自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好
|
|
- こうた ありはら
- 3 years ago
- Views:
Transcription
1 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H : p H H : 帰無仮説 : 対立仮説 試料間に客観的な順序が存在する H : p > ( 片側検定 : 点識別法 ) 試料間に客観的な順序が存在しない H : p ( 両側検定 : 点嗜好法 ) 4 二項分布 回の試行で事象 A の起こる確率が P 回の判定で x 回 A が起こる確率は f ( x) x x CxP ( P)! Cx x!( x)! p f ( x) Cx( )
2 計算手順 8 平均 (μ x ) と標準偏差 (σ x ) により標準化 u x µ x σ x x P P( P) u は平均 分散 の標準正規分布に近似する x を連続量として扱ったため 連続のための補正 ( イェーツの修正 ) をした方が正規分布への近似 がよくなる ( 片側検定 ) x.5.5 x P u P( P) u が u α ( u ) 以上であれば 帰無仮説 H : p を棄却 9 微妙に色の濃さが異なるAとB ある人にAとBどちらが濃いいか 回判定させたところ 9 回正しく回答 ( 機械計測の結果と一致 ) した この人は色の濃さを識別できると言えるのか biom.test(9,,p.5,alterative"greater") H : p > が統計的にいえる biom.test(9,,p.5,alterative"greater") データ : 9 と 成功数 9, 試行数, P 値.74 対立仮説 : 成功確率 ( 母比率 ) は,.5 より大きい 95 パーセント信頼区間 : 標本推定値 : 成功確率 ( 母比率 ).9 ( 両側検定 ) x.5.5 x P u P( P) u が u α/ ( u ) 以上であれば 帰無仮説 H : p を棄却 H : p が統計的にいえる
3 3 4 biom.test(,5,p.5,alterative"two.sided") AとBでどちらが好きかを5 人に尋ねたところ 人がA,3 人がBと答えた 差はあるのか biom.test(,5,p.5,alterative"two.sided") データ : と 5 成功数, 試行数 5, P 値.6 対立仮説 : 成功確率 ( 母比率 ) は,.5 ではない 95 パーセント信頼区間 : 標本推定値 : 成功確率 ( 母比率 ).4 片側検定の例題を両側検定で解くと biom.test(9,,p.5,alterative"two.sided") 5. χ 検定 6 適合度の検定観測された頻度分布が理論分布と同じかどうか データ : 9 と 成功数 9, 試行数, P 値.48 対立仮説 : 成功確率 ( 母比率 ) は,.5 ではない 95 パーセント信頼区間 : 標本推定値 : 成功確率 ( 母比率 ).9 独立性の検定 つの変数に対するつの測定が互いに独立かどうか 測定データに関連 ( 対応 ) がある場合 つの条件 McNemar 検定 3 つ以上の条件 Cochra の Q 検定 分割表 ( クロス集計表 ) 7 カイ二乗分布 l m 分割表 B B B m 計 A O O O m T A 互いに独立な確率変数 X i が標準正規分布にしたがうとき 以下で与えられる確率変数 χ は χ 分布にしたがう A O O O m T A χ X i ~ χ ( ) 分布 i A l O l O l O lm T Al 計 T B T B T Bm T 3
4 カイ二乗分布 Chi-squared distributios 観測度数 (O O O ) が期待度数 (E E E ) とどの程度食い違っているか ( Oi Ei ) χ E i i ~ χ ( ) 分布自由度 (-p) 標本数 p 推定された母数の数 df df df 3 df 4 df 5 df 6 df 7 df 8 df B B B m 計 どれかの E i が 以下の時 分割表の時 A O O O m T A A O O O m T A イェーツの連続性の修正 ( Oi Ei.5) χ E i i E ij A l O l O l O lm T Al 計 T B T B T Bm T T T l m A i B j ( Oij Eij) χ i j Eij T 自由度 f ( l ) ( m ) χ 検定 ( 適合度の検定 ) 3 chisq.test(c(4, 5,, 5), pc(9, 3, 3, )/6) 4 カテゴリの度数が理論値と合っているかどうか 理論比が与えられたときのカイ二乗検定 ( 適合度検定 ) メンデルの遺伝法則 データ : c(4, 5,, 5) カイ二乗値.395, 自由度 3, P 値.943 表現形質 AA Ab ab ab 理論値 観測度数 警告メッセージ : I chisq.test(c(4, 5,, 5), p c(9, 3, 3, )/6) : カイ自乗近似は不正確かもしれません chisq.test(c(4, 5,, 5), pc(9, 3, 3, )/6) 差がない (p が大きい ) 理論と異なる観測値が得られたとは言えない 4
5 χ 検定 ( 独立性の検定 ) 質的変数が独立であるかどうか ( 連関があるかどうか ) 5 dat <- matrix(c(3,6,,9),col, byrowt) chisq.test(dat,correctf) ピアソンのカイ二乗検定 ( 連続性補正なし ) 6 男女間で差があるか? はい いいえ 男性 3 6 女性 9 カイ二乗値.55, 自由度, P 値.4698 chisq.test(dat) ピアソンのカイ二乗検定 ( イエーツの連続性補正 ) dat <- matrix(c(3,6,,9),col, byrowt) chisq.test(dat,correctf) カイ二乗値.46, 自由度, P 値.6 L M 分割表の独立性の検定 l m 分割表 B B B m 計 A O O O m T A A O O O m T A 7 A B C の 3 つの教育方法で各 5 人の学生に対して 授業をしたところ 優 良 可 不可の結果が表のよ うになった A B C で差はあると言えるのか 優 良 可 不可 A B C A l O l O l O lm T Al 計 T B T B T Bm T dat <- matrix(c(7,,8,3,,5,5,9,,,3,5),col4,byrowt chisq.test(dat) dat <- matrix(c(7,,8,3,,5,5,9,,,3,5),col4,byrowt chisq.test(dat) ピアソンのカイ二乗検定 ( 連続性補正なし ) カイ二乗値.843, 自由度 6, P 値 χ 検定の注意点 χ 検定をしてはいけない場合 期待値が 未満のセルがある 期待値が 5 未満のセルが全体の % 以上ある 3 5
6 論文での記載例 3 対応のある 3 ピアソンのカイ二乗検定 ( イエーツの連続性補正 ) 同じ人に条件を変えて計測 カイ二乗値.46, 自由度, P 値.6 年齢や経験等をマッチさせて計測 イエーツの連続性補正をおこなったカイ二乗検定を実施した その結果 χ (, N8).4,.s. であり 有意な差は認められなかった o sigificat イタリックに注意! 差があれば p <.5 p <. McNemar 検定 33 mcemar.test(matrix(c(5,3,,5),,), correctf) 34 対応のあるニ値データにおいて H : 比率に差はない H : 比率に差がある ( 両側検定 ) 前期の調査と後期の調査で差があるか? マクネマー検定 ( 連続性の補正なし ) データ : matrix(c(5, 3,, 5),, ) マクネマーのカイ二乗値, 自由度, P 値. 前期調査 賛成 反対 後期調査 賛成 5 3 反対 5 mcemar.test(matrix(c(5,3,,5),,), correctf) Cochra のQ 検定対応のあるニ値データにおいて 3つ以上の条件のもとで H : 比率に差はない H : 比率に差がある ( 両側検定 ) 35 A B C の人が 8 個の対象について評価をしたところ 結果が表のようになった A B C で差はあると言え るのか A B C source("all.r", ecodig"euc-jp") dat <-matrix(c(,,,,,,,,,,,,,,,,,,,,,,,), byrowt, r3) Cochra.Q.test(dat) 36 6
7 source("all.r", ecodig"euc-jp") 37 dat <-matrix(c(,,,,,,,,,,,,,,,,,,,,,,,), byrowt, r3) Cochra.Q.test(dat) コクランの Q 検定 カイ二乗値 , 自由度 7, P 値.694 7
情報工学概論
確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
Microsoft PowerPoint - A1.ppt [互換モード]
011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)
Microsoft PowerPoint - sc7.ppt [互換モード]
/ 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると
Medical3
1.4.1 クロス集計表の作成 -l m 分割表 - 3つ以上のカテゴリを含む変数を用いて l mのクロス集計表による分析を行います この例では race( 人種 ) によってlow( 低体重出生 ) に差が認められるかどうかを分析します 人種には3つのカテゴリ 低体重出生には2つのカテゴリが含まれています 2つの変数はともにカテゴリ変数であるため クロス集計表によって分析します 1. 分析メニュー
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説
第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない
Microsoft Word - apstattext03.docx
3 章質的データの検定これから検定の手法を順番に詳しく見て行きましょう 最初は質的データの検定についてです 質的データの検定は構成比率の検定で アンケートで賛成が過半数であるかとか 賛成の比率が男女で異なるかといったことを調べます これからは最初に例題を置き それについて College Analysis による回答を示します 理論のところではその検定のために使った公式を簡単に表示しますが 必要なければ無視してもらって結構です
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
経済統計分析1 イントロダクション
1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,
Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (
http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています
RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな
RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,
<4D F736F F D204B208C5182CC94E497A682CC8DB782CC8C9F92E BD8F6494E48A722E646F6378>
3 群以上の比率の差の多重検定法 013 年 1 月 15 日 017 年 3 月 14 日修正 3 群以上の比率の差の多重検定法 ( 対比較 ) 分割表で表記される計数データについて群間で比率の差の検定を行う場合 全体としての統計的有意性の有無は χ 検定により判断することができるが 個々の群間の差の有意性を判定するためには多重検定法が必要となる 3 群以上の比率の差を対比較で検定する方法としては
Microsoft PowerPoint - statistics pptx
統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
第7章
5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp
仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています
MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書の 1 つです カイ二乗検定 概要 実際には 連続データの収集が不可能な場合や難しい場合 品質の専門家は工程を評価するためのカテゴリデータの収集が必要となることがあります たとえば 製品は不良
Chapter カスタムテーブルの概要 カスタムテーブル Custom Tables は 複数の変数に基づいた多重クロス集計テーブルや スケール変数を用いた集計テーブルなど より複雑な集計表を自由に設計することができるIBM SPSS Statisticsのオプション製品です テーブ
カスタムテーブル入門 1 カスタムテーブル入門 カスタムテーブル Custom Tables は IBM SPSS Statisticsのオプション機能の1つです カスタムテーブルを追加することで 基本的な度数集計テーブルやクロス集計テーブルの作成はもちろん 複数の変数を積み重ねた多重クロス集計テーブルや スケール変数を用いた集計テーブルなど より複雑で柔軟な集計表を作成することができます この章では
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
EBNと疫学
ノンパラメトリック検定 94 質的変数と質的変数の関連性を調べる - クロス表 行周辺度数 肺がん合計発生発生しないあり 100 人 900 人 1000 人喫煙なし 10 人 990 人 1000 人合計 110 人 1890 人 2000 人 列周辺度数 95 クロス表 - 行パーセント 各行のセルの度数を行周辺度数で割って 100 をかけたもの 行周辺度数 肺がん合計発生発生しない 10%(100
目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順
SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3
<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>
第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団
統計学 Ⅱ(16 11-1 章 11 章母集団パラメータの推定 1. 信頼区間 (1 点推定と区間推定 ( 区間推定のシミュレーション (3 母平均 μの信頼区間 (4 母比率 pの信頼区間 (5 母比率 pのより厳密な信頼区間. 点推定量の特性 (1 標本平均 X の持つ望ましい性質 ( 不偏性 (3 推定量の分散と有効性 (4 平均 乗誤差 MEと最小分散性 (5 一致性 (6 チェビシェフの不等式
クロス集計表の作成 2 つのカテゴリ変数をもつデータがあるとする ( 例 )AGE( 年齢 ),EXPOSURE( 曝露の有無 ) と DISEASE( 病気の有無 ) についての 40 人のデータ タブ区切りテキストファイル
第 11 回クロス集計 (1) 今回はカテゴリ変数が 2 つ以上ある場合に, その関係をみる話に入ります クロス集計の方法とクロス集計表の操作 2 つのカテゴリ変数が独立 ( 無相関 ) であるという帰無仮説の検定 第 3 の変数で層別化することによって交絡を制御する話 2 つのカテゴリ変数間の関連の程度の評価 ( 次回 ) クロス集計表の作成 2 つのカテゴリ変数をもつデータがあるとする ( 例
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと
JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかというお問い合わせがよくあります そこで本文書では これらについて の回答を 例題を用いて説明します 1.
青焼 1章[15-52].indd
1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし
Microsoft PowerPoint - statistics pptx
統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
Microsoft Word - Stattext11.doc
章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や
Microsoft PowerPoint - Econometrics pptx
計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: kkarato@eco.u-toyama.ac.p webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
Microsoft Word - 【付録4】アンケート②結果.docx
Ⅰ. クロス集計 一人暮らしか否か と 各群 アンケート 2 分析結果 群 統制群 真心群 総計 はい 66 72 69 207 いいえ 18 18 16 52 無回答 2 0 0 2 総計 86 90 85 261 授業名 / 団体名 と 性別 授業名 / 団体名 性別 男性 女性 無回答 総計 Neopolis 5 5 0 10 purplum e 6 10 0 16 女子ラクロス部 0 30
Microsoft Word - Stattext13.doc
3 章対応のある 群間の量的データの検定 3. 検定手順 この章では対応がある場合の量的データの検定方法について学びます この場合も図 3. のように最初に正規に従うかどうかを調べます 正規性が認められた場合は対応がある場合の t 検定 正規性が認められない場合はウィルコクソン (Wlcoxo) の符号付き順位和検定を行ないます 章で述べた検定方法と似ていますが ここでは対応のあるデータ同士を引き算した値を用いて判断します
数値計算法
数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして
統計学の基礎から学ぶ実験計画法ー1
第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3
Microsoft PowerPoint - Lecture 10.ppt [互換モード]
講義予定 環境プラニング演習 II 第 0 回 009. 6. 7 千葉大学工学部都市環境システム学科 山崎文雄 http://ares.tu.cha-u.jp/ tu ujp/ ( 009 年 4 月 8 日 ( 土 :50 ー 4:0 演習の説明, 微分 積分と数値計算 ( 009 年 4 月 5 日 ( 土 :50 ー 4:0 微分 積分と数値計算 (3 009 年 5 月 9 日 ( 土 :50
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
スライド タイトルなし
アンケート調査とデータ集計 データ集計編 32 次のようなアンケート調査を実施した ( ことにする ) 生活実態調査 調査の主旨 : 生活満足度と経済力の関係を調べるためにアンケートを実施します なお 本目的以外にデータは利用しません ご協力をお願いします 整理番号 ( ) Q.1 自分の性別に 印をつけて下さい 1. 男 2. 女プロフィール項目 Q.2 年齢を記入して下さい ( ) 才質的データ
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
PowerPoint プレゼンテーション
学位論文作成のための疫学 統計解析の実際 徳島大学大学院 医歯薬学研究部 社会医学系 予防医学分野 有澤孝吉 (e-mail: karisawa@tokushima-u.ac.jp) 本日の講義の内容 (SPSS を用いて ) 記述統計 ( データのまとめ方 ) 代表値 ばらつき正規確率プロット 正規性の検定標準偏差 不偏標準偏差 標準誤差の区別中心極限定理母平均の区間推定 ( 母集団の標準偏差が既知の場合
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
MT2-Slides-13.pptx
計測工学 II 第 13 回 Excel による有意差の検定 今日の内容 第 13 回 Excel による有意差の検定 危険率や統計検定 を学習します 有意差とは? 計測して データを取りました データ処理して 特性を調べました それで 何がわかるの? ある治療法だと 病気の治癒率が高い! なぜ そう言い切ることができるの? 有意差があることを示す 意味の有る差 (Significant Difference)
. 測定方法 7 尺度化 ( 数値化 ) 8 絶対判断 評点法採点法カテゴリー尺度法 図示法 / 線分法 心理物理学的測定法 相対判断 分類法 格付け分類法 順位法 一対比較法 リッカート法 カテゴリー尺度法 / 評定尺度法 あなたは ですか? 9 SD(Semantic Differential)
内容. 感性評価 官能評価. 感性評価 官能評価の考え方 測定方法. 測定方法. 統計学 ( 概略 ). 感性評価 官能評価 官能評価と感性評価 官能評価 ヒトの感覚に基づいて評価をおこなうこと 感性評価 ヒトの感性に基づいて評価をおこなうこと イメージや嗜好などを含む 測定尺度 分析型官能評価 (Ⅰ 型官能評価 ) S.S. Stevens 人間が測定器のかわり 品質検査や工程管理嗜好型官能評価
<4D F736F F F696E74202D2088E38A77939D8C7695D78BAD89EF313691E63589F194E497A682C695AA8A84955C2E >
26// 第 5 回 医学統計勉強会 東北大学病院循環器内科 東北大学病院臨床研究推進センター 共催 東北大学大学院医学系研究科 EBM 開発学寄附講座 宮田 敏 比率と分割表 疾患の発症率など, 物事の頻度 (frequency) を議論する際, 以下の三つの概念を使い分ける. 比 (ratio):a, B ( ) が存在するとき,A/B を比という. A と B は互いを含まない. 例 : 性比.BMI=
講義資料 P2 文献の種類 著書論文 学会誌紀要報告書市販雑誌 その他学会発表 種類具体例注意すること出版社 保育学研究 ( 日本保育学会 ) 児童学研究 ( 聖徳大学 ) 児童心理 日本学術会議協力学術研究団体 / 査読付大学のレベル / 査読付 (2) 論文の書式 * 各研究科 指導教官によって
講義資料 P1 第 1 回ガイダンス 1 受講にあたって (1) 担当者宮本友弘 ( 東北大学高度教養教育 学生支援機構准教授 ) E-mail: tomohiro@tohoku.ac.jp 専門 : 心理学 / 教育情報学 (2) 授業の概要 ( シラバス参照 ) (3) 教材 1 授業用の Web サイトを開設しています http://www16.plala.or.jp/tm-home/rm2016/
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
無党派層についての分析 芝井清久 神奈川大学人間科学部教務補助職員 統計数理研究所データ科学研究系特任研究員 注 ) 図表は 不明 無回答 を除外して作成した 設問によっては その他 の回答も除外した この分析では Q13 で と答えた有権者を無党派層と定義する Q13 と Q15-1, 2 のクロ
Ⅰ 無党派層についての分析 無党派層についての分析 芝井清久 神奈川大学人間科学部教務補助職員 統計数理研究所データ科学研究系特任研究員 注 ) 図表は 不明 無回答 を除外して作成した 設問によっては その他 の回答も除外した この分析では Q13 で と答えた有権者を無党派層と定義する Q13 と Q15-1, 2 のクロス表 Q13 合計 Q15-1 男性 度数 76 78 154 行 % 49.4%
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>
高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,
Microsoft PowerPoint - ch04j
Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数
Microsoft Word - appendix_b
付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
異文化言語教育評価論 ⅠA 教育 心理系研究のためのデータ分析入門 第 3 章 t 検定 (2 変数間の平均の差を分析 ) 平成 26 年 5 月 7 日 報告者 :M.S. I.N. 3-1 統計的検定 統計的検定 : 設定した仮説にもとづいて集めた標本を確率論の観点から分析し 仮説検証を行うこと
異文化言語教育評価論 ⅠA 教育 心理系研究のためのデータ分析入門 第 3 章 t 検定 (2 変数間の平均の差を分析 ) 平成 26 年 5 月 7 日 報告者 :M.S. I.N. 3-1 統計的検定 統計的検定 : 設定した仮説にもとづいて集めた標本を確率論の観点から分析し 仮説検証を行うこと 使用する標本は母集団から無作為抽出し 母集団を代表している値と考える 標本同士を比較して得た結果から
MedicalStatisticsForAll.indd
みんなの 医療統計 12 基礎理論と EZR を完全マスター! Ayumi SHINTANI はじめに EZR EZR iii EZR 2016 2 iv CONTENTS はじめに... ⅲ EZR をインストールしよう... 1 EZR 1...1 EZR 2...3...8 R Console...10 1 日目 記述統計量...11 平均値と中央値... 11...12...15...18
<4D F736F F F696E74202D2088E38A77939D8C7695D78BAD89EF313791E63589F194E497A682C695AA8A84955C2E >
27//9 第 5 回 医学統計勉強会 東北大学病院循環器内科 東北大学病院臨床研究推進センター 共催 東北大学大学院医学系研究科 EBM 開発学寄附講座 宮田 敏 比率と分割表 疾患の発症率など, 物事の頻度 (frequency) を議論する際, 以下の三つの概念を使い分ける. 比 (ratio):a, B ( ) が存在するとき,A/B を比という. A と B は互いを含まない. 例 : 性比.BMI=
JUSE-StatWorks/V5 ユーザーズマニュアル
計数値の検定 推定 ここでは不良率や欠点数などの計数値のデータを取り扱います. 不良率は n 個の製品をランダムに選んだとき, そのうち何個が不良品だったか, 欠点数は 製品中にきずがいくつ見つかったか などを示すデータですが, 検定や推定にあたってそれぞれ二項分布や, ポアソン分布を想定します. 機能構成ここでは 5 種類の検定 推定を用意しており, 検定 推定の種類を選択すると仮説の条件設定,
Microsoft Word - 保健医療統計学112817完成版.docx
講義で使用するので テキスト ( 地域診断のすすめ方 ) を必ず持参すること 5 4 統計処理のすすめ方 ( テキスト P. 134 136) 1. 6つのステップ 分布を知る ( 度数分布表 ヒストグラム ) 基礎統計量を求める Ø 代表値 Ø バラツキ : 範囲 ( 最大値 最小値 四分位偏位 ) 分散 標準偏差 標準誤差 集計する ( 単純集計 クロス集計 ) 母集団の情報を推定する ( 母平均
解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札
解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札を入れまず1 枚取り出す ( 仮に1 番とする ). 最初に1 番の学生を選ぶ. その1 番の札を箱の中に戻し,
Microsoft Word - reg2.doc
回帰分析 重回帰 麻生良文. 前提 個の説明変数からなるモデルを考える 重回帰モデル : multple regresso model α β β β u : 被説明変数 epled vrle, 従属変数 depedet vrle, regressd :,,.., 説明変数 epltor vrle, 独立変数 depedet vrle, regressor u: 誤差項 error term, 撹乱項
CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研
CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育
一元配置分散分析法 F 検定と Welch 検定 一元配置分散分析で一般的に使用される F 検定は すべてのグループが共通だが未知の標準偏差 (σ) を共有するという仮定に基づきます 実際には この仮定が当てはまることはまれで その結果 タイプ I 過誤率の制御が難しくなります タイプ I の誤りと
MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです 一元配置分散分析 (ANOVA) 概要 一元配置分散分析は 3 つ以上のグループの平均を比較し 互いに有意に異なるかどうかを判断するために使用されます もう
基礎数理 ()Aさんは確定拠出年金の加入者となった 投資商品は収益率がそれぞれ独立な正規分布 N(7, σ ), N(, σ y ) に従う,Y から選択することとした の過去 8 年間の収益率の実績は {8,,,5,,-,6,}(%) Y の過去 6 年間の収益率の実績は {,,,4,,}(%)
平成 年 月 日 基礎数理 基礎数理 ( 問題 ) 問題. 次の () から (9) までの各問について それぞれの選択肢の中から正しい答えを選んで 指定 の解答用紙の所定欄にその記号を記入せよ ( 点 ) ()5 個のサイコロを転がすとき 得られたの目の数を の目の数をY とする この同時密度関数を f (, y) としたとき f (,) である ( ア ) 6 ( イ ) 7 5 ( ウ ) 7
はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式
統計演習 統計 とはバラツキのあるデータから数値上の性質や規則性あるいは不規則性を 客観的に分析 評価する手法のことである 統計的手法には様々なものが含まれるが 今回はそのなかから 記述統計と統計学的推測について簡単にふれる 記述統計 : 収集した標本の平均や分散 標準偏差などを計算し データの示す傾向や性質を要約して把握する手法のこと 求められた値を記述統計量 ( または要約統計量 ) と言う 平均値
禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな
第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る
Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード]
R で統計解析入門 (12) 生存時間解析 中篇 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv /fkh /d 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. 2 の場所に移動し, データを読み込む 4. データ
Microsoft PowerPoint - データ解析基礎2.ppt
データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ
Excelにおける回帰分析(最小二乗法)の手順と出力
Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel
Microsoft Word - apstattext05.docx
5 章 群間の量的データの検定 5. 対応のない検定手順例えば 男女の成績を比較しようとして試験を実施した場合 男性の集団 ( 群 ) と女性の集団 ( 群 ) との比較になりますから つの集団に同一人物は 人もいません しかしその試験で英語と国語の平均点を比較する場合 英語と国語を受験した集団には必ず同じ人がいます 前者のような場合を対応のないデータ 後者の場合を対応のあるデータと呼びます 対応のあるデータについては特別の処理ができるので
母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,
. 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を
0415
今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析
スライド 1
計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)
異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定
異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 4-1-1 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定の反復 (e.g., A, B, C の 3 群の比較を A-B 間 B-C 間 A-C 間の t 検定で行う
ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,
(1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )
第1回
やすだ社会学研究法 a( 2016 年度春学期担当 : 保田 ) 基礎分析 ( 1): 一変量 / 二変量の分析 SPSSの基礎 テキスト pp.1-29 pp.255-257 データの入力 [ データビュー ] で Excelのように直接入力できる [ 変数ビュー ] で変数の情報を入力できる 名前 変数の形式的なアルファベット名例 )q12 ラベル 変数の内容を表現例 ) 婚姻状態値 各値の定義例
Microsoft PowerPoint - 代表値と散布度.ppt [互換モード]
データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ
確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る
確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.
1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな
1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 治 医 の 観 症 例 治 医 の 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のない要約知識 直感 知識 直感 総合的評価 考察 総合的評価 考察 単変量解析の場合 多変量解析の場合 < 表 1.1 脂質異常症患者の TC と TG と重症度 > 症例 No. TC
Microsoft Word - SPSS2007s5.doc
第 5 部 SPSS によるデータ解析 : 追加編ここでは 卒論など利用されることの多いデータ処理と解析について 3つの追加をおこなう SPSS で可能なデータ解析のさまざま方法については 紹介した文献などを参照してほしい 15. 被験者の再グループ化名義尺度の反応頻度の少ない複数の反応カテゴリーをまとめて1つに置き換えることがある たとえば 調査データの出身県という変数があったとして 初期の処理の段階では
現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」
URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
Microsoft PowerPoint slide2forWeb.ppt [互換モード]
講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均
第1回
SPSS 基礎操作メモ IBM SPSS ver.20 で確認 保田時男 ( 関西大学社会学部 ) tyasuda@zf7.so-net.ne.jp これは SPSS を使ってレポート等で基礎的な調査データ分析をするための操作メモです SPSS のしっかりした入門書としては 小田 ( 2007) や秋川 (2007) を推薦しています 小田利勝 2007 ウルトラ ビギナーのための SPSS による統計解析入門
日経平均株価の推移 ( 円 ) 5,, 15, 1, 5, ( データ ) 日経 NEEDS 3 日本株価の推移 (1 年 1 月 =1) 5 日経平均 TOPIX JASDAQ ( データ ) 日
3. 株式投資のリスクとリターン 経済統計分析 (1 年度春学期 ) 株式投資のリスクとリターン ( 統計分析手法 ) 成長率 ( 株価上昇率 ) 指数 平均 分散 標準偏差 相関係数 分布と確率の計算 信頼区間の推定 ( 点推定と区間推定 ) 仮説検定 ( 平均値の検定 平均差の検定 ) ( 経済理論等との関連 ) 金融資産価格 ( 株価 債券価格 為替レート ) の決定要因 相互関連 リスクとリターンの関係
Microsoft Word - HM-RAJ doc
NIST 及び DIEHARD テストによる RPG100 乱数評価 FDK( 株 )RPG 推進室 2003/12/16 導入 RPG100 から生成される乱数を 2 つの有名なテストを用いて評価します 一方は米国機関 NIST により公開されている資料に基づくテストで 他方は Marsaglia 博士により提供されているテストです 乱数を一度テストしただけでは それが常にテストを満足する乱数性を持っていることを確認できないことから