Hara-statistics

Size: px
Start display at page:

Download "Hara-statistics"

Transcription

1 全学共通授業科目 物理学実験平成 3 年度前期測定値の扱い方と誤差論 講義 神戸大学大学院理学研究科物理学専攻原俊雄

2 測定値を他人に提示するとき なぜ 誤差を考えなければならないのか? なぜ 誤差を測定値に付けなければならないのか? そもそも 誤差とは何か?

3 人間は 測定により真の値を知ることができるか? 人間は 真の値を知ることはできない 人間は 工夫することによって 限りなく真の値に近づくことができる 工夫 : 良い測定器具を開発する ( 技術的手法 ) 工夫 : 何回も測定して 平均をとる ( 統計的手法 ) それならば どこまで真の値に近づいたかを 明示する必要がある 誤差の明示の必要性

4 有効数字 : 近似計算 一般に最小目盛りの 1 目の 1/10 まで目分量で読む ( 判定する ) 1mm 目盛りの物差しで縦と横を測り その面積を求めたい 縦 a=3.6mm 横 b=18.7mm と読んだとき 3.55<a< <b<18.75 面積は < a b < 差 :-.115 差 : 面積の計算値には ± 程度の ( 最大 ) 誤差がある? 故に の 1 位の桁が少し怪しい ( 誤差が出始めた ) 0.1 位以下の桁は信頼できない どこまで信頼できるか? このとき 面積は 441mm ( 有効数字は3 桁 ) と表現する ( 誤差が出始めた桁は有効としましょう!)

5 有効数字 : 近似計算 第一則 : 計算結果の有効数字の桁数は 計算材料たる測定値の桁数 ( の少ない方 ) と等しくとる = または ただし かけ算 割り算の場合 第二則 : 計算に使用する定数 ( 例えば π g 等 ) は 他の材料数たる測定値の桁数より一桁程度多く取る π π 3.14 第三則 : 中間計算の結果の桁数は 材料数たる測定値の桁数より一桁程度多く取る ただし 同一測定を数回繰り返して行う場合は 最小二乗法で誤差を求めるが そのときは 上の 3 則で それぞれもう一桁程度多く取らねばならない

6 誤差の分布と平均二乗誤差 誤差の定義 εi = xi-x (i=1,,3, ) (i 番目の誤差 )=(i 番目の測定値 )-( 真の値 )

7 誤差 ε の確率密度関数 ε と ε+dε の間に誤差がある確率が f(ε)dε で表されるとき f(ε) を確率密度関数と呼ぶ ( 誤差 ε が出る確率が f(ε) ) 確率密度関数 f(ε) が どのような性質を持つかを考えよう ( すなわち 誤差の性質を考えよう )

8 確率密度関数 f(ε) の性質 ( 要請 ) 1 ε1 < ε のとき f(ε1) > f(ε) 小さい誤差の方が起こりやすい ε のとき f(ε) 0 誤差が無限大にはならない 3 f(ε) = f(-ε) プラスの誤差とマイナスの誤差は同じ確率 で起こる f (ε) は なめらか な関数 微分可能な関数

9 確率密度関数 f(ε) の形 ( 直観 ) f(ε) - から + まで積分すると 1 面積は ε

10 確率密度関数 f(ε) の数式化 求め方は 実験書を参照! f(ε) = exp( ) ε: 誤差 1 π σ 1 f(x) = exp( ) π σ X: 測定値 X: 真の値 ε σ 正規分布またはガウス分布 σ は何か? (x-x) σ

11 exp 表示とは -ε exp(-ε ) = e exp( x ) = e x e =.7188 ( 自然対数の底 )

12 平均二乗誤差と標準偏差 ε の平均値 ε を求める + ε = ε f(ε) d ε - ε の平均は ε にεの出現する確率 f(ε) をかけて それをεについて- から+ まで積分したもの ( 足したもの ) である

13 サイコロを振り 出る目の数の平均値を求める サイコロの出た目の分布 目 回数 ( 合計 30 回 ) 出る目の平均値 =( ) 30 =1 (6/30)+ (4/30)+3 (5/30)+4 (7/30)+5 (3/30)+6 (5/30) =( 目の値 ) ( その目が出る確率 ) を足し合わせる ( 積分する )

14 平均二乗誤差と標準偏差 ε の平均値 ε を求める + ε = ε f(ε) d ε - ε の平均は ε にεの出現する確率 f(ε) をかけて それをεについて- から+ まで積分したものである

15 平均二乗誤差と標準偏差 ε の平均値 ε を求める ε = ε f(ε) d ε = ε 1 ε exp( )d ε= σ - π σ σ これを誤差としようか? 故に ε =σ σ = ε

16 1 f(ε) = exp( ) の性質 π σ 面積 =1 ( 全確率 =1) σ が大 大きい誤差が多くなる σ σ が小 大きい誤差が少なくなる f (ε) ε 0 ε

17 +σ ( 面積 )= f(ε) d ε σ f(ε) 誤差が -σ から +σ の間にある確率が 68.3% である - -σ 0 +σ + ε

18 x±σ (x は測定値 ) と書いたとき x- σ< 真の値 <x+σ の確率が 68.3% である f(ε) この σ を ( 統計 ) 誤差 と定義する - -σ 0 +σ + ε

19 ( 統計 ) 誤差 : 平均二乗誤差 ( 標準偏差 ) σ = ε = (x i -X) i = 1 x i : i 番目の測定値 X : 真の値 誤差の 乗の平均のルート ( 平方根 ) 真の値が分かれば誤差を計算できる

20 最確値 ( 一番もっともらしい値 ) を求めるには? 測定値 x i (i=1,,3,,) ; 互いに独立 真の値 X x i の測定値を得る確率は f(x i ) 1 f(xi) = exp( ) π σ (xi-x) σ

21 (x1, x,, X) の一組の測定値を得る確率は P= f(x1) f(x) f(x3) f(x) 1 1 =( ) exp[ {(x1-x) + π σ σ (x-x) + + (x-x) }] この確率 P を最大にする X の値が もっともらし い値 ( 最確値 ) と考える Maximum Likelihood Method (x i -X) を最小にする X がもっともらしい i = 1

22 P P を最大にする X の値を求めるには? X 極大値を求めるには接線の傾きがゼロ dp/dx =0

23 最確値を求める dp d (x i -X) i = 1 =0 または =0 dx dx x i i = 1 Xm = ( 算術 ) 平均値 これを計算すると

24 平均値の誤差の求め方 xi i = Xm= = x1 + x + + x 誤差伝播の法則 ( 後で詳しく説明する ) より σm= σ1 + σ + + σ ここでσ1 =σ = =σ=σとすると σ σm = : 測定回数を増やせば 算術平均値 Xm の誤差は 1/ に比例して小さくなる

25 ( 統計 ) 誤差 : 平均二乗誤差 ( 標準偏差 ) σ = ε x i = (x i -X) i = 1 : i 番目の測定値 X : 真の値 誤差の 乗の平均のルート ( 平方根 ) 真の値は分からないのでこの誤差は計算できない

26 ( 以前に講義した ) 平均 乗誤差 ( 標準偏差 ) は 真の値が分からなければ計算できない 真の値 X の代わりに 平均値 Xm を使う εi = xi-x= (xi-xm)+(xm-x) 両辺を 乗する εi = (xi-xm) +(Xm-X) + (xi-xm)(xm-x) 回の測定値を足し合わせて平均をとる εi (xi-xm) (Xm-X) i = 1 = + i = 1 σ の 乗 σm の 乗 i = 1 (Xm-X) (xi-xm) + i = 1 理想的には Zero

27 σm = σ = (xi-xm) +σm i = 1 σ 連立させて解く 個々の測定値の誤差 電卓に有り σ と σ-1 σ = 平均値の誤差 σ m = 電卓に無し (xi-xm) i = 1-1 (xi-xm) i = 1 (-1) これなら 計算 できる

28 ( 問題 1) 針金の直径を測定して以下の結果を得た 針金の直径の平均値とその誤差を求めよ ( 平均 )±( 平均値の持つ誤差 ) の形式で答えよ 針金の直径の平均値の有効桁数は何桁か 測定値 ( 単位 mm)

29 例題 : 直径 D=18.65±0.13mm, 高さ h=4.36±0.5mm の円筒の体積を求めよ D h V=π( D ) h=(π/4)(18.65) (4.36)= このとき 体積 V の誤差はどうなるのか? 直径 D と高さ h の誤差が 体積 V にどのように伝播するのか?

30 誤差の伝播則 Taylor 展開を考える f(a+ε) f(a)+εf(a)+ f(a+ε) f(a) y y= f(x) ε a a+ε L=εf(a) f(a) 関数は y= f(x) L ε f(a+ε) =f(a) x

31 一回の測定値 X±εx,Y±εy, より計算して W=F(X±εx,Y±εy, ) を得るとき その誤差 σw Talor 展開 (1 変数から多変数の場合を推測 ) W=F(X±εx,Y±εy, ) = F(X,Y, )+(±εx)( F )+(±εy )( F )+ X Y Wの ( 一回測定の ) 誤差 εw は εw =W- F(X,Y, ) =(±εx)( F )+(±εy )( F )+ X Y 両辺を 乗する F F εw = εx ( ) + εy ( ) + X Y F F +(±εx εy)( )( ) + X Y

32 N 回の測定をして それらを加えて平均する εw εx F εy F = ( X )+ ( Y ) + N N N εx εy +(±) ( F )( F )+ N X Y まとめると理想的にはゼロ F F σw = σx ( ) + σy ( ) + X Y 誤差の伝播の法則

33 平均値とその誤差 (Xm± σmx,ym±σmy, ) が求まったとき 求めるべき Wm の最確値 ( 平均値 ) は Wm=F(Xm,Ym, ) の関係式で計算する 平均値 Wm の持つ誤差 σmw は σmw = σmx ( F ) + σmy ( F ) + X Y の偏微分をして その結果に X=Xm, Y=Ym, を代入して計算する

34 例題 : 直径 D=18.65±0.13mm, 高さ h=4.36±0.5mm の円筒の体積を求めよ D h V =π( D ) h =(π/4)(18.65) (4.36)= σmv = σmd ( V ) + σmh ( V ) D h = σmd ( π/ Dh) + σmh (π/4 D ) =(0.13) (π/ ) +(0.5) (π/ ) =1370. σmv= 115. ( 平均値 )±( 平均値の誤差 ) の表現はどうする

35 ( 平均値 )±( 平均値の誤差 ) の表現はどうする 平均値 V= 平均値の誤差 σmv= 115. 一般に 誤差の桁数は 桁とする σmv= 平均値は 誤差の最下位桁までを書く ±) 四捨五入 四捨五入 故に V = ( 6.65±0.1 ) 10 3 mm 3

36 例題 : 直径 D=18.65±0.13mm, 高さ h=4.36±0.5mm の円筒の体積を求めよ D h V =π( D ) h =(π/4)(18.65) (4.36)= σmv = σmd ( V ) + σmh ( V ) D h = σmd ( π/ Dh) + σmh (π/4 D ) =(0.13) (π/ ) +(0.5) (π/ ) =1370. σmv= 115. 故に V=(6.65±0.1) 10 mm 3 3

37 ( 問題 3) 質量の無視できる糸の先に小さい物体がついている振り子 ( 単振り子 ) がある この振り子を測定したところ 長さは 5.75±0.5 cm 物体の質量は 1.05±0.036 kg 周期は 1.019±0.03 秒 であった この結果より 重力の加速度を求めよ

38 加重 ( 異重 ) 平均 方法が異なったり 実験グループが異なったりして 多数の結果 g1±σ1, g±σ, があるとき ( 一つにまとめた ) 最終的な g0±σ0 をどのようにして求めるか? (Ⅰ) 単純に加えて単純平均をとる g0=(g1+g+ +g)/ (Ⅱ) 誤差の小さい実験値ほど重要視して 誤差の大きい実験値ほど軽視して ( 重みをつけて ) 平均をとる 加重 ( 異重 ) 平均

39 加重 ( 異重 ) 平均値 g0 = ( 1 gi ) i = 1 σi 1 i = 1 σi 加重 ( 異重 ) 平均 加重 ( 異重 ) 平均値の誤差 こうなる理由は? σi の 乗の逆数で重みを付けて平均 σ0 = 1 1 i = 1 σi 誤差伝播の法則を応用して求める

40 確率密度関数 f(ε) の数式化求め方は 実験書を参照! f(ε) = exp( ) ε: 誤差 1 π σ 1 f(g) = exp( ) π σ g: 測定値 G: 真の値 ε σ (g-g) σ 正規分布またはガウス分布

41 (g1±σ1, g±σ,, g±σ ) の一組の測定値を得る確率は P= f(g1) f(g) f(g3) f(g) 1 (g1-g) (g-g) =(π ) exp[ { + i = 1 π σi σ1 σ (g-g) + + }] σ この確率 P を最大にする G の値が もっともらし い値 ( 最確値 ) と考える Maximum Likelihood Method i = 1 (gi-g) σi を最小にする G がもっともらしい

42 最確値を求める d { } dp i = 1 σi =0 または =0 dg dg (gi-g) これを 計算すると

43 加重 ( 異重 ) 平均値 g0 = ( 1 gi ) i = 1 σi 1 i = 1 σi 加重 ( 異重 ) 平均 加重 ( 異重 ) 平均値の誤差 これが求まる σi の 乗の逆数で重みを付けて平均 σ0 = 1 1 i = 1 σi 誤差伝播の法則を応用して求める

44 加重 ( 異重 ) 平均値 g0 = ( 1 gi ) i = 1 σi 1 i = 1 σi 加重 ( 異重 ) 平均 加重 ( 異重 ) 平均値の誤差 σi の 乗の逆数で重みを付けて平均 σ0 = 1 1 i = 1 σi こうなる理由は? 誤差伝播の法則を応用して求める

45 加重 ( 異重 ) 平均値 g0 = 1 ( gi ) i = 1 σi 1 i = 1 σi g0 ( ) gi σ0 = σi = i = 1 加重 ( 異重 ) 平均 これに誤差伝播 の法則を適用 ( ) σi 1 i = 1 i = 1 1 σi σi これを 計算すると

46 加重 ( 異重 ) 平均値 g0 = ( 1 gi ) i = 1 σi 1 i = 1 σi 加重 ( 異重 ) 平均 加重 ( 異重 ) 平均値の誤差 σi の 乗の逆数で重みを付けて平均 σ0 = 1 1 i = 1 σi これが求まる 誤差伝播の法則を応用して求める

47 ( 問題 ) 重力の加速度の測定を 4 回行って 次の結果を得た g1=980.3 ± 0.84 g= ± 0.55 g3= ± 0.4 g4= ± 0.50 ( 単位はcm/sec ) これらの結果を平均して最終結果を求めよ

48 問題の解答を A4 のレポート用紙にまとめて 4 月 8 日 ( 木 ) 午後 1 時 ~1 時 0 分に提出せよ f(ε) 今日は ここまで - -σ 0 +σ + ε

49 二項分布 個の独立な試行を行ったとき,k 回成功する確率 p 平均値 : 標準偏差 : 1 回あたりの成功確率が p であり, その試行回数が ならば, 平均的に p 回の成功が生じる 二項分布のガウス近似 を増やした場合, 二項分布は平均 X=p, 標準偏差の正規分布に近づく. 中心極限定理 誤差論 011 年度前期火曜クラス 49

50 二項分布 を増やすと正規分布に近づく 中心極限定理 誤差論 011 年度前期火曜クラス 50

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

測量試補 重要事項

測量試補 重要事項 重量平均による標高の最確値 < 試験合格へのポイント > 標高の最確値を重量平均によって求める問題である 士補試験では 定番 問題であり 水準測量の計算問題としては この形式か 往復観測の較差と許容範囲 の どちらか または両方がほぼ毎年出題されている 定番の計算問題であるがその難易度は低く 基本的な解き方をマスターしてしまえば 容易に解くことができる ( : 最重要事項 : 重要事項 : 知っておくと良い

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

測量士補 重要事項「標準偏差」

測量士補 重要事項「標準偏差」 標準偏差 < 試験合格へのポイント > 士補試験における標準偏差に関する問題は 平成元年が最後の出題となっており それ以来 0 年間に渡って出題された形跡がない このため 受験対策本の中には標準偏差に関して 触れることすら無くなっている物もあるのが現状である しかし平成 0 年度試験において 再び出題が確認されたため ここに解説し過去に出題された問題について触れてみる 標準偏差に関する問題は 基本的にはその公式に当てはめて解けば良いため

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

Microsoft PowerPoint saitama2.ppt [互換モード]

Microsoft PowerPoint saitama2.ppt [互換モード] 感度係数について 産業技術総合研究所計測標準研究部門 物性統計科応用統計研究室 城野克広 1 モデル式 そして感度係数 2 不確かさの見積もり例 例ある液体の体積 v を その質量と密度から求めることにした まず 液体の質量を質量計で 5 回反復測定し 測定データ {1., 1., 99.9, 99.7, 1.1 g} を得た 一方液体の密度については

More information

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので,

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので, If(A) Vx(V) 1 最小 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M) y = f ( x ) の関係から, 任意の x のときの y が求まるので, 未測定点の予測ができること. また (M3) 現象が比較的単純であれば, 現象を支配 する原理の式が分かることである.

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション - = 4 = 4 = - y = x y = x y = x + 4 y = x 比例は y = ax の形であらわすことができる 4 - 秒後 y = 5 y = 0 (m) 5 秒後 y = 5 5 y = 5 (m) 5 0 = 05 (m) 05 5 = 5 (m/ 秒 ) 4 4 秒後 y = 5 4 y = 80 (m) 5-80 5 4 = 45 (m/ 秒 ) 5 v = 0 5

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63> 第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

統計学的画像再構成法である

統計学的画像再構成法である OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

Problem P5

Problem P5 問題 P5 メンシュトキン反応 三級アミンとハロゲン化アルキルの間の求核置換反応はメンシュトキン反応として知られている この実験では DABCO(1,4 ジアザビシクロ [2.2.2] オクタン というアミンと臭化ベンジルの間の反応速度式を調べる N N Ph Br N N Br DABCO Ph DABCO 分子に含まれるもう片方の窒素も さらに他の臭化ベンジルと反応する可能性がある しかし この実験では

More information

材料の力学解答集

材料の力学解答集 材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /

More information

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx ベイズの定理から AI の数理 ベイズ更新とロジステック曲線について 松本睦郎 ( 札幌啓成高等学校講師 ) Episode ロジステック曲線 菌やウイルスの増殖数や 人口増加等を表現する曲線の一つにロジステック曲線があります 例 シャーレの中で培養された大腸菌の数について考察する シャーレ内に栄養が十分に存在するとき 菌は栄養を吸収しながら 一定時間ごとに細胞分裂をして増 殖する 菌の数 u u(t)

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

講義「○○○○」

講義「○○○○」 講義 システムの信頼性 内容. 直列システムの信頼性. 並列システムの信頼性 3. 直列 並列の複合システムの信頼性 4. 信頼性向上のための手法 担当 : 倉敷哲生 ビジネスエンジニアリング専攻 システムの構成 種々の機械や構造物, システムを分割していけば. 個々の要素 サブシステム となる. サブシステムの組み合わせ方式 直列系 並列系 m/ 冗長系 待機冗長系 3 直列システムの信頼性 直列系

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

産業組織論(企業経済論)

産業組織論(企業経済論) 産業組織論 ( 企業経済論 ) 第 9 回 井上智弘 2010/6/9 産業組織論第 9 回 1 注意事項 小テストを行う. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/9 産業組織論第 9 回 2 前回の復習 独占市場には, 他の企業の参入を防ぐ参入障壁が存在する. 1 生産要素の独占 2

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

気体の性質-理想気体と状態方程式 

気体の性質-理想気体と状態方程式  自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://www.tagen.tohoku.ac.j/labo/ueda/index-j.html クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

mt1-slides-03.pptx

mt1-slides-03.pptx 計測工学 I 第 3 回 Excel による回帰式の計算 今日の内容 第 3 回 Excel による回帰式の計算 シラバスより 第 3 回 回帰式の計算 Excel を用いて測定データから最小二乗法によって 回帰式の計算を行う この計算方法を学び 実際のデータに適用して回帰直線をグラフ化する 最小二乗法によって 計測データが満たしている関数式を推定する方法を学びます 回帰式とは何か? 教科書 P255

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

誤差とは? 真の値からの測定値のズレ 真の値 とは何かが問題 測定値から どのような値を求めたいと考えているのか? ちなみに測定値や推定値からどの範囲に真の値があるかの指標は 不確かさ

誤差とは? 真の値からの測定値のズレ 真の値 とは何かが問題 測定値から どのような値を求めたいと考えているのか? ちなみに測定値や推定値からどの範囲に真の値があるかの指標は 不確かさ 誤差と統計 画像処理を行う各段階や較正において 真の物理量からのずれが混入する このズレをどう定式化し どう小さくしていくかについて 具体例を交え解説する はずでしたが誤差が大きくなりました 八木雅文 2007/10/09 微改訂版 誤差とは? 真の値からの測定値のズレ 真の値 とは何かが問題 測定値から どのような値を求めたいと考えているのか? ちなみに測定値や推定値からどの範囲に真の値があるかの指標は

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information