II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Size: px
Start display at page:

Download "II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k"

Transcription

1 II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4. R n K 1. σ K τ < σ τ K 2. σ 1, σ 2 K σ 1 σ 2 σ 1 σ K l β l (K) K χ(k) χ(k) = l 0( 1) l β l (K) 1.6. R n K R n K = σ σ K K 1

2 1. R n v 0,, v k (a) v 0,, v k R n (b) k +1 a 0,, a k k i=0 a iv i = 0 k i=0 a i = 0 a 0 = = a k = 0 (c) l k v i v l 0 i k, i l 2. v 0 v m v 0,, v m R n A x, y A 3. m σ = v 0 v m K(σ) L(σ) = K(σ) {σ} L(σ){σ} K(σ) L(σ) 4. i j v i v j (a) K = { v 0, v 1, v 2, v 3, v 4, v 0 v 1, v 0 v 2, v 1 v 2, v 0 v 3, v 0 v 4, v 3 v 4, v 0 v 1 v 2 } (b) K = { v 0, v 1, v 2, v 3, v 4, v 5, v 0 v 1, v 0 v 2, v 1 v 2, v 0 v 3, v 3 v 4, v 3 v 5, v 4 v 5 } ( I ) 5. f 0 : A Y f 1 : B Y X Y A B xf 0 (x) = f 1 (x) f 0 (x), x A f(x) = f 1 (x), x B f: A B Y 6. f: X Y (a) f (b) f X Y (c) f X Y 7. X Y 2

3 K, K 12 K K 1. K = K 2. K K 2.2. k σ = v 0 v 1 v k σ b(σ) = 1 k +1 v k +1 v k +1 v k 2.3. K σ 0 < σ 1 < σ k b(σ 0 ),b(σ 1 ),,b(σ k ) b(σ 0 )b(σ 1 ) b(σ k ) K K K SdK 2.4. K K χ(k ) = χ(k) 2.5. K L K L L K L KL K = L K = L K K L L KL 2.6. φ: K L K j a jv j v 0 v k K j a jφ(v j ) φ( v 0 v k ) φ : K L 2.7. φ: K L φ : K L φ φ 2.8. KL K L 2.9. KL χ(k) = χ(l) KLR n K L = K L K L K L χ(k L) = χ(k)+χ(l) χ(k L) K L = K L K K L L K L = K L χ(k L) = χ(k)+χ(l) χ(k L ) 3

4 1. SdKK G G V(G), E(G) F(G) G 2 V(G) E(G)+F(G) = 2 5. P I(P)P B(P) P = I(P)+ 1 2 B(P) 1 1/2 4

5 X K X f: K X KX 3.2. k σ K(σ) L(σ) = K(σ) {σ} k B k k 1 S k X e X ϕ: (I k, I k ) (e, e) ex ϕe ke dime = k I = [0,1] I k = I k IntI k e = e e ϕ I k I k = IntI k IntI k e 3.4. X D = {e j j J} X DX 1. j k e j e k = 2. X = j J e j 3. dime j = k e j = e j e j k 1 D X 3.5. K K {Intσ σ K} 3.6. XD = {e j j J} J k = {j J dime j k} X Xk X k = j J k e j 3.7. X k X k X k 1 k I k X k + 1 e j (j J k+1 J k ) ϕ j : (I k, I k ) (e j, e j ) X k = X k 1 I k (J k J k 1 )/ (t,j) ϕ j (t) (t I k, j J k J k 1 ) 3.8. XD = {e j j J} χ(x) = k ( 1)k β k β k Xk 5

6 1. (a) f: X Y X x, y x y f(x) = f(y) (b) X X/ p: X f = g p g: X/ Y (c) f g 2. (a) C S 1 = {z C z = 1} (b) x y y x Z R R/Z (c) [0,1] 1 [0,1]/{0,1} 3. I = [0,1] I n n D n = {x R n x 1} 4. X A Y φ: A Y X Y a Af(a) Y X φ Y φ Y X X Y X φ Y p (a) f A = g φ f: X Z g: Y Z h p(x) = f(x) (x X)h p(y) = g(y) (y Y) h: X φ Y Z (b) ex φ: (I n, I n ) (ē, e) X (X e) φ I n I n 6

7 Xn 1. X 2. X R n 4.2. X U = {U j j J} U j n ϕ j : U j V j R n Xn (U j,ϕ j ) U 4.3. n 1. n R n 2. n S n = {x R n+1 x = 1} 3. n RP n = R n+1 {0}/ x = ay a x y D 2 S 1 2n a, a a, a 1 2n S( ) 4.5. n = 1, 2 S(aa 1 ) = S(aa) = S(aba 1 b 1 ) = S(aba 1 b) = S(abb 1 a 1 )S(abab)S(aabb) 7

8 1. X {(x,x) x X} X X 2. f g X Y {x X f(x) = g(x)}x 3. λ Λ X λ X λ p λ f: X λ Λ X λ p λ f: X X λ 4. X = λ Λ X λ (a) X λ X (b) X X λ 5. Xm Y n X Y m+n 6. [0,1] [0,1] 2 (x,0) (x,1), (0,y) (1,y), 0 x, y 1 (a) (b) S 1 S 1 8

9 g T(g), P(g) T(g) = S(a 1 b 1 a 1 1 b 1 1 a g b g a 1 g b 1 g ) P(g) = S(a 1 a 1 a g a g ) T(0) = S χ(t(g)) = 2 2gχ(P(g)) = 2 g 5.3. l S(l) g T(g) P(g) 5.4. D 1, D 2 S 1, S 2 ϕ: C 1 C 2 S 1 IntD 1 S 2 IntD 2 S 1 IntD 1 x D 1 S 2 IntD 2 ϕ(x) D 2 S 1 S 2 S 1 S D 1, D 2 ϕ: D 1 = D g 1 T(g) = T(1) T(1)P(g) = P(1) P(1) g 5.7. S(aba 1 b) = P(2) 5.8 ( ). S 2 T(g) P(g) = 1, 2, ) 5.9. T(g) (g 0) P(g) (g > 0) g 9

10 1. T(p) P(q) 2. S(aba 1 b) = P(2) 3. S(aba 1 b 1 cc) = S(aab b cc) T(1) P(1) = P(1) P(1) P(1) 10

11 ObC hom C (a,b) (a, b C) hom C (b,c) hom C (a,b) hom C (a,c), (f,g) g f 1 a hom C (a,a) C 1. f hom C (a,b) f 1 a = f = 1 b f 2. f hom C (a,b), g hom C (b,c), h hom C (c,d) h (g f) = (h g) f 6.2. Set Top Top 2 Mod Mod 6.3. C f: a b D Ff: Fa Fb hom C (a,b) hom D (Fa,Fb) F F1 a = 1 Fa, F(g f) = Fg Ff F C D F: C D 6.4. α, β: Top 2 Top, α(x,a) = A, β(x,a) = X σ: Mod Mod, σ{a n } = {(σa) n }, (σa) n = A n F, G C D C f: a b D φ = {φ a : Fa Ga a ObC}F G φ: F G Ff Fa Fb φ a Ga Gf φ b Gb 6.6. α, β: Top 2 Top φ: α β, φ (X,A) : A X 11

12 6.7. X A 1, A n 1 (X,A 1,...,A n 1 ) n f(a j ) B j f: X Y n f: (X,A 1,...,A n 1 ) (Y,B 1,...,B n 1 ) n f, g: (X,A 1,...,A n 1 ) (Y,B 1,...,B n 1 ) F(x,0) = f(x), F(x,1) = g(x), x X n F: (X,A 1,...,A n 1 ) I (Y,B 1,...,B n 1 ) f g f 6.8. H: (X,A) {H n (X,A) n Z} : H n (X,A) H n 1 (A) H n (X, )H n (X) 1. f g: (X,A) (Y,B) f = g : H n (X,A) H n (Y,B) 2. H n (A) i H n (X) j H n (X,A) H n 1 (A) i i, j i: (A, ) (X, ) j: (X, ) (X,A) 3. U IntA H n (X U,A U) = H n (X,A) 4. P n 0 H n (P) = 0 H n (X,A) (X,A)n P 0 G = H 0 (P) G G = Z H n (X,A)n 6.9. f: (X,A) (Y,B) g: (X,A) g f 1 (X,A) f g 1 (Y,B) f f: (X,A) (Y,B) n f : H n (X,A) H n (Y,B) X H 0 (X) = Z H n (X) = 0 (n 0) H n ( ) = 0, n Z 2. H n (X 1 X2 ) = H n (X 1 ) H n (X 2 ) 12

13 H n (X) Xn 1. n (X,A 1,...,A n 1 ) (Y,B 1,...,B n 1 ) f g 2. f 3 f 2 f 1 f 0 A 4 A3 A2 A1 A0 Imf i+1 = Kerf i, 0 i 2 (a) A 2 = 0 f 0 (b) A 0 = 0 f 1 (c) f 0 = 0, f 2 = 0 f 1 (d) f 0 f 3 A 2 = 0 3. A f B g C h D j E l m A f B g C h n p D j E q m, p l q n 4. f: X Y n f : H n (X) H n (Y) A X n H n (X,A) = 0 H n (X,A) H n (A) H n (X) 6. (x 0,{x 0 }) (X,{x 0 }) X x 0 (a) Xx 0 X X, x x 0,{x 0 } 1 X (b) X 7. X 2 X x 0 x 0 x X X x 0 (a) X x 0 X (b) Xx 0 Xx 0 13

14 X X 1 X 2 1. X = IntX 1 IntX 2 2. X 1 X 2 X X 2 X 1 k: (X 1,X 1 X 2 ) (X,X2) k : H n (X 1,X 1 X 2 ) H n (X,X 2 ) : H n (X) H n 1 (X 1 X 2 ) H n (X) j H n (X,X 2 ) k 1 H n (X 1,X 1 X 2 ) H n 1 (X 1 X 2 ) H n (X 1 X 2 ) (i 1, i 2 ) H n (X 1 ) H n (X 2 ) j 1 +j 2 Hn (X) H n 1 (X 1 X 2 ) j, k, i 1, i 2, j 1, j 2 1. λ 3n 3 λ G 3n 3 3n 2 λ G 3n 2 3n 1 G 3n 1 G 3n λ 3n G 3n+1 λ 3n+1 G 3n+2 ϕ 3n 3 ϕ 3n 2 ϕ 3n 1 ϕ 3n ϕ 3n+1 ϕ 3n+2 H 3n 3 µ 3n 3 H 3n 2 µ 3n 2 H 3n 1 µ 3n 1 H 3n µ 3n H 3n+1 µ 3n+1 H 3n+2 ϕ 3n G 3n 2 ρ H3n 2 G 3n 1 σ H3n 1 τ G3n+1 ρ H3n+1 G 3n+2 ρ = (ϕ 3n 2, λ 3n 2 )σ = µ 3n 2 +ϕ 3n 1 τ = λ 3n ϕ 1 3n µ 3n 1 2. g f G 3 H 1 λ 2 ν 1 µ 1 G 0 G 2 µ 2 λ 1 g H 2 G f 1 h ν 2 H 0 h f, f Kerλ 2 = Imλ 1 Kerµ 2 = Imµ 1 ν 2 ν 1 = 0 h f 1 g = h f 1 g 14

15 Xn H n (X) = ker(p : H n (X) H n ( )) px 8.2. X H n (X) = H n (X) (n 0), H 0 (X) = H 0 (X) Z 8.3. X n H n (X) = 0 : H n (X) H n 1 (X 1 X 2 ) : Hn (X) H n 1 (X 1 X 2 ) H n (X 1 X 2 ) (i 1, i 2 ) H n (X 1 ) H n (X 2 ) j 1 +j 2 Hn (X) H n 1 (X 1 X 2 ) 8.5. : H n (SX) H n 1 (X) H n (SX) = H n 1 (X) 8.6. H n (S m Z, n = m ) = 0, n m 1. XY x 0 X, y 0 Y X Y = X {y 0 } {x 0 } Y X Y {y 0 }Y X Y X Y Mayer-Vietoris 15

16 9 9.1 (Brower ). n f: B n B n f(x) = x x B n f: S n S n 9.2. ι H n (S n ) = Z f (ι) = kι kf degf S n r: x x/ x R n+1 {0} i: S n R n+1 {0} i = r 1 : Hn (S n ) = H n (R n+1 {0}) f: S n R n+1 {0} r f: S n S n W(f,0) f 9.3. a H n (S n ) f (a) = W(f,0) i (a) H n (R n+1 {0}) 9.4. f g: S n R n+1 {0} W(f,0) = W(g,0) 9.5 ( ). f: B n+1 R n+1 f(s n ) 0 W(f S n,0) 0 0 f(b n+1 ) 9.6. n = 0 W(f S 0,0) = 1 2 (r(f(1)) r(f( 1))) W(f S 0,0) 0 f(1) f( 1) < 0 n = 1 W(f S 1,0) 1. S 0 = {1, 1} {1} S 0, { 1} S 0 H 0 (S 0 ) = H 0 ({1}) H 0 ({ 1}) = Z Z H 0 (S 0 ) H 0 (S 0 ) Z Z 2. f: S 0 S 0 = { 1,1} degf 3. (a) g: S n R n+1 {0} W(g,0) = 0 (b) f: B n+1 R n+1 {0} W(f S n,0) = 0 16

17 10 S 1 C f, g: S 1 C {0} f g: S 1 C {0}f g(z) = f(z)g(z) f(1) = g(1) f g: S 1 C {0} f(z 2 ), z 0 f g(z) = g(z 2 ), z f, g: S 1 C {0} 1. f(1) = g(1) W(f g,0) = W(f,0)+W(g,0) 2. W(f g,0) = W(f,0)+W(g,0). 1. f(1) = g(1) = α f = f α 1, g = g α 1 f g f g W(f g,0) = W(f g,0) f(1) = g(1) = 1 f g S 1 γ S 1 S 1 f g (C {0}) (C {0}) C {0} (z,1) = (1,z) = z (z 2,1), z 0 γ(z) = (1,z 2 ), z 0 S 1 S 1 S 1 S 1 i S 1 S 1 S 1 p i : S 1 S 1 S 1 p i γ 1 S 1 H 1 (S 1 S 1 ) = H 1 (S 1 ) H 1 (S 1 ) γ (ι) = (ι,ι) (f g) (ι) = f (ι)+g (ι) = W(f,0)i (ι)+w(g,0)i (ι) = (W(f,0)+W(g,0))i (ι) 2. w S 1 C {0}c(w) f = f (1 S 1 c(1)), g = g (c(1) 1 S 1): S 1 S 1 1 S 1 c(1) 1 S 1 c(1) 1 S 1 f g f g = (f c(g(1))) (c(f(1)) g) W(f g,0) = W(f c(g(1)),0)+w(c(f(1)) g,0) = W(f,0)+W(g,0) 10.2 ( ). f(z) = 0 17

18 1. f j (1) = z 0 C {0} n f 1,, f n : S 1 C {0} f 1 f n : S 1 C {0} S 1 γn S 1 S 1 f 1 f n (C {0}) (C {0}) C {0} γ n 2(j 1)π argz n 2jπ (1 j n) z S 1 (1 j 1,z n,1 n j ) (S 1 ) j 1 S 1 (S 1 ) n j W(f 1 f n,0) = W(f 1,0)+ +W(f n,0) 2. (a) z S 1 f(z) W(f,0) = 0 (b) f, g: S 1 C {0} z f(z)/g(z)f/g W(f/g,0) = W(f,0) W(g,0) (c) n z z n z n W(z n,0) = n 3. f: B 2 B 2 g(z) = z f(z) g: B 2 C {0} z B 2 f g(z) = 0 g(s 1 ) W(g S 1,0) 0 f t: S 1 S 1 S 1 S 1 S 1 S 1 t(z 1,z 2,z 3,z 4 ) = (z1 2/z2 3,z2 2 /z2 4 ) t γ 4 : S 1 S 1 S 1 H 1 (S 1 ) H 1 (S 1 S 1 ) 6. t: S 1 S 1 S 1 t(z 1,z 2 ) = z1 2 z2 2 t γ 2: S 1 S 1 H 1 (S 1 ) H 1 (S 1 )2 a 2a 18

19 n n 1 n = 0 n+2 n+1 C n+1 C n n 1 n Cn 1 C = {C n, n } C = {C n, n} n n f n = f n 1 n f n : C n C n f = {f n}c C C = {C n, n } Z n (C) = Ker n Cn B n (C) = Im n+1 n B n (C)Z n (C) H n (C) = Z n (C)/B n (C) Cn {H n (C)}H(C) f = {f n } f n : H n (C) H n (C ) f = {f n } H(C) ) C H(C) f, g: {C n, n } {C n, n} n+1 Φ n +Φ n 1 n = g n f n Φ n : C n C n+1 Φ = {Φ n} fg Φfg fg f = g 19

20 C i C j C 0 i 0 C n j n n Cn C n 0 C = {C n, n }, C = {C n, n}, C = {C n, n}i = {i n }, j = {j n } i j H n (C ) i H n (C) j H n (C ), n Z 0 C n+1 i n+1 j n+1 C n+1 C n+1 0 n+1 n+1 n+1 0 C n i n j n Cn C n 0 n+1 n+1 n+1 0 C n 1 i n 1 j n 1 C n 1 C n 1 0 n 1 n 1 n 1 0 C n 2 i n 2 C n 2 j n 2 C n 1 0 H n (C ) = Z n (C )/B n (C ) z = [c ]c jn 1 (c ) [i 1 n 1 ( n(c))] Z n 1 (C )/B n 1 (C ) = H n 1 (C ) c, c (z ) = [i 1 n 1 ( n(c))] : H n (C ) H n 1 (C ) C i C j C 0 H n (C ) i H n (C) j H n (C ) H n 1 (C ) i K = {K n } K n K n K n = 0 K K = {K n } χ(k) = n ( 1) n rankk n C = {C n, n } χ(c) = χ(h(c)) 20

21 12 (X,A) X D = {e i } D = {e i e i A } D A AX (X,A) n 0 X n = X n A (X,A) 1. k n H k ( X n, X n 1 ) = 0 2. X A n {e n j j J n} φ j : (B n,s n 1 ) (ē n j, en j ) e n j H n ( X n, X n 1 ) = j J n Z ǫ j Z ǫ j φ j H n (B n,s n 1 ) H n ( X n, X n 1 ) H n (B n,s n 1 ) ǫ j = φ j (ι n ) C n (X,A) = H k ( X n, X n 1 ) n : C n (X,A) C n 1 (X,A) C n (X,A) = H n ( X n, X n 1 ) n H n ( X n 1 ) j H n ( X n 1, X n 2 ) = C n 1 (X,A) C(X,A) = {C n (X,A), n } H n (C(X,A)) = H n (X,A), n Z (X,A) H n (X,A) in H n ( X n,a) jn H n ( X n, X n 1 ) = C n (X,A) 1. i n Keri n = jn (B 1 n (C(X,A))) 2. j n Imj n = Z n (C(X,A)) X A n e j n 1 e k [e j : e k ] ψ j,k : H n (B n,s n 1 ) H n 1 (S n 1 ) φ j H n 1 ( X n 1 ) i Hn 1 ( X n 1, X n 2 ( l k e l )) φ 1 k H n 1 (B n 1,S n 2 ) ψ j,k (ι n ) = [e j : e k ]ι n n : C n (X,A) C n 1 (X,A) n (ǫ j ) = k J n 1 [e j : e k ]ǫ k 21

22 12.6. {H n (X)} X χ(x) χ(x) = χ(h(x)) = n ( 1)n rankh n (X) X X X n α n χ(x) = n 0 ( 1)n α n 1. G 1 r r+1 rg rankg 0 H G K 0 H K G rankg = rankh +rankk 2. C = {C n, n } χ(h(c)) = χ(c) K = {K n } χ(k) n ( 1)n rankk n 0 B n (C) Z n (C) H n (C) 0, 0 Z n (C) C n n Bn 1 (C) 0 22

23 ( ). S 2, T(n), P(n) (n = 1, 2,...) T(n), P(n) H 2 (T(n)) = Z, H 1 (T(n)) = Z 2n, H 0 (T(n)) = Z, H k (T(n)) = 0 (k 0, 1, 2) 2. H 1 (P(n)) = Z n 1 Z/2Z, H 0 (P(n)) = Z, H k (P(n)) = 0 (k 0, 1) T(n) X 1, X 2 p: B 2 B 2 / = T(n) {z 1/2 z 1}, {z z 1/2} B 2 p( B 2 )X 1 X 1 2n S 1 S 1 H 1 (X 1 ) = Z 2n, Hk (X 1 ) = 0 (k 1) X 2 X 1 X 2 = S 1 (T(n);X 1,X 2 ) 0 H 2 (T(n)) Z i 2n j Z H 1 (T(n)) 0 0 H 0 (T(n)) 0 i Z = H 1 (S 1 ) ι H1 = (X 1 X 2 ) i 1 H 1 (X 1 ) r H1 = (S 1 S 1 ) = Z 2n i P(n) X 1, X 2 X 1 Im B 2 = S 1 S 1 n (P(n);X 1,X 2 ) 0 H 2 (P(n)) Z i Z n j H 1 (P(n)) 0 0 H 0 (P(n)) 0 i Z = H 1 (S 1 ) ι H1 = (X 1 X 2 ) i 1 H 1 (X 1 ) r H1 = (S 1 S 1 ) = Z n i 2 n (2n,...,2n) 23

24 1. B 2 S 1 4n a 1 b 1 a 1 1 b 1 1 a n b n a 1 n b 1 n T(n) p: B 2 T(n) X 1 = p({z 1/2 z }), X 2 = p({z z 1/2}) (a) f = (f 1,f 2,...,f 2n 1,f 2n ): S 1 S 1 S 1 (S 1 ) 2n i. (4k 4)π/2n argz (4k 3)π/2n f 2k 1 (z) = z 4n ii. (4k 3)π/2n argz (4k 2)π/2n f 2k (z) = z 4n iii. (4k 2)π/2n argz (4k 1)π/2n f 2k 1 (z) = z 4n iv. (4k 1)π/2n argz 4kπ/2n f 2k (z) = z 4n (1 k n) g p = f g: p(s 1 ) S 1 S 1 (b) r: X 1 p(s 1 )r(z) = p(z/ z ) p(s 1 )r X 1 (c) S 1 i X 1 X 2 i 1 X1 r p(s 1 ) g S 1 S 1 p j S 1 is 1 zp(z/2) i 1 p j j (1 j 2n) (d) i 1 : H1 (X 1 X 2 ) H 1 (X 1 ) 2. B 2 S 1 2n a 1 a 1 a n a n P(n) X 1, X 2 i 1 : H1 (X 1 X 2 ) H 1 (X 1 ) H 1 (X 1 )/Imi Z n 1 Z/2Z 24

25 (Z,Q) (X,Z) [(Z,Q),(X,A)] (X,x 0 ) π(x,x 0 ) = [(S 1,1),(X,x 0 )] I = [0,1], I = {0,1} e: (I, I) (S 1,1)e(t) = cos2πt+isin2πt σ σ e e : [(I, I),(X,x 0 )] [(S 1,1),(X,x 0 )] π(x,x 0 )[(I, I),(X,x 0 )] π(x,x 0 ) [α] [β] = [α β] α β α β (S 1,1) (X,x 0 ) S 1 γ 2 S 1 S 1 α β X X X (I, I) (X,x 0 ) α(2t), 0 t 1/2 α β(t) = β(2t 1), 1/2 t 1 f: (X,x 0 ) (Y,y 0 ) f : π(x,x 0 ) π(y,y 0 ) f ([α]) = [f α] π(x,x 0 ) [α] [β] = [α β] f: (X,x 0 ) (Y,y 0 ) f : π(x,x 0 ) π(y,y 0 ) (X,x 0 ) π(x,x 0 ), f: (X,x 0 ) (Y,y 0 ) f : π(x,x 0 ) π(y,y 0 ) 14.2 X x 0, x 1 l: I X l : π(x,x 0 ) π(x,x 1 ) l ([α]) = [ l α l] π(x,x 0 ) = [(I, I),(X,x 0 )] l(t) = l(1 t) l : π(x,x 0 ) π(x,x 1 ) f g: (X,x 0 ) (Y,y 0 ) f = g : π(x,x 0 ) π(y,y 0 ) f: (X,x 0 ) (Y,y 0 ) f : π(x,x 0 ) π(y,y 0 ) X x 0 π(x,x 0 ) = 1 25

26 ιh 1 (S 1 ) = Z α: (S 1,1) (X,x 0 ) α ([ι]) H 1 (X) η: π(x,x 0 ) H 1 (X) η: π(s 1,1) H 1 (S 1 ) w: π(s 1,1) η H 1 (S 1 ) deg Z f: I S 1 f(0) = cosθ 0 +isinθ 0 θ 0 f(t) = cosθ(t)+isinθ(t), θ(0) = θ 0 ( ) θ: I S 1 2. h: I I S 1 h(0,0) = cosθ 0 +isinθ 0 θ 0 h(t,u) = cosθ(t,u)+isinθ(t,u), Θ(0,0) = θ 0 Θ: I I S ( ) θ: I R f: I S 1 e: I S 1 e(t) = cos2πt+isin2πt (0 t 1) [α] [α e] π(s 1,1) = [(I, I),(S 1,1)] f: S 1 S 1 θ f e: [0,1] S 1 degη(f) = θ(1) θ(0) 2π deg η: π(s 1,1) Z π(s 1,1) = H 1 (S 1 ) 26

27 16 m S m R n C n f f( x) = f(x), x S m f: S 1 C {0} W(f,0) 16.2 ( ). f: S 2 C f(s 2 ) 16.3 ( ). 2 f: S 2 C f(x) = f( x) x S S ( ) (3 ). S 2 3 A, B, C 1. 0 α S 1 C {0}c(α) (a) 2z 0, z 1 C {0} z 0 z 1 l: [0,1] C {0} (b) α 0 c(α) c(1) (c) 1 S 1 c(1) 1 S 1 c(1) 1 S 1 2. (a) f: S 1 C {0} W(f,0) = 0 (b) f(z) f: S 1 C {0} W(f,0) = 0 (c) n z z n z n W(z n,0) = n (d) f, g: S 1 C {0} z f(z)/g(z)f/g W(f/g,0) = W(f,0) W(g,0) 3. f, g: S 1 C {0} z S 1 2f(z), g(z) W(f,0) = W(g,0) 4. 2 f, g: S 1 C {0} 0 < g(z) < f(z) W(f +g,0) = W(f,0) 27

28 R n+1 n = {(x 0,x 1,...,x n ) x 0 + x n = 1} n n X X n X n X n S n (X) n n S n (X) = 0 n n : S n (X) S n 1 (X) S n (X) σ: n X σ j : n 1 X (0 j n) (0,x 0,...,x n 1 ), j = 0 σ j (x 0,...,x n 1 ) = (x 0,...,x j 1,0,x j,...,x n 1 ), 0 < j < n (x 0,...,x n 1,0), j = n n σ = n ( 1) j σ j S n 1 (X) j=0 S n (X) n 1 σ 1 + +n k σ k, σ j : n X, n j Z, n (n 1 σ 1 + +n k σ k ) = n 1 n σ 1 + +n k n σ k n : S n (X) S n 1 (X) S(X) = {S n (X), n } H n (S(X))Xn f: X Y X σ: n X Y S n (f)(σ) = f σ: n Y S(f) = {S n (f)}: S(X) S(Y) f = S(f) : H n (S(X)) H n (S(Y)) AX S(A)S(X) S(X,A) = S(X)/S(A) 0 S(A) i S(X) j S(X,A) 0 S( ) = 0 S(X) S(X, ) : H n (S(X,A)) H n 1 (S(A)) H n (S(A)) i H n (S(X)) j H n (S(X,A)) H n 1 (S(A)) i 28

29 (X,A) {H n (S(X,A)) n Z} : H n (S(X,A)) H n 1 (S(A)) f g: (X,A) (Y,B) f = g : H n (S(X,A)) H n (S(Y,B)) H n (S(A)) i H n (S(X)) j H n (S(X,A)) H n 1 (S(A)) i U IntA H n (S(X U,A U)) = H n (S(X,A)) P n 0 H n (S(P)) = P h: X [0,1] Y ψ j : n+1 n [0,1] (e k,0), 0 k j ψ j (e k ) = (e k 1,1), j < k n+1 n σ S n (X)(n+1) Ψ n (σ) = n ( 1) n h (σ 1) ψ j S n+1 (Y) j=0 S n (X) S n+1 (Y)Ψ n Ψ = {Ψ n } S(h 0 )S(h 1 ) n+1 Ψ n +Ψ n 1 n = S n (h 1 ) S n (h 0 ) f = g : H n (S(X)) H n (S(Y)) h: (X,A) [0,1] (Y,B) Ψ = {Ψ n } S(h 0 ) S(h 1 ): S(X,A) S(Y,B) f = g : H n (S(X,A)) H n (S(Y,B)) (S(X U) S(A))/S(A) S(X)/S(A) S(X U)/(S(X U) S(A)) = (S(X U) S(A))/S(A) 29

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information