (.4) が成り立つ (.3) と (.4) より ì í î a A a a a a a A a a a a Þ a a Þ a : 実数 (.5) がわかるので エルミート行列の固有値が実数である が証明された U ( ) 群の (.4) から作られるエルミート行列は 次の 3 種類あり ( 行列に表示された や ± 以外の要素は ) m T m Þ è ø è ø è ø è ø m T (.6) m Þ è ø è ø è ø è ø と つの対角成分に をもつ ( 行列に表示された 以外の要素は ) (.7)

5 5/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) m T m Þ è ø è ø è ø の様な エルミート行列が作れる 個の行列は 最初の つが ( ) 最後の つ 個 個 合計 : + 個 と勘定される この 個のエルミート行列を で識別し ( ) (,,,, ) (.8) (.9) で表す 数学によると U 群の要素 U は これらの ( ) を用いて ( ) ( ) U exp å q 複素行列 (.) è ø である このU は ユニタリー行列であることがわかる ((.59) 以降で証明 ) つまり T U U U U U I Û (.) を満たす そして 素粒子の変化 ( 崩壊や電磁相互作用 ) が ユニタリー行列 U により記述されることになる ( 問題 何故 素粒子の変化は ユニタリー行列により記述されるか?) つ まり 素粒子の状態を y とするとき y は 列ベクトル : y 列 è ø (.) で表され 変化した素粒子 y は ( ) ( ) U exp å q のように è ø が付くので注意する

6 6/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 列 行列 列 y U y Ü è ø è øè ø (.3) と記述される U ( ) 群の要素が (.) のユニタリー行列で表されるので U ( ): U tary群 という命名の起源になる Ⅲ. 群 数学による群とは 群れを成す から定義される 例えば 身近なところでがは 回転で ある 回転で移動する点は すべて円周上にある つまり 円周上に群れている になる 次元の回転は 座標 ( x, y) から 反時計回りに角度 q 回転して座標 ( x, y ) に移動すると x x cosq y s q, y xsq + y cosq (.4) と表わせる ( 問題 (.4) を導け ) これは 更に複素数 z x + y, z x + y を用いて q z e z と計算できる ( 問題 3 (.6) を導け ) そこで (.3) に習って (.5) (.6) ( q ) ( q ) z U z Ü U e q (.7) と表わせる ここで 角度 q を U ( q ) と明示している この場合 U ( q ) は行列ではないが これを ( ) 行列とみなすことができ (.3) に倣って U ( ) U 群の要素は U ( q )( e q ) になる ちなみに (.) の U U U U I q q を導け ) 群といい I は (.7) を用いて簡単に証明できる ( 問題 4 さて 群とは 数学によると 空でない集合 G とその上の二項演算 μ:g G G 結合法則 : 任意の G の元,, 単位元 e の存在 : m (, ) m (, ) の組 (, ) g h k に対して G m が群であるとは ( g, h, k ) ( ( g, h), k) m m m m (.8) g e e g g を G のどんな元 g に対しても満たすよう な元 e が G のなかに存在する ( 存在すれば一意である ) これを G の単位元 e と 実際には 場の理論により記述される

7 7/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) いう 逆元 g の存在 :G のどんな元 g に対しても m (, ) m (, ) (.9) g x x g e となるような G の元 x が存在する ( 存在すれば一意である ) これを g の G における逆元といい しばしば g で表される (.3) と定義される ( 群 _( 数学 ) より ) これに準じて 今の場合 G U ( ) ì g U qg e 任意のG の元 íh U ( qh ) e k U ( qk ) e î q q q h k g Ü e の形に表わせる 二項演算 μ 通常の掛け算 : m ( g, h) gh Þ m ( g, h) m ( h, g) と表わせる G G G とは G : e の形なので 掛け算を二項演算 μ で表すと q h h ( g h ) ( e q q q q + q ) e g g G G m e, e e : e の形でかけるÞ e G と表わせることによる 以上から G U ( ) 結合法則 : が群である事は ( g, h, k ) ( ( g, h), k) m m m m qh qk ( qh + qk ) q g ( qh + qk ) ( qg + qh + qk ) m h, k hk e e e Þ m g, m h, k gm h, k e e e q g q ( qg + qh ) ( qg + q h h ) q k ( qg + qh + qk ) m g, h gh e e e Þ m m g, h, k m g, h k e e e ( ) ( ) で証明終了 (.3) 単位元 e の存在 : m (, ) m (, ) m 逆元 ( g, e) m ( e, g ) g e e g g は 通常のかけ算の場合 常に成立 q q g g m g, e ge g Þ e e e Þ e より 単位元は である つまり e U ( ) m g の存在 : m (, ) m (, ) ( g, x) m ( e, x) g x x g e は 通常のかけ算の場合 常に成立 q g g e e q g, Þ Þ m g x x x x g e (.3)

8 8/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) より 逆元は と証明される つまり g である つまり g U ( q ) g e q (.33) U : U e q は群 (.34) である U ( ) と SU ( ) の違いは detu の時 U は SU ( ) の要素 Ⅳ. 行列 :SU() 群 と記述される detu は ( ) への条件に直すことができる そのため 任意の複素行列 X は 複素行列 A を用いて 3 角行列 è ø に変換できる A XA è ø (,, : ) 複素数 (.35) という定理を用いる まず U exp( X ) (.36) とすると AA I ( ) ( ( X ) A) det e p detu det exp X det AA exp X det A exp x A XA (.37) に注意して ( 問題 5 A exp( X ) A exp( A XA) を証明せよ ) k k è ø k ( A XA) ( k,,3, ) (.38) を用いて e exp ( A XA) (,, : 複素数 ) (.39) e è ø

9 9/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) を得る ( 問題 6 (.39) を証明せよ ) (.37) に適用して e detu det d e Tr A è ø e è ø ( exp( A XA) ) et Õ exp å exp ( XA) (.4) と計算される ( 問題 7 (.4) を証明せよ また M よ ) 更に Tr A XA Tr AA X Tr X なので 最終的に detu det ( exp( X )) exp( Tr ( X )) è ø のとき Tr ( M ) を求め (.4) (.4) 以上から SU ( ) の条件 detu は : de U U exp X t Þ exp Tr X Þ Tr X (.43) に置き換わる (.36) と (.) に応用すると 条件 detu は ( ) ( ) ( ) ( ) å q å q å q (.44) U exp exp X Þ X Þ Tr X Tr è ø è ø より 行列 ( ) に Tr が適用されるので ( ) ( ) ( ) Tr (.45) SU 群に属する行列 が ( ) の条件になる (.8) において U ( ) 群に属する 3 種類の行列 ( ) について (.45) の条件を調べると Tr ( 対角化要素がすべてだから ) (.46) è ø

10 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) Tr ( 対角化要素がすべてだから ) (.47) è ø Tr è ø つの対角化要素が だから (.48) がわかるので 条件を満たさないのは 対角化要素をもつ (.48) になり 全部で 個ある こ れらから Tr を満たす行列を作る事は 対角化要素のみ持つので 簡単にできて 例えば Þ Tr è ø è ø Þ Tr + è ø è ø 3 Þ Tr è ø è ø (.49) (.5) (.5) の様に作れば良い この結果 Tr ¹ を満たすのは つのみで ( 問題 8 何故 一つ

11 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) のみか? 対角化要素を持つ行列の個数は であった (.49)~(.5) の様なタイプの行列の総数がわかればよい ) それを ( ) として ( ) 単位行列 (.5) è ø となることがわかる 更に SU ( ) 群に属する 個の行列 (.53) に対して ( m) ( ) m d (, ) Tr m (.54) が要請される (.46) と (.47) は (.54) を自動的に満たすが (.49)~(.5) の列は 満たすた めに,, è ø è ø è ø (.55) になるので (.49) の行列以外は 変更を受ける ( 問題 9 A)(.55) を導き (.54) を満た す事を示せ B)(.55) を採用するとき を採用できないのは何故か?) 以上から SU ( ) 群では 複素 行 列の è ø ( ) ( ) ( ) ( ) ( ) に対して Tr m, (.56) Tr d m m の条件がつき ( 問題 Tr は 何故必要か? ) この ( ) ( ) 単位行列 に ( ) を追加すると U ( ) 群の複素 行 列

12 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) が得られることになる また 単位行列 ( ) は (.36) の U exp( X ) 形式に適用すると ( ) ( ) ( ) U exp q exp q I è ø è ø 単位行列 (.57) になるが これは q q とすれば 通常の複素数 z exp( q ) : exp( q )( cosq sq ) z U + (.58) になる この効果は (.34) より q 回転を表す この要素 U を ( ) U exp q è ø を持つ群を U ( ) といい 回転させるという性質から U ( ) 群や SU ( ) 群を回転群 と言う場合がある 群 さて 素粒子の変化は (.) のU ( ) ( ) exp å q で記述されるが このU がユニタリ è ø ーであることを示す ( ) が単位行列なので 行 列 ( ) ( ) ( ) ( ) ( ) I ( ) U exp q exp q q exp q q å + å + å è ø è ø è ø 行 列 ( ) ( ) q ( ) exp exp å q è ø è ø その結果 (.) の U U I を計算するが ( ) é ( ) ù q ( ) U êexp å q ú exp exp å q ê è øú è ø è ø なので ë û ( ) ( ) ( ) ( ) q ( ) exp exp å q è ø è ø ( ) ( ) ( ) U U exp q exp exp q å q exp å q è ø è ø è ø è ø ( ) ( ) ( ) exp å q exp å q è ø è ø ( ) (.59) (.6) (.6)

13 3/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) ここで exp ( A) exp B について [ A, B ] のとき exp ( A) exp ( B) exp ( A B) である (.6) において A B なので + (.6) ( ) ( ) ( ) U U exp q + q exp I I ( ) å å è ø ( ) (.63) が証明できる 従って U ( ) ( ) å q がユニタリーである が証明された ( 問題 exp è ø W がエルミート行列である時 U exp ( ) W は U U を満たすことを証明し (.59) のU ( ) ( ) å q に適用して (.63) を示せ ) (.6) を導くには exp è ø SU の ( ) の性質 : f ( m) ( ) mk ( k ), å f ( m, ) é ù ë û mk f mk k (.64) が必要になる この f mk を 群の構造常数という 実際の値は (.6) や (.7) や (.55) 等の具 体的な行列の形を使って計算して求められる 以上から U ( ) 群の要素 : ( ) ( ) ( ) ( ) è ø è ø ( ) ( ) ( ) U exp å q exp q + å q I ( ) ( ) ( ) exp q exp å q è ø è ø (.65) SU 群の要素 : U ( ) ( ) å q (.66) exp è ø と対応づけられる ( 問題 (.3)~(.33) に習って 要素 (.66) が (.8)~(.3) の群の性質 ( ) ( ) を満たす事を証明せよ 但し 角度は ベクトル q g k,, h : qg, k, h, qg, k, h,, qg, k, h とするとき そ れぞれ比例しているとする つまり 比例定数を k h, k とするとき ( ) qh k h qg å å と ( ) ( ) ( ) å qk k å qg である ) ( ) SU 群の要素のユニタリー行列 exp å q とし è ø

14 4/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) ては として演算するので これを T ( ) として表し ( ) ( ) T とする (.67) Ⅴ. 列ベクトルと 行列の素粒子 :SU() 群 素粒子は (.) のように 列ベクトルで表される また その変化を記述するユニタリー 行列が 行列で表される 実は 見方を変えると SU ( ) 群での素粒子の種類として 行列の素粒子も考えることができ 素粒子の個数は 列ベクトルの素粒子 個の素粒子 行列の素粒子 個の素粒子と拡張できる 行列の素粒子に含まれる素粒子の個数の 個 (.53) の ( ) に関連する の個数 列ベクトルの素粒子 y とし 個の素粒子 y,,, とすると 個の固有ベク トル (,,, ) : 番目に è ø を用いる ここに m d m (,,, ), ( ) (.68) (.69) である 従って ( ) y y y y y y y + y + + y ( ) y èø èø è è ø ø と表わせる ( ) ( ) ( ) ( ) (.7) ( ) (,,, ) また 行列の素粒子を F と表し 個の素粒子 Y とすると

15 5/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 個の固有ベクトル (,,, ) を用いて ( ) ( ) F Y + Y + + Y (.7) である 実際には を行列で表す事ができ SU ( ) 群の (.53) の を用いて ( ) ( ) ( ) ( ) F Y + Y + + Y m である そのとき (.69) に対応して Tr で計算し ( m) ( ) m d (, ) 個の行列,,, (.7) m Tr m (.73) と表される 実際の物理では のとき (.) のように e u,, e d è ø è ø y (.74) であり ( ) ( ) ( 3) ( 3) F V + V + V である (,,3) V は ± SU のゲージボゾンという W, Z の源になる (.75) 素粒子の種類は Ⅵ. 素粒子の個数と規約表現 :SU() 群 列ベクトルの素粒子 ( 個のクォーク レプトン ) 行列の素粒子 ( 個のゲージボゾン ) の 種類であるが それ以外にもいくつか候補がある 列ベクトル 行列 を SU ( ) 群の規約表現 という たとえば その表記は 個数を太文字を用いて ì í î (.76) と表す 個の反クォーク 反レプトンに対応して 複素共役の記号 を用いて と表す 約束である 規約表現が決まると それに含まれる素粒子の個数がきまる その個数を簡単 に計算する方法が有り ヤング図 (Youg tabeau)

16 6/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) と言われている まず 列ベクトルを : 基本表現 とよび ヤング図では 正方形で表す これを用いるとすべての規約表現の個数がきまる 例えば 行列は のため 行列では この を用いて と計算される この 個を持つ SU 群のユニタリー行列に含まれる ( ) (,,, ) SU ( ) 群に随伴する表現 : 随伴表現 の数と同じなので と表す 素粒子の言葉で 言い換えると : 基本表現は クオーク レプトン (y ) を記述 (.77) : 基本表現は 反クオーク 反レプトン (y ) を記述 (.78) ± : 随伴表現は W, Z やグルーオンを含むゲージボゾンを記述 (.79) である ヤング図で 簡単なルールがある : : 基本表現は であり 個のクォーク レプトンを表す (.8) 列ベクトルで表すと a : y やj ( a,,, ) a a 横に並んだ : は 完全対称である (.8) 個の場合 ( 対称表現 ): つのベクトルで表すと a b : y f + y f ( a, b,,, ) a b b a 縦に並んだ : は 完全反対称である (.8) 個の場合 ( 反対称表現 ): つの列ベクトルで表すと a a b a b b a b y f y f : (,,,, ) 縦に並べるの数は 最大 個までである (.83)

17 に減7/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 縦に最大 個並んだ表現で 成分の数は で と表し 重表現 (sget) という ü ý 個 þ は SU ( ) 群のユニタリー変換を受けない特徴がある (.84) : 縦に並べるの数が 個のとき 基本表現とおなじになるが 複素共役 の反クォーク 反レプトンy を表し に を付けて で表す (.85) ì Þ 個 í î ì Þ 個 í î ü ý 個 Þ : y y y þ 個 Þ C : y } の関係がある これより y y は であるので SU ( ) 群のユニタリー変換を受けない (.86) ことがわかる である 個数の計算方法は SU ( ) 群のを用いて以下のようである : 例として ( + )( + )( + 3) ( ) ( + ) ( )( ) ( 3) ( 4) を考えよう まず分子の数は 分子にくる数の設定右に増加下掛ける数 ( ( 少ここは群の ) + + 3) ( ) ( + ) ( ) ( ) 4 4 のようにして求める 答えは 分子 (.87)

18 8/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) である つぎに分母の数は 注目する箱の つ つに 分母にくる数の設定 掛ける数 数を書き込みたい箱に注目して右側にある箱の数 + 下側にある箱の数 のように書き込む 求め方の例を 最上段の箱の と 3 の場合として 右にある箱数 + 下にある箱数 右に3 箱 右にある箱数 + 下にあるは個数 右に 箱 下に 4 箱 下に 箱 である 答えは 分母 ( ) ( 6 3 ) ( 4 ) ( ) (.88) ゆえに (.87) と (.88) より ( + )( + )( + 3) ( ) ( + ) ( )( ) ( 3) ( 4) ( ) ( 6 3 ) ( 4 ) ( ) (.89) が この規約表現の次数 ( 含まれる素粒子の数 ) になる また 縦に最大 個 であったが 縦に 個より多いときには 個の分が消去される というルールになる ヤング図で表すと

19 9/ 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) ü ý 個 þ (.9) に等しくなる 具体例を用いて (.89) を計算する : SU ( ) : 基本表現 Þ となり 個のクォーク レプトンを表す事ができる (.9) : 随伴表現 ìm + 個 í î ( ) ( + ) ( )( ) + 3 Þ となり 個のゲージボゾンを表す事ができる : 基本表現 ( )( ) (.9) ìm 個 í î ( ) ( )( ) Þ となり 個の反クォーク 反レプトンを表す事ができる (.93) 対称表現 + ( + ) ( + ) H Þ (.94) 反対称表現 ( ) ( ) C Þ (.95) SU 基本表現 Þ (.96) 随伴表現

20 / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) ìm 個 í î 3 Þ 3 (.97) 対称表現 + ( ) + 3 Þ 3 (.98) 反対称表現 ( ) Þ (.99) 重表現 個 ì í î ( ) Þ (.) SU ( 3) 基本表現 3 Þ 3 (.) 随伴表現 ìm 個 í î 8 Þ 8 (.) 対称表現 + ( ) + 6 Þ 6 (.3) 反対称表現 ( ) 3 Þ 3 ì }個 Þ 3 (.93) より 3 になる : Þ 3個 í ü (.4) ý 個 個 Þ 3 î þ 重表現 ì 3 ( )( ) 個 í Þ 3 î (.5) である

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は /7 平成 9 年 月 5 日 ( 土 ) 午前 時 7 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は 素粒子を質量 とすると ì x : ( ct, x, y, z) :,,, ì c ct ç + y (, t) ç å

More information

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n /5 平成 9 年 月 4 日午前 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( t ) 換で結びつく (5.) の ( ) ニュートリノ質量行列 種混合 と質量固有状態のニュートリノ ( ) と ( ) の場合の は ユニタリー変 æ æ cosq siq æ ø -siq cosq ø ø (8.) 以外に æ æ cosq siq æ -siq cosq t ø

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ /7 第 章電子とディラック方程式 第 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ粒子は 電子と同じ仲間で 質量のみ異な る素粒子であり ディラック (Dirac 方程式 ( ディラック :Paul

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

Microsoft Word - Chap11

Microsoft Word - Chap11 第 章 次元回転群とそのリー代数. SO のリー代数. 節でリー代数を定義したが 以下にその定義を再録する なお 多くの教科書に従って本章以降は ep t A の代わりに ep t と書くこととする 定義.. G を 次の線型リー群とすると 任意の実数 t に対して ep t G となる gl C の全体をGのリー代数 またはリー環 という 例えば ep t が 次の特殊直交群 SO の元であれば

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦   正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語 オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A> 06 年度大学入試センター試験解説 数学 Ⅱ B 第 問 () 8 より, 5 5 5 6 6 8 ア, イ また, 底の変換公式を用いると, log 7 log log 9 9 log 7 log ウエ, オ (), のグラフは, それぞれ = 89 = 右図のようになり, この つのグラフは 軸に関して対称 ここで, 0, のとき, と log カ のグラフが直線 に関して対称 であることから,

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

<4D F736F F D20837D834E B95FB92F68EAE>

<4D F736F F D20837D834E B95FB92F68EAE> マクスウエルの方程式 Akio Arimoto, Monday, November, 7. イントロ長野 []p.4 に証明抜きで以下のような解説がある 次節以下これを証明していきたいと思う grad f «df d dx =,, rot «( i i), [ ] div «d ( dx dx + dx dx + dx dx ) æ f f f æ f f f rot grad f = rot( df

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

木村の理論化学小ネタ   緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 有効理論を用いた vector like クォーク模型に対する B 中間子稀崩壊からの制限 (Work in progre) 広大院理 高橋隼也 共同研究者 : 広大院理, 広大 CORE-U 広大院理 島根大総合理工 両角卓也 清水勇介 梅枝宏之 導入 標準模型 (SM) のクォーク 標準模型は 6 種類のクォークの存在を仮定 アップタイプ ダウンタイプ u c t d 更にクォークが存在する可能性は?

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63>

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63> /8 平成 年 月 日午後 時 6 分 複素積分 : コーシーの積分公式 複素積分 : コーシーの積分公式 Ⅰ. 閉じた積分経路と円周 積分しなくても線積分の結果が分かる場合の第 弾です それは ( ( π d は正則関数 d! d 積分経路は を囲む (. になります これを コーシーの積分公式といいます 複素積分 : コーシーの積分定理 -Ⅰ. 線積分の実技での線積分では 半径 r の円 周上の閉じた経路

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( )

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( ) 第 6 章超ゲージ対称性 00 年 / 第 6 章超ゲージ対称性 o-el ゲージ群 第 章場の変換性と演算子 - 変数 X が同じとき より T を geetos にもつ o-el 群の下で に注意して カイラル超場 F が = W = W = ( ) ( gk T ) ˆ j ( gk T ) ( gk t ) ˆ j j U ˆ j U ˆ wth U ep T & ep t Ü ep - ep

More information

C 言語第 7 回 掛け算 (multiply number) ìz1 = x1 + iy1 í îz = x + iy 割り算 (devide number) ( )( ) ( ) Þ z z = x + iy x + iy = x x - y y + i y x + x y

C 言語第 7 回 掛け算 (multiply number) ìz1 = x1 + iy1 í îz = x + iy 割り算 (devide number) ( )( ) ( ) Þ z z = x + iy x + iy = x x - y y + i y x + x y C 言語第 7 回 複素数の使用法 ( シラバス 1 回目 ) 1 1 複素数 複素数 (complex numbers) z は虚数単位 ìi í i = - î 1 を使って つの実数 x, y から z = x + iy と作ります とくに x を z の実数部 (real part): x = Re( z) y を z の虚数部 (imarginary part): y = Im ( z)

More information

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69 第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63> 1/10 平成 23 年 6 月 1 日午後 4 時 33 分 07 ストークスの定理 : 線積分と面積分 07 ストークスの定理 : 線積分と面積分 ストークスの定理はガウスの定理とともに 非常に重要な定理であり 線積分と面積分の関係を表します つまり ガウスの定理 : 面積分と体積分 ( 体積を囲む閉じた面 = 表面 ) の関係 ストークスの定理 : 線積分と面積分 ( 面積を囲む外周の線 )

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

2014年度 センター試験・数学ⅡB

2014年度 センター試験・数学ⅡB 第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする . はじめに ポンスレの閉形定理 Jcobi の証明 Jue 5 03 Akio Aimoto ヤコビは [] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 つの円があり 一方が他方を完全に含んでいるとする 大小 円の半径をそれぞれ とする 中心間の距離を とすれば 0 < + < が成立している 大きい円の周上の点 A から小さい円に接線を引く 接線と大きい円の周上に交わる

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

離散数学

離散数学 離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

ポンスレの定理

ポンスレの定理 ポンスレの定理. qution Section 定理 有本彰雄 東京都市大学 平成 年 月 4 日 定義. n 角形 P とは 平面上にあるn 個の点の順序列 ( p, p,, pn - ) のことである 各 pk は P の頂点と呼ばれる 記号法を簡単にするため便宜的に p n とする また 線分 p i i pp, i,,,, n - を P の辺と呼ぶ 定義. すべての頂点 p k が曲線 C

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

2019年度 千葉大・理系数学

2019年度 千葉大・理系数学 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,

More information

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹ 固有値と wxmaxima を使うと簡単に求めることができます. この頁 その他 固有値 固有ベクトル練習用の問題 (1) 2 次の正方行列が異なる 2 つの実固有値を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳 / ちくま学芸文庫 )p.078 (2) 2 次の正方行列が 1 つの実固有値 (2 重解 ) を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳

More information

第2回 星の一生 星は生まれてから死ぬまでに元素を造りばらまく

第2回 星の一生  星は生まれてから死ぬまでに元素を造りばらまく 素粒子世界の物理 物質を形作るミクロの 世界の不思議 1. 素粒子の世界 2. 素粒子の標準模型 3. 標準模型の困難 : ニュートリノ質量と暗黒物質 4. 統一理論 1. 素粒子の世界 自然界のあらゆる物質は原子に分解される しかし 原子は最小の構成要素ではなく さらに原子核と電子に分解できる 原子核はさらに下部構造を持っており 現在 我々が到達可能な究極の構成要素が素粒子である 素粒子の世界の構造と物理は

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information