1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

Size: px
Start display at page:

Download "1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1."

Transcription

1 1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456, b = = , 5 2. a = 38, b = 7 38 = 7 ( 6) , a b (mod n) a b n : = a b n a =

2 2 1 na +r 1, b = nb +r 2 0 r 1, r 2 < n a b = n(a b )+(r 1 r 2 ) r 1 r 2 n r 1 = r 2 r 1 r 2 n t r 1 r 2 = nt 0 r 1 < n, 0 r 2 < n 0 r 1 r 2 < n t = 0 r 1 = r 2. a b (mod n) = a, b n a = na + r, b = nb + r a b = n(a b ) n 1.4 (a) a b (mod n), c d (mod n) = a ± c b ± d (mod n). (b) a b (mod n), c d (mod n) = a c b d (mod n). : (b) (a) a b (mod n) 1.2 a b n k a b = nk l c d = nl ac bd = ac bc + bc bd = (a b)c + b(c d) = nkc + bnl = n(kc + bl) ac bd n a c b d (mod n) (mod 10) (mod 10), (mod 10) = 6 (mod 10) (mod 3), (mod 3) (mod 3) 2 n 2 mod n {0, 1, 2,, n 1} Z n 1.5 a, b Z n 1. a, b a + b n a + n b 2. a, b a b n a n b 3. a, b a b n a n b a ± n b, a n b Z n 4 1. n = = 2, = 4, = 7

3 3 2. n = = 2, = 6, = 1 (ring) (f) Z n 1.6 (a) ) (a + n b) + n c = a + n (b + n c) (b) ) a + n b = b + n a (c) ) a + n 0 = 0 + n a = a (d) ) a + n (n a) = (n a) + n a = 0 (e) ) (a n b) n c = a n (b n c) (f) ) a n b = b n a (g) ) a n 1 = 1 n a = a (h) ) (a + n b) n c = (a n c) + (b n c) : 1 (a) (d) + group (Z n, +) (b)

4 (2) (3) (4) (5) (6) Z 12 a 4 12 a = 0 a a = 0, 1,, 11 ) 3. Z 16 a 6 16 a = 0 a (1) (2) (3) (1) (2) (3) )

5 a, d a = qd q d a a d d a 2.2 a, d d a b d a, b 2.3 a, b a = a d, b = b d d a, b a, b (greatest common divisor) gcd(a, b) (a, b) a, b 1 a, b 5 a = 18, b = 30 d d = 1, 2, 3, 6, 1, 2, 3, (18, 30) = 6. 6 a = 40, b = 27 d d = 1, 1 1 (40, 27) = a, b a > b a b r : (a, b) = d, (b, r) = d (a, b) = (b, r) (i) a = bq + r d r a = da, b = db r = a bq = d(a b q) d b, r d d.

6 6 2 (ii) b = d b 0, r = d r 0 a = bq + r = d (b 0 q + r 0 ) d a d a, b d d (iii) d = d. 2.5( ) a, b (a > b) (a, b) r i 1 r i 1. a b q 1 r 1 a = bq 1 +r 1, (0 r 1 < b). r 0 = b 2. r 1 0 r 0 (= b) r 1 q 2 r 2 b = r 1 q 2 + r 2, (0 r 2 < r 1 ). 3. r 2 0 r 1 r 2 q 3 r 3 r 1 = r 2 q 3 + r 3, (0 r 3 < r 2 ). 4. r i 1 r i r i 1 = r i q i+1 + r i+1, (0 r i+1 < r i ). 5. r k 1 = r k q k+1 r k+1 = 0 (a, b) = r k : 1 (a, b) = (b, r 1 ) = (r 1, r 2 ) = = (r k, r k 1 ) = (r k, 0) = r k 2.6 a, b (a, b) = d ax + by = d x, y : 7 (40, 27) = 1 40x + 27y = 1 x, y 1 40 = = a b 2 27 = = = b 2(a b) = 13 = 2a + 3b 1 = 2a + 3b x = 2, y = 3 40x + 27y = 1 8 (123456, 789) a = , b = 789

7 = = a 156b = = 2a + 313b = = 17a 2660b 4 45 = = 53a b 5 12 = = 70a 10953b 6 9 = (123456, 789) = x + 789y = 3 (x, y) = (70, 10953) 2.7 a, b, c a bc (a, b) = 1 a c : (a, b) = ax + by = 1 x, y c acx + bcy = c a bc bc = at t acx + aty = a(cx + ty) a c a p p ±1, ±p p a, b p ab p a p b : p a (p, a) = p b

8 (1) (18, 45) (2) (182, 143) (3) (102, 84) 2. 1 x, y (1) 18x + 45y = (18, 45). (2) 182x + 143y = (182, 143). (3) 102x + 84y = (102, 84) , 3, 4, , 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, (12345, 67890) 12345x y = (12345, 67890)

9 9 3 Z n Z n = {0, 1, 2,, n 1} + n n n Z n 2 Z n M 2 M M M M M = {(a, b) a, b M} II 1 1. G 2 : G G G G e G, x G (x e = e x = x). e G x G, y G (x y = y x = e). y x x, y, z G ((x y) z = x (y z)). 2 e 1, e 2 e 1 = e 1 e 2 = e 2 9 Z 6 : n = 6 Z 6 = {0, 1, 2, 3, 4, 5} Z 7 : n = 7 Z 6 = {0, 1, 2, 3, 4, 5, 6}.

10 10 3 Z n Z n R 2 : R R R : R R R R R 0 e R, x R (x e = e x = x). e x, y, z R ((x y) z = x (y z)). x, y, z R ((x y) z = (x z) (y z)). 2. R 0 x R (x 0 = y R (x y = e)); 0 R 10 R = Z n + n, n Z n (a + n b) n c = a n c + n b n c Z n n 3.1 n Z n a n (a, n) = 1 a n r = 1 r Z n : (a, n) = 1 ax + ny = 1 x, y Z 2

11 ax 1 (mod n) x n r x r (mod n) r Z n a n r = n = p Z p : p 0 a = 1, 2,, p 1 p 3.1 a p x = 1 x Z p 3.3 n Z n : n 1 < a, b < n n = ab Z n a, b 0 Z n b n x = 1 x Z n a a n (b n x) = (a n b) x = 0 n x = 0 a n 1 = a a = 0 n Z n 3.4 Z n a n Z n b b n a n x = b x Z n : a n 3.1 a n y = 1 y Z n b (a n y) n b = a n (y n b) = b x = y n b 3.5 Z n n Z n a 0 n 1 Z n 1 :a n 3.1 a n y = y n a = 1 y Z n a n x 1 = a n x 2 y y n (a n x 1 ) = y n (a n x 2 ). y n (a n x 1 ) = (y n a) n x 1 = 1 n x 1 = x 1, y n (a n x 2 ) = (y n a) n x 2 = 1 n x 2 = x 2 x 1 = x 2 x = 0, 1,, n 1 a x n

12 12 3 Z n 3 1. Z 6 Z 6 x (1) 5 6 x = 2 (2) 3 6 x = 3 (3) x 6 4 = 2 2. Z 6 Z 6 x (1) 5 6 x) = 1 (2) 5 6 x) = (3 6 x) (3) (2 6 x) = (5 6 x) Z Z 11 x (1) 4 11 x = 3 (2) 8 11 x) = (5 11 x) (3) (2 11 x) = (9 11 x) Z Z 13 x (1) 6 13 x = 5 (2) 9 13 x) = (3 13 x) (3) (2 13 x) = (7 13 x) Z Z n 0 0 2

13 x + 5y = 1 (x, y) Z Z 2x + 5y = 1 (x, y) = ( 2, 1). 1 6x + 9y = 2 1 x, y Z a, b, c Z ax + by = c x, y (a, b) c : (1) = (a, b) = d, a = a d, b = b d ax+by = d(a x + b y) = c a x + b y Z d c. (2) = c = dk ax+by = d x, y Z a(xk) + b(yk) = dk = c xk, yk Z 1 ax + bc = c a, b d = (a, b) c c = c d ax + cy = d x, y c a(c x) + b(c y) = c d = c x 0 = c x, y 0 = c y

14 a, b, c Z, d = (a, b) c a = a d, b = b d ax+by = c x = x 0, y = y 0 x = x 0 + b t y = y 0 a t t : ax 0 +by 0 = c x, y ax+by = c 2 a(x x 0 )+b(y y 0 ) = 0 a(x x 0 ) = b(y 0 y) (a, b) = d a (x x 0 ) = b (y 0 y) a (x x 0 ) = b (y 0 y) a = a d, b = b d (a, b ) = a y 0 y y 0 y = a t t Z y = y 0 a t. a (x x 0 ) = b a x x 0 = b t x = x 0 + b t (x 0 + b t, y 0 a t) ax + by = c a(x 0 +b t)+b(y 0 a t) = ax 0 +by 0 +ab t ba t = c+da b t db a t = c x + 30y = 12 x = 4, y = 2 x = 4 + 5t y = 2 3t t Z t = ±1, ±2, ±3, (x, y) = (9, 5), ( 1, 1), (14, 8), ( 6, 4), (19, 11), ( 11, 7), 12 40x + 27 = 3, 40x + 27y = 1 x = 2, y = 3 3 (x, y) = ( 6, 9) x = t y = 9 40t

15 15 t Z (x, y) = (21, 31), ( 33, 49) t = ±1 (a, b) = d ax + by = d (x 0, y 0 ), ) 1 1. ax + by = c a, b, c Z 2. (a, b) = d 3. d c 4. d c (a, b) = d c a = a d, b = b d, c = dc 5. ax o + by o = d x o, y o x = c x o + b t 6. y = c y o a t (t Z) 3 ax + by = c d a x + b y = c (a, b ) = 1 a k + b m = 1 k, m x 0 = kc, y 0 = mc x = x (x 0, y 0 ) a x + b y = c 0 + b t (t Z) y = y 0 a t

16 (1) 3x + 5y = 1 (2) 4x + 10y = 6 (3) 6x 15y = x 1 10 (1) 2x 7y = 3. (2) 7x 3y = 2. (3) 6x + 4y = x, y (1) 3x + 2y = 20. (2) 5x + 3y = 35. (3) 7x + 4y = (1) 10 (2) (1) ax + by = 6 1 a, b 1 a b 6 b = 6 a b = 5 7. (2016 IA) 92x + 197y = 1 x, y, x x = a, y = b 92x + 197y = 10 x, y, x x = c, y = d

17 ax c (mod n) 1 1 ax c (mod n) y(ax c = ny) ax ny = c ax c (mod n) x = x o ax o c (mod n) ax o c n,ax o c = ny o y o ax o ny o = c ax ny = c (x o, y o ) d = (a, n) x = x o n d t y = y o a (t Z) x = x o n t (t Z) d t d ax c (mod n) ( x. 5.1 n a, c ax c (mod n) 1 x ax c (mod n) x = x o x 1 x o (mod n) x 1 : x 1 x o (mod n) x 1 = x o + nt ax o c (mod n) y o (ax o ny o = c) y 1 = y o + at ax 1 ny 1 = a(x o +nt) n(y o + at) = ax o ny o +ant ant = ax o ny o = c ax 1 c (mod n) 4 1 ax c (mod n) 0 x < n

18 d = (a, n) a, n 1 ax c (mod n) d c. 0 x < b d : n = n d x 1 x = x 1, x 1 + n, x 1 + 2n,, x 1 + (d 1)n d : 1 ax c (mod n) ax c n y ax c = ny ax ny = c 1 ax c (mod n) 1 ax ny = c (a, n) c ax c (mod n) (x 0, y 0 ) t d = (a, n) x = x 0 n d t = x o n t, y = y 0 a t 0 x < n d 0 x 0 n t < n x o n d < t x o n. x d : 0 x 1 x = x 1, x 1 + n, x 1 + 2n,, x 1 + (d 1)n x 0 n d < t x 0 n t x 0 x < n d 5.3 Z n (3 5.4 Z n a, c Z n a n x = c (a, n) = d c (a, n) = d c d x 1 x = x 1, x 1 + n, x 1 + 2n,, x 1 + (d 1)n 13 (a) 72x 47 (mod 200) (b) 8x 6 (mod 14) : (a) (72, 200) = (b) (8, 14) = 2 0 x < x 14y = 6 (x, y) = ( 1, 1) x = 1 7t 1 t = 1, 2 x = 6, 13 1 y

19 ax c (mod n) 2. d = (a, n) 3. d c d c n = n d ax ny = c 1 x o 5. x o n r 6. x = r, r + n, r + 2n,, r + (d 1)n (mod n) (1) 3x 4 (mod 5) (2) 4x 7 (mod 9) (3) 10x 4 (mod 12) 2. 1 (1) 4x + 2 x + 6 (mod 7) (2) 8x + 2 2x 7 (mod 15) (3) 3x 4 7x 2 (mod 18) x a (mod 10) 0 9 a

20

21 n 2 n : n = ab 1 < a, b < n a > n, a > n n = ab > ( n) 2 = n a n b n 1. n 2. S = {2, 3, 4,, n} 3. p = 2 4. p p 5. S p p 6. p n p S n n n : p 1, p 2,, p n N = p 1 p 2 p n N q q = N q p 1, p 2,, p n q N N p i 1

22 (Euler Ω := { } 1. n=1 1 n = n = n=1 ( k + ) ( k + ) ( k + ) ( k + ) (1+p 1 +p 2 +p 3 + +p k + ) = 1 1 p 1. p Ω 3. Ω 1 1 < 1 p 1 n = p Ω n=1 Ω 6.4 p 3 1. n 2 n + p n = 1, 2, 3,, p 1 2. p 2, 3, 4, 11, 17, Q( 1 4p) 1 : n n = p e1 1 pe2 2 pe r r p 1, p 2,, p r e 1, e 2,, e r p 1, p 2,, p r : 7 2 Q( 5) 6 = 2 3 = (1 5)(1 + 5)

23 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = , 6, 8, n p p s n p s+1 n v p (n) = s (1) v 2 (100) (2) v 3 (162) (3) v 5 (1234) (4) v 7 (1029) 3. 2 (1) n, m p v p (nm) = v p (n) + v p (m) (2) n, m p v p (n + m) min(v p (n), v p (m)) min(a, b) a, b

24

25 25 7 n 3 x n + y x = z n xyz 0 17 (P. Fermat) 1 n = 4 n = 3 (L. Euler) (E. Kummer) (A. Wiles) Z p = {0, 1, 2,, p 1} F p 1 ( 3 3.2) p F p (Field) 0 x F p (x 0 = x 1 F p ). : a F p 0 a p (a, p) = x, y Z(ax + py = 1) ax 1 (mod p) x p b b F p ab = 1 b = a 1 (a) a p a p 1 1 (mod p) p a a p 1 1 p (b) a a p a (mod p) a a p a p (a ) a F p (a 0 = a p 1 = 1). (b ) a F p (a p = a). 8 (a), (b) (a ), (b ) 1 n = 1, = 5 2 2

26 (b), (b ) (a), (a ) a p a p p a 0 (mod p) a p 0 (mod p) a p a (mod p) a p a p 1 1 (mod p) a a p a (mod p) : 2 p = 2 p p > 2 (i) a = 1, 2, a p a (mod p) a = 1 a p 1 (mod p) n p n (mod p) (n + 1) p n + 1 (mod p) 2 (n + 1) p = n p + pn p 1 p(p 1) + n p pn p (n + 1) p n p + 1 (mod p) n p n (mod p) (n + 1) p n + 1 (mod p) a = 1, 2, 3, 4, a p a (mod p) a a = b b > 0 b p b (mod p) p a p = ( 1) p b p = b p b = a (mod p) a p ax 1 (mod p) x a p a (mod p) x a p x ax 1 (mod p) a p x = a p 1 ax a p 1 (mod p) a p 1 1 (mod p) (ii) F p = {x 1, x 2,, x p } {ax 1, ax 2,, ax p } = {x 1, x 2,, x p } ax i = ax j a 1 F p a 1 x i = x j {ax 1, ax 2,, ax p } F p p ax 1 ax 2 ax p = a p 1 x 1 x 2 x p = x 1 x 2 x p a p 1 = = (mod 13) 12 8 = = (96+4) 4 12, = 12 m+4 m (mod 13) = 2 12 m+4 = 2 12 m 2 3 = (2 12 ) m = 16 3 (mod 13) = = = =

27 2 12 m 2 3 = (3 16 ) (mod 13) F p 0 a a p 0 0 : a a+a+ +a = p a 0 (mod p) p a 0 < m < p m a+a+ +a = ma 0 (mod p) p ma p a p m 7.2 F p 0 (p 1) 1 : 7.2 p a a p 1 1 (mod p) : a a p 2 a : a p 1 = 1 a p 1 = a a p 2 = 1 a 1 = a p 2

28 (1) (2) (3) (1) (2) (3) n 1 n + 2 n n

29 29 8 K F p R C Q K : (field) f(x) = a 0 + a 1 x + a 2 x a n x n a i K K- (polynomial) a n 0 f(x) (degree) n deg f(x) = n , 3 3 f(x) = a 0 a f(x) = a 0 +a 1 x+a 2 x 2 + +a n x n x x f(t) = a 0 +a 1 t+a 2 t 2 + +a n t n K K- f(x) = a 0 + a 1 x + a 2 x a n x n, g(x) = max{n,m} b 0 + b 1 x + + b m x m f(x) + g(x) := (a i + b i )x i i= f(x) f(x) + 0 = 0 + f(x) = f(x)

30 F 5 - f(x) = 4x 2 + 3x + 1 g(x) = 2x + 1 f(x) + g(x) = 4x 2 + 5x + 2 = 4x F 5 5 = K- f(x) = a 0 + a 1 x + a 2 x a n x n, g(x) = max{n,m} b 0 + b 1 x + + b m x m f(x) g(x) := (a i b i )x i i=0 17 F 5 - f(x) = 4x 2 +3x+1 g(x) = 2x+1 f(x) g(x) f(x) g(x) = 4x 2 + x g(x) f(x) = 4x 2 x = x 2 + 4x F 5 4 = 1, 1 = K- f(x) = a 0 + a 1 x + a 2 x a n x n, g(x) = b 0 + nm b 1 x + + b m x m f(x) g(x) = f(x) g(x) := ( a i b j )x l l=0 i+j=l 13 1 f(x) f(x) 1 = 1 f(x) = f(x) 18 F 5 - f(x) = 4x 2 + 3x + 1 g(x) = 2x + 1 f(x) g(x) = 8x 3 +4x 2 +6x 2 +3x+2x+1 = 8x 3 +10x 2 +5x+1 = 3x 3 +1 F 5 8 = 3, 10 = 0, 5 = 0 5 = 0 19 F 7 (x 2 + 3x + 5) (2x + 4) = 2x 3 + 4x 2 + 6x x + 10x + 20 = 2x x x + 20 = 2x 3 + 3x 2 + x + 6 F 7 10 = 3, 22 = 1, 20 = 6 5 = K- K[x] 14 x t K[x] = K[t]

31 K[x] (a) ) (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)) (b) ) f(x) + g(x) = g(x) + h(x) (c) ) f(x) + 0 = 0 + f(x) = f(x) (d) ) f(x) + ( f(x)) = ( f(x)) + f(x) = 0 (e) ) (f(x) g(x)) h(x) = f(x) (g(x) h(x)) (f) ) f(x) g(x) = g(x) f(x) (g) ) f(x) 1 = 1 f(x) = f(x) (h) ) (f(x) + g(x)) h(x) = (f(x) h(x)) + (g(x) h(x)) : Z n f(x), g(x) K[x] deg g(x) > 0 f(x) = g(x)q(x) + r(x) deg r(x) < deg g(x) q(x), r(x) K[x] q(x) f(x) g(x) r(x) f(x) g(x) 20 K = F 5 = {0, 1, 2, 3, 4} f(x) = 2x 3 + 3x 2 + 4x + 2 g(x) = 3x 2 + x + 2 q(x), r(x) mod 5 q(x) = 4x + 3, r(x) = 3x + 1

32 F 7 - f(x) = 4x 3 + 5x + 6, g(x) = 2x 2 + 3x + 2 (1) f(x) + g(x) (2) f(x) g(x) (3) g(x) f(x) (4) f(x) g(x) 2. (1) F 2 (x + 1) 2 (2) F 3 (x + 1) 3 (3) F 5 (x + 1) (1) F 5 3x 3 + 2x 2 + 2x + 4 4x 2 + 3x + 2 (2) F 7 5x 3 + 6x x + 4 (3) F 11 x x 3 + x 2 + x F 5 1 (1) x 2 + 3x + 2 (2) x (3) x 2 + 2x + 2

33 K f(x) = a 0 + a 1 x + a 2 x a n x n a 0 + a 1 x + a 2 x a n x n = 0 K- n (equation) f(α) = 0 α K, f(x) root 9.2 K n n : K f(x) = 0 α f(x) f(x) = (x α)g(x) g(x) K n 1 : f(x) x α f(x) = (x α)g(x) + r r K x = α f(α) = r f(α) = 0 r = 0 f(x) = (x α)g(x) degf(x) = deg(x α) + degg(x) degg(x) = n 1 21 K = F 7 = {0, 1, 2, 3, 4, 5, 6} f(x) = 2x 2 + 4x + 5 f(x) = 0 f(α) = 0 α F 7 x F 7 f(2) = 0 f(x) x 2 f(x) = (x 2)(2x + 1) 2x + 1 = 0 F 7 x = 3 2, 3 22 K = F 23 = {0, 1, 2, 3, 4, 5, 6,, 21, 22} F 23-3 x 3 + 2x 2 + 2x + 18 = 0 f(x) = x 3 + 2x 2 + 2x + 18 f(1) = 0 f(x) x 1(= x + 22) f(x) = (x 1)(x 2 + 3x + 5) g(x) = x 2 + 3x + 5 g(3) = 0 g(x) x 3(= ) g(x) = (x 3)(x + 6) g(x)

34 34 9 x = 6 = 17 x 3 + 2x 2 + 2x + 18 = 0 F 23 1, 3, f(x) = a 0 + a 1 x + a 2 x a n x n f(x) = g(x)h(x) 0 < deg g(x) < n, 0 < deg h(x) < n K- g, h f(x) K 23 K = F 11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} f(x) = x F 11 f(α) = 0 α F 11 f(x) = (x α)g(x) F = 10 f(2) = 0 h(x) = x F 11 h(x) = (x α)(x β) h(α) = 0, h(β) = 0 F 11 α h(α) = F 7 - (1) x 2 + x + 1 = 0 (2) 3x 2 + 3x + 1 = 0 (3) x 3 + 2x 2 + 2x + 1 = 0 2. F 13 - (1) x = 0 (2) 8x 2 + 4x + 1 = 0 (3) x 4 1 = 0 3. p F p x p 1 = 1 = (x 1)(x 2) (x (p 1)) 4. p (p 1)! 1 (mod p) 3 1 7, 8 5. F 17 2, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7,

35 n 3 α C 1 n α x n = 1 α C 1 n α n = 1, α m 1 (m = 1, 2, 3,, n 1) 1 4 x 4 = 1 µ 4 = {1, i, 1, i} i 2 = 1, i 3 = i, i 4 = 1 µ 4 = {i, i 2, i 3, i 4 } 1 4 i i 1 4 i ± , 1 2 ±i x 8 = 1 µ 8 ζ = e 2πi 8 = cos 2πi 2πi + i sin 8 8 µ 8 = {ζ, ζ 2, ζ 3, ζ 4, ζ 5, ζ 6, ζ 7, ζ 8 } 1 8 ζ ζ 1 8 ±1, ±i , 5, 7 α = ζ 3, β = ζ 5, γ = ζ n φ(n) := # {m; 1 m n, (n, m) = 1} 25 φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2, φ(7) = 6, φ(8) = n φ(n) 10.2 p F p = {0, 1, 2,, p 1} 0 F p F p = {1, 2, 3,, p 1}. a F p ap 1 = 1 p 1 F p a x p 1 = 1

36 a F p an = 1 n (1 n p 1) a p = 3, 5, 7, F 3 = {1, 2} 1 2 = 1, 2 2 = 1 F 5: a a 2 a 3 a F 7: a a 2 a 3 a 4 a 5 a a p 1 = 1 a F p ap 1 = 1 1 n < p 1 n a n = 1 F 5 1, 4 F 7 1, 2, 4, 6 1 n < p 1 n a n 1 n = p 1 a n = 1 F 5 2, 3 F 7 3, 5 a n = 1 n (1 n p 1) p a F p a p 1 : a F p, a 1 a k a m 1 (1 m k 1), a k = 1 k p 1 p 1 k r p 1 = kq + r (0 r < k) q r = (p 1) kq a r = a (p 1) kq = a p 1 (a k ) q = 1

37 r 0 0 < r < k a k r = 0 k p a F p a p 1 F p 10.3 p a p a p p F p φ(n) 10.5 F p g g p 1 2 = 1(= p 1) : x = g p 1 2 x 2 = g p 1 = 1 x = ±1 g x 1 x = g p 1 2 = 1. p a F p 1 p 1 p 1 m a m F 13 3 p 1 = 13 1 = 12 2, 3, 4, = 9 1, 3 4 = 3 1, 3 6 = 27 = F 13 4 p 1 = 13 1 = 12 2, 3, 4, = 3 1, 4 4 = 9 1, 4 6 = 27 = F 13 6 p 1 = 13 1 = 12 2, 3, 4, = 10 1, 6 4 = 9 1, 6 6 = 12 =

38 (1) F 11 2 (2) F 13 2 (3) F (1) (2) (3) (1) F (1) F 11 p 1 = 11 1 = 10 1, 2, , F F 5 2, 3 2 F 5 = {2, 2 2, 2 3, 2 4 } = {3, 3 2, 3 3, 3 4 }, F 7 3, 5 2 F 7 = {3, 3 2, 3 3, 3 4, 3 5, 3 6 } = {5, 5 2, 5 3, 5 4, 5 5, 5 6 } 18 F p 1 (cyclic group) r F p =< r > F p =< 2 > F 5 =< 3 > F 7 =< 3 > F 7 =< 5 >

39 39 11 p F p = {0, 1, 2,, p 1} 0 F p. a F p an = 1 n > 0 a ord(a) 11.1 F p r F p ri (0 i p 2) F p = {r 0, r, r 2, r 3,, r p 2 } r 0 = 1 : p 1 : ord(r) = p 1 1 i, j < p 1 r i = r j (j i) r i j = 1 i j p 1 1 i, j < p 1 i = j {r 0, r, r 2, r 3,, r p 2 } p 1 F p = {r 0, r, r 2, r 3,, r p 2 } 11.2 a F p a = rk k (0 k p 1) ind r (a) a F p r : 1 0 ind r (1) = 0. F 5 2, 3 2 1, 2, 3, 4 a 2 3 a a a 4 1 1

40 40 11 a ord(a) ind 2 (a) ind 3 (a) F 7 3, 5 2 1, 2, 3, 4, 5, 6 a 3 5 a a a a a a ord(a) ind 3 (a) ind 5 (a) F p r r n = 1 n p 1 r n 1(mod p) n p 1 : n = q(p 1) + k (0 k < p 1) 1 = r n = r q(p 1) r k = (r p 1 ) q r k = r k 0 k < p 1 k = 0 ind r (a) log 11.3 F p r ind r (ab) ind r (a) + ind r (b) (mod p 1) ind r (a n ) n ind r (a) (mod p 1) : ind r (a) = m, ind r (b) = n, ind r (ab) = k r m = a, r n = b, r k = ab r k = ab = r m r n = r n+m r k (n+m) = 1 k (n + m) p 1 k n + m (mod p 1) ind r (ab) ind r (a) + ind r (b) (mod p 1)

41 41 19 log(ab) = log(a) + log(b) 11.4 F p r F p p 1 (p 1, ind r (a)) : (p 1, ind r (a)) = s, p 1 = sk, m = ind r (a) = sl (k, l) = 1 a = r m = r sl ord(a) = t a t = r mt = r stl = 1 t mt = slt p 1 t = k ord(a) = t = k = p 1 = s p 1 (p 1, ind r (a)) F p - x n 1 = 0 F p 1 (n, p 1) > 1 n p 1 n 1 r p 1 = ns 1, r s, r 2s,, r (n 1)s : r F p x n 1 = 0 F p 1 (n, p 1) > 1 (n, p 1) = 1 α F p (α n = 1) = α = 1 (n, p 1) = 1 nk + (p 1)l = 1, k, l Z α = α nk+(p 1)l = (α n ) k (α p 1 ) l = 1 (n, p 1) = d > 1 x n 1 = 0 F p 1 n = dn, p 1 = dm d > 1 m < p 1 r m 1 (r m ) n = r nm = r n (p 1) = (r p 1 ) n = 1 n = 1 r m x n 1 = 0 n p 1 p 1 = ns j = 1, 2,, n 1 r js F p (xjs ) n = x jns = n j(p 1) = 1 x n 1 = 0 F p - n 7 3 1, r s, r 2s,, r (n 1)s 29 F 7 - x 3 1 = 0 p 1 = 3 2 r F 7 1, r 2, r 4 r = 3 1, 3 2 = 2, 3 4 = 4 r = 5 1, 5 2 = 4, 5 4 = 2 1, 2, 4

42 F p F p 0 (1) F (1) x F 11 2 ind 2 (x) ord(x) (2) F (2) x F 13 2 ind 2 (x) ord(x) 2. (1) F 11 x 5 1 = 0 (2) F 13 x 4 1 = 0 (3) F 17 x 8 1 =

43 F p - 2 x n = a F p - 2 x n a = 0 2 a = 1 a F p, a 0 p = 2 a F 2, a 0 = a = 1 x n = 1 x = 1 p > 2 F p r xn = a x F p, x 0 k = ind k (x) x = r k ind r (x n ) n ind r (x) = n k ind r (r) = nk ind r (a) (mod p 1). x n = a x F p, x = r k 1 nx ind r (a) (mod p 1) X = k 1 nx ind r (a) (mod p 1) X = k x = r k x n = a nk ind r (a) = m(p 1) x n = (r k ) n = r nk = r indr(a)+m(p 1) = r indr(a) r m(p 1) = a 1 = a 1 nx ind r (a) (mod p 1) (n, p 1) ind r (a) 1 nx ind r (a) (mod p 1) (n, p 1) = d X = k 1, k 2,, k d r k 1, r k 2,, r k d x n = a F p -

44 F p - 2 x n = a F p r d = (n, p 1) ind r (a) d ind r (a) d ind r (a) 1 nx ind r (a) (mod p 1) d X = k 1, k 2,, k d r k1, r k2,, r k d x n = a F p - 30 F 7 2 x 4 = 2 F = ind 3 (2) (4, 7 1) = 2 1 4x 2 (mod 6) 2 x = 2, 5 x 4 = 2 F = 2, 3 5 = n = 2 F p x 2 = a F p r (2, p 1) = 2 p > 2 ind r (a) ind r (a) ind r (a) 1 2x ind r (a) (mod p 1) 1 x = ind r(a), ±r ind r (a) 2 x 2 = a F p F 7 2 x 2 = 2 F = ind 5 (2) 1 2x 4 (mod 6) 2 x = 2, 5 x 2 = 2 F = 4, 5 5 = a = 1 F p p 1 1

45 F p r ind r ( 1) = p 1 2 : r p 1 = 1 x = r p 1 2 x 2 = 1 x = ±1 r x = 1 r p 1 2 = 1. ind r ( 1) = p p 3 F p - 2 x 2 = 1 p = 4k + 1 ±r p 1 4 x 2 = 1 F p - : x 2 = 1 x = ±1 (r p 1 2 ) 2 = r p 1 = 1 r p 1 2 = ±1 r r p 1 2 = 1 ind r ( 1) = p 1 p > 2 p = 4k p = 4m + 3 p 4 1, 3 ind r ( 1) = p 1 p = 4k (1) F 11 x 6 = 5 (2) F 13 x 8 = 3 (3) F 17 x 10 = (1) F 11 x 2 = 3 (2) F 11 x 2 = 7 (3) F 13 x 2 = F 13 x 2 = (1) F 11 x 2 + 2x + 4 = 0 (2) F 13 x 2 + 4x + 2 = 0 (3) F 17 x 2 + 9x + 7 = 0

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information