Size: px
Start display at page:

Download ""

Transcription

1

2

3 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = < Re 46.5.

4 Poisson CFL von Neumann

5 von Neumann A 60 1 Lagrange Euler B 61

6 3 1 Euler Adams-Bashforth Arakawa Jacobian Jacobi Gauss-Seidel C

7 1 4 1.,. 1 : ( ). (, 2016) 1, ( ). ( ).

8 1 5 2 *1 (, 1988),. 2 : (, 1988), 2, 3.,, (,, 2015).,, 2.,, ,. 6.,.,. 7.. *1 von Kármán (1911),

9 ,., ( ),. ρ,, u t + u u = 1 ρ p + ν 2 u (2.1.1). u, p. Navier-Stokes,, 1, 2, 1, 2., ν µ, ν = µ ρ (2.1.2). (2.1.1). (2.1.1).. u = Uu, x = Lx, t = L U t, p = ρu 2 p. (2.1.3) u, x, t, p,,,. U, L. (2.1.3) (2.1.1), L/U 2, u t + (u )u = p + 1 Re 2 u (2.1.4)., Re, Re = UL ν (2.1.5)

10 Navier-Stokes (2.1.4).,., (2.1.4),. u t + (u )u = p + 1 Re 2 u (2.1.6) ( ).. 2 Navier-Stokes (2.1.6) x, y,, u t + u u x + v u y = p x + 1 Re v t + u v x + v v y = p y + 1 Re ( 2 ) x + 2 u, 2 y 2 (2.2.7) ) x + 2 v. 2 y 2 (2.2.8) ( 2, u u = ui + vj. i j, x y. (2.2.7) y, 2 u t y + u u y x +u 2 u x y + v u y y +v 2 u y = 2 p 2 x y + 1 ( ) 2 Re x + 2 u 2 y 2 y (2.2.9)., (2.2.8) x, 2 v t x + u u v x x +u 2 x + v v 2 x y +v 2 v x y = 2 p x y + 1 ( 2 Re x y 2 ) v x (2.2.10). (2.2.10) (2.2.9), ( v t x u ) + u ( v y x x u ) + u ( v y x x u ) y + v ( v y x u ) + v ( v y y x u ) y = 1 ( ) ( 2 Re x + 2 v 2 y 2 x u ) y (2.2.11)

11 2.3 Poisson 8. ζ = v x u y, ζ t + u ζ x + v ζ y +.,,, (2.2.12), ζ t + u ζ x + v ζ y = 1 Re ( u x + v ) ζ = 1 ( ) 2 y Re x + 2 ζ (2.2.12) 2 y 2 u = u x + v y = 0 (2.2.13) ( 2 ) x + 2 ζ = 1 2 y 2 Re 2 ζ (2.2.14). ζ. (2.2.14)., u = ϕ y, v = ϕ x (2.2.15), (2.2.14), ζ t ϕ ζ y x + ϕ ζ x y = 1 Re 2 ζ (2.2.16). 2.3 Poisson Poisson,, 2., Poisson. (2.2.15)., u = 2 ϕ y y, (2.3.17) 2 v x = 2 ϕ (2.3.18) x 2. (2.3.17), (2.3.18), ζ = v/ x u/ y, 2 ϕ x + 2 ϕ 2 y = ζ (2.3.19) 2

12 2.3 Poisson 9. Poisson., (2.3.19) (2.2.16), t 2 ϕ ϕ y x 2 ϕ + ϕ x y 2 ϕ = 1 Re 4 ϕ (2.3.20)., (2.3.20).

13 , (2.2.18),. 3.1,.,. t f(t), 3 : df dt = lim t 0 df dt = lim t 0 df dt = lim t 0 f(t + t) f(t), (3.1.1) t f(t + t) f(t t), (3.1.2) 2 t f(t) f(t t). (3.1.3) t,, t 0, t., 3 lim t 0,,,,. 3, df dt df dt f(t + t) f(t), (3.1.4) t f(t + t) f(t t), 2 t (3.1.5) df f(t) f(t t) dt t (3.1.6). t, x., (i, j, τ), (x, y, t) = (i x, j x, τ t). A(x, y, t)

14 3.2 CFL 11 A τ i,j.,., (2.2.16) (2.3.19), (2.2.16), ζ τ+1 i,j ζ τ 1 i,j 2 t (2.3.19), ϕτ i,j+1 ϕ τ i,j 1 ζi+1,j τ ζi 1,j τ + ϕτ i+1,j ϕ τ i 1,j ζi,j+1 τ ζi,j 1 τ 2 x 2 x 2 x 2 x = 1 ( 4 ζ τ i+1,j + ζi 1,j τ + ζi,j+1 τ + ζ τ ) i,j 1 ζ τ Re ( x) 2 i,j 4 = 1 1 Re ( x) 2 ζi,j. τ 2 ζi,j τ = 4 ( ϕ τ i+1,j + ϕ τ i 1,j + ϕ τ i,j+1 + ϕ τ ) i,j 1 ϕ τ ( x) 2 i,j 4 = 1 ( x 2 ) 2 ϕ τ i,j. (3.1.7) (3.1.8), 2 A i,j 4 ( Ai+1,j + A i 1,j + A i,j+1 + A i,j 1 4 A i,j ) (3.1.9) *1., leap-frog,, Adams-Bashforth ( B.2 ). 3.2 CFL.. *1 (3.1.7) (3.1.8), (3.1.7) : 2 ζ τ i,j 1 2 ( 2 ζ τ+1 i,j + ) 2 ζ τ 1 i,j. (3.1.10), (3.1.7), τ + 1 τ 1, 2 ζ τ+1 i,j µ 2 ζ τ+1 i,j = ( 2 + µ 2 )ζ τ 1 i,j λ 2 [ (ϕ τ i,j+1 ϕ τ i,j 1)(ζi+1,j τ ζi 1,j) τ (ϕ τ i+1,j ϕ τ i 1,j)(ζi,j+1 τ ζi,j 1) τ ] (3.1.11)., µ 2 = Re( x) 2 / t, λ 2 = Re/2., τ 1 τ,, (3.1.8) (3.1.11), τ + 1,., Hirota, Miyakoda (1964),.

15 3.2 CFL 12, CFL. t x u(x, t), c x, u t + c u x = 0 (3.2.12)., 2. F, u = F (x ct),, u t = F t (x ct) = F ( c), (3.2.13) u x = F x (x ct) = F (3.2.14) F ( c) + F = 0 (3.2.15), u = F (x ct). 3.1, A(x, t) A τ i,,, (3.2.12), u τ+1 i u τ i t + c uτ i u τ i 1 x = 0 (3.2.16)., u τ i 1 uτ i,.,,. τ u τ i, u τ 1 i, τ + 1 u τ+1 i, u τ+1 i = u τ i c t ( u τ x i ui 1) τ (3.2.17)., 3.. A., x, t. 3 A. (3.2.17),., 1/c t/ x,, 1 c t x, (3.2.18) 1 c t x. CFL. (3.2.19)

16 3.3 Von Neumann 13 3 : (3.2.17) A von Neumann 1 von Neumann.,,..,,, 1.,,, (3.2.12) U k (t), k, u(x, t) = U k (t)e jkx (3.3.20)

17 3.3 Von Neumann 14 *2, (3.2.12), ( ) duk dt + jkcu k e jkx = 0 (3.3.21)., e jkx 0,.,,, ln du k dt + jkcu k = 0 (3.3.22) du k = jkcu k, (3.3.23) dt du k = jkc dt, (3.3.24) U k t duk = jkc dt (3.3.25) U k. (3.3.28) (3.3.20), 0 ( ) Uk (t) = jkct, U k (0) : (3.3.26) U k (0) (3.3.29), U k (t) U k (0) = e jkct (3.3.27) U k (t) = U k (0)e jkct (3.3.28) u(x, t) = U k (0)e jk(x ct). (3.3.29) u(x, t) = 1 2π U k (0)e jk(x ct) dk (3.3.30), (3.3.30) (3.2.12)., c., (x, t) = (i x, τ t), 3.1 u(x, t) u τ i. (3.2.16) k,., (3.2.16), *2, j. u τ i = U τ e jki x U τ : τ (3.3.31) u τ+1 i = u τ i c t ( u τ x i ui 1) τ (3.3.32) = (1 µ)u τ i + µu τ i 1 (3.3.33)

18 3.3 Von Neumann 15., µ = c t/ x. (3.3.31) (3.3.33),,, λ U τ+1 e jki x = (1 µ)u τ e jki x + µu τ e jk(i 1) x (3.3.34)., U τ+1 = (1 µ)u τ + µu τ e jk x = [ (1 µ) + µe jk x] U τ = λu τ. (3.3.35) λ (1 µ) + µe jk x (3.3.36) U τ = λ U τ 1 = λ 2 U τ 2 = = λ n U 0 < B B : (3.3.37),, B : τ ln λ < ln B U 0 B. (3.3.38) τ = t/ t, ln λ < B t t. λ 1 + δ, δ 1, (3.3.39),, ln (1 + δ) = δ δ2 2 + δ3 3. (3.3.40) δ O( t) (3.3.41) λ 1 + O( t), (3.3.42) λ 1. (3.3.43) (3.3.43) von Neumann. (3.3.36), λ = 1 µ + µ(cos k x j sin k x) (3.3.44), λ 2 = 1 2µ(1 µ)(1 cos k x) (3.3.45)

19 3.3 Von Neumann 16. (3.3.43),, λ 2 1, 1 cos k x 0, 1 µ 0 (3.3.46). (3.3.46), µ 1, (3.3.47) c t x 1 (3.3.48). (3.2.16), CFL , t x u(x, t), D, u t = D 2 u (3.3.49) x (3.3.20), (3.3.49), du k dt ejkx = Dk 2 U k e jkx, (3.3.50) ( duk dt + Dk2 U k., e jkx 0, ) e jkx = 0 (3.3.51).,, ln du k dt + Dk2 U k = 0 (3.3.52) du k = Dk 2 U k, (3.3.53) dt du k = Dk 2 dt, (3.3.54) U k t duk = Dk 2 dt (3.3.55) U k 0 ( ) Uk (t) = Dk 2, U k (0) : (3.3.56) U k (0) U k (t) U k (0) = e Dk2 t (3.3.57)

20 3.3 Von Neumann 17, U k (t) = U k (0)e Dk2 t. (3.3.58) (3.3.20), (3.3.58) (3.3.59), u(x, t) = U k (0)e jkx Dk2t. (3.3.59) u(x, t) = 1 2π U k (0)e jkx Dk2t dk (3.3.60), (3.3.60) (3.3.49)., (x, t) = (i x, τ t), 3.1 u(x, t) u τ i., (3.3.49),, u τ+1 i u τ i = D uτ i+1 2u τ i + u τ i 1 (3.3.61) t ( x) 2. (3.3.61) k, u τ i = U τ e jki x U τ : τ (3.3.62). (3.3.61), u τ+1 i = u τ i + D t ( ) u τ ( x) 2 i+1 2u τ i + u τ i 1 = (1 2µ)u τ i + µ ( ) u τ i+1 + u τ i 1 (3.3.63) (3.3.64)., µ = D t/( x) 2. (3.3.62) (3.3.64), U τ+1 e jki x = (1 2µ)U τ e jki x + µ ( e jk(i+1) x + e jk(i 1) x) U τ (3.3.65), U τ+1 = = (1 2µ)U τ + µ ( e jk x + e jk x) U τ 1 2µ + µ ( e jk x + e jk x)] U τ = λu τ. (3.3.66), λ λ = 1 2µ + µ ( e jk x + e jk x) (3.3.67). (3.3.67), λ = 1 2µ + µ(cos k x + j sin k x + cos k x j sin k x) = 1 2µ(1 cos k x) = 1 4µ sin 2 k x 2 (3.3.68)

21 3.3 Von Neumann 18, 3.3.1, λ 1.,, 1 1 4µ sin 2 k x 2 0 µ sin 2 k x , (3.3.69) µ 1 2, (3.3.70) D t 1 ( x) 2 2 (3.3.71). (3.3.61) , t x u(x, t), c, D, u t + c u x = D 2 u (3.3.72) x (3.3.20), (3.3.72), du k dt ejkx + jkcu k e jkx = Dk 2 U k e jkx, (3.3.73) ( ) duk dt + jkcu k + Dk 2 U k e jkx = 0 (3.3.74)., e jkx 0, du k dt + jkcu k + Dk 2 U k = 0 (3.3.75)., duk du k = jkcu k Dk 2 U k, dt (3.3.76) du k = jkc dt Dk 2 dt, U k (3.3.77) U k = jkc t t dt Dk 2 dt (3.3.78) 0 0

22 3.3 Von Neumann 19, ln ( ) Uk (t) = jkct Dk 2 t, U k (0) : (3.3.79) U k (0), U k (t) U k (0) = e (jkc+dk2 )t U k (t) = U k (0)e (jkc+dk2 )t. (3.3.81) (3.3.20), u(x, t) = U k (0)e jk(x ct) Dk2 t (3.3.80) (3.3.81) (3.3.82) (3.3.82), u(x, t) = 1 2π U k (0)e jk(x ct) Dk2t dk (3.3.83), (3.3.83) (3.3.72)., (x, t) = (i x, τ t), 3.1 u(x, t) u τ i., (3.3.72),, u τ+1 i u τ i t + c uτ i+1 u τ i 1 2 x (3.3.84) k, = D uτ i+1 2u τ i + u τ i 1 ( x) 2. (3.3.84). (3.3.84),, u τ i = U τ e jki x U τ : τ (3.3.85) u τ+1 i = u τ i c t ( u τ 2 x i+1 ui 1) τ D t + = (1 2µ )u τ i ( µ 2 µ ) u τ i+1 +. (3.3.85) (3.3.87), ( ) u τ ( x) 2 i+1 2u τ i + u τ i 1 (3.3.86) ( µ ) 2 + µ u τ i 1 (3.3.87) µ = c t x, (3.3.88) µ = D t ( x) 2 (3.3.89) U τ+1 e jki x =(1 2µ )U τ e jki x ( µ ) 2 µ U τ e jk(i+1) x ( µ ) µ U τ e jk(i 1) x (3.3.90)

23 3.3 Von Neumann 20, ( µ ) ( µ ) U τ+1 = (1 2µ )U τ 2 µ U τ e jk x µ U τ e jk x [ ( µ ) ( µ ) ] = 1 2µ 2 µ e jk x µ e jk x U τ = λu τ (3.3.91), λ λ = 1 2µ. (3.3.92), ( µ ) ( µ ) 2 µ e jk x µ e jk x (3.3.92) λ = 1 2µ µ ( e jk x e jk x) + µ ( e jk x + e jk x) 2 = 1 2µ µj sin k x + 2µ cos k x = 1 2µ (1 cos k x) µj sin k x (3.3.93), λ 2 = [1 2µ (1 cos k x)] 2 + µ 2 sin 2 k x (3.3.94). (3.3.93) (1 2µ ), 2µ, µ, (3.3.43), 1.

24 3.3 Von Neumann 21 4 : λ. k x 0, cos k x = 1 1 2! (k x)2 +, sin k x = k x 1 3! (k x)3 +, (3.3.94) λ 2 [ 1 2µ ( 1 2! k x )] 2 + µ 2 (k x) 2 1 2µ (k x) 2 + µ 2 (k x) 4 + µ 2 (k x) ( µ 2 2µ ) (k x) 2 (3.3.95). k x = π, λ 2 = (1 4µ ) 2 (3.3.96)

25 3.3 Von Neumann λ 1. (3.3.95), (3.3.96), µ 2 2µ 0, µ 2 2µ. (3.3.97) 1 1 4µ 1, 0 4µ 2, 0 µ 1 2 (3.3.98) k x = π/2, λ 2 = (1 2µ ) 2 + µ 2 (3.3.99), (3.3.97) (3.3.98) λ 2 1., (3.3.97) (3.3.98) (3.3.84).

26 ,.,, x, y (u = U, v = 0)..,,. 5 :.

27 4.1 24,. 5, x I + 1, y J + 1.,, (I + 1) (J + 1)., I + 1 X, J + 1 Y (x = 0) y U x, u = U, (4.1.1) v = 0 (4.1.2). (2.2.15), ϕ, ϕ = y 0 Udy = Uy + const ( = U y Y ) 2 (4.1.3). (4.1.3) ϕ = 0. (2.3.19), ζ,. ζ = U y = 0 (4.1.4) (y = Y ),.,,., u/ y = 0.

28 4.1 25,,. (2.2.15), ϕ, u = U, (4.1.5) v = 0 (4.1.6) ϕ = uy 2 (4.1.7). (2.3.19), ζ,. ζ = u y = 0 (4.1.8) (y = 0),. ϕ ζ,. u = U, (4.1.9) v = 0 (4.1.10) ϕ = uy 2, (4.1.11) ζ = u y = 0 (4.1.12) (x = X) :. u x = 0, (4.1.13) v x = 0 (4.1.14)

29 4.1 26,,, u = 0, (4.1.15) v = 0. (4.1.16) (2.2.15),,. ϕ y = 0, (4.1.17) ϕ x = 0 (4.1.18) (). (x = 0), (4.1.1), (4.1.2), u 0,j = U, (4.1.19) v 0,j = 0, (4.1.20).,, (4.1.3), ( ϕ 0,j = U y j J ) 2 (4.1.21)., j y, y y, J., J/2,., (2.3.19), ζ 0,j,. ϕ 0,J/2 = 0 (4.1.22) ζ 0,j = 0 (4.1.23)

30 (y = Y ), (4.1.5), (4.1.6),. (4.1.7), u i,j = U, (4.1.24) v i,j = 0 (4.1.25) ϕ i,j = J U y (4.1.26) 2. :, ϕ i,j 1,. ϕ i,j 1 = ϕ i,j ϕ i,j y y ϕ i,j 2 y 2 ( y)2 + ϕ i,j ϕ i,j y y ϕ i,j 2 y 2 ( y)2 (4.1.27), (4.1.27), y 2,., ζ i,j,. ϕ i,j y = U, (4.1.28) 2 ϕ i,j y 2 = ζ i,j (4.1.29) ϕ i,j 1 = ϕ i,j + U y ζ i,j( y) 2 (4.1.30) ζ i,j = 2 (ϕ i,j 1 ϕ i,j U y) ( y) 2 (4.1.31) (y = 0), (4.1.9), (4.1.10), u i,0 = U, (4.1.32) v i,0 = 0 (4.1.33)

31 (4.1.11), ϕ i,0,. : ϕ i,1, ϕ i,0 = J U y (4.1.34) 2., (4.1.35), ϕ i,1 = ϕ i,0 + ϕ i,0 y y ϕ i,0 2 y 2 ( y)2 + ϕ i,0 + ϕ i,0 y y ϕ i,0 2 y 2 ( y)2 (4.1.35) ϕ i,0 y = U, (4.1.36) 2 ϕ i,0 y 2 = ζ i,0 (4.1.37) ϕ i,1 = ϕ i,0 U y ζ i,0( y) 2 (4.1.38)., ζ i,0,. ζ i,0 = 2 (ϕ i,1 ϕ i,0 + U y) ( y) 2 (4.1.39) (x = X) (4.1.13), (4.1.14), ϕ I,j = ϕ I 1,j (4.1.40).,, ζ I,j x = 0 (4.1.41), (4.1.41), ζ I,j ζ I 1,j = 0 (4.1.42) x, ζ I,j,. ζ I,j = ζ I 1,j (4.1.43)

32 4.2 29, ζ.,, u i,j = 0, (4.1.44) v i,j = 0, (4.1.45) ϕ i,j = 0 (4.1.46). (4.1.31), (4.1.39) ζ L i,j, ζ R i,j, ζ F i,j, ζ B i,j, ζ L i,j = 2ϕ i,j+1 ( y) 2, (4.1.47) ζ R i,j = 2ϕ i,j 1 ( y) 2, (4.1.48) ζ F i,j = 2ϕ i 1,j ( x) 2, (4.1.49). ζ B i,j = 2ϕ i+1,j ( x) 2 (4.1.50) 4.2 (, 2012)., x, y (u = U, v = 0),.,,,,. 6,, 2., x = r cos ϑ, (4.2.51) y = r sin ϑ (4.2.52). 5, x x, ϑ π., ϑ π ϑ π., 1, R.

33 :., r, ϑ ( ), 7. 7 :.

34 4.2 31, r : r = e ω. (4.2.53),,, 8. 8 :., (4.2.53), ω, ω max = log R (4.2.54), ω, ω min = 0 (4.2.55)., (2.2.15), Poisson (2.3.19), (2.2.14), (4.2.53)., (2.2.15). u u = ui + vj (4.2.56)

35 4.2 32, 2 u u = u r e r + v ϑ e ϑ (4.2.57). e r, e ϑ,, e r = i cos ϑ + j sin ϑ, (4.2.58) e ϑ = i sin ϑ + j cos ϑ (4.2.59)., (4.2.56), (4.2.57), u = ui + vj = u r e r + v ϑ e ϑ = u r (i cos ϑ + j sin ϑ) + v ϑ ( i sin ϑ + j cos ϑ) = (u r cos ϑ v ϑ sin ϑ)i + (u r sin ϑ + v ϑ cos ϑ)j (4.2.60), u, v,, u = u r cos ϑ v ϑ sin ϑ, (4.2.61) v = u r sin ϑ + v ϑ cos ϑ (4.2.62). r, r = (x 2 + y 2 ) 1/2 (4.2.63),.,, r x = x (x 2 + y 2 ) = x 1/2 r = cos ϑ, (4.2.64) r y = y (x 2 + y 2 ) = y 1/2 r = sin ϑ (4.2.65) x tan ϑ = 1 ϑ cos 2 ϑ x = y (4.2.66) x 2 ϑ x = y x 2 cos2 ϑ = r sin ϑ r 2 cos 2 ϑ cos2 ϑ ϑ y = 1 sin ϑ, r (4.2.67) = x y 2 sin2 ϑ = r cos ϑ r 2 sin 2 ϑ sin2 ϑ = 1 cos ϑ (4.2.68) r

36 / x, (4.2.64) (4.2.67), x = r x r + ϑ x ϑ = cos ϑ r 1 r sin ϑ ϑ, / y, (4.2.65) (4.2.68), y. (2.2.15), (4.2.61), (4.2.70), = r y r + ϑ y ϑ = sin ϑ r + 1 r cos ϑ ϑ (4.2.69) (4.2.70) u = ϕ y = 1 cos ϑ ϕ sin ϑ ϕ r ϑ r = u r cos ϑ v ϑ sin ϑ (4.2.71). (4.2.53), (4.2.71) 1,,. u r = 1 ϕ r ϑ = e v ϑ = ϕ r = e ω ϕ ω ϕ ω (4.2.72) ϑ, (4.2.73) (4.2.74) (4.2.75), Poisson (2.3.19). (4.2.64) (4.2.69), (2.3.19) 1, ( 2 ϕ x = cos ϑ 2 r 1 r sin ϑ ) ( cos ϑ ϕ ϑ r 1 ) sin ϑ ϕ (4.2.76) r ϑ., (4.2.65) (4.2.70), (2.3.19) 2, ( 2 ϕ y = sin ϑ 2 r + 1 r cos ϑ ) ( sin ϑ ϕ ϑ r + 1 ) cos ϑ ϕ r ϑ (4.2.77)

37 , (4.2.53), r = ω r ω = e ω ω, (4.2.78) 1 = e 2ω (4.2.79) r 2. (4.2.78) (4.2.79), (4.2.76) (4.2.77), 2 ϕ x + 2 ϕ = 2 ϕ 2 y 2 r ϕ 2 r 2 ϑ 2 ( = e 2ω 2 ϕ ω + 2 ϕ 2 ϑ 2 ) (4.2.80). (4.2.80) Poisson., (2.2.14). (2.2.14) 2, 3, u ζ x + v ζ y = u ζ ( ) ζ = (u r e r + u ϑ e ϑ ) e r r + e 1 ζ ϑ r ϑ ζ = u r r + u 1 ζ ϑ r ϑ ω ζ ω ζ = u r e ω + u ϑe ( ϑ) = e ω ζ u r ω + u ζ ϑ ϑ (4.2.81)., (2.2.14), (4.2.80), 1 Re 2 ζ = 1 ( ) 2 ζ Re x + 2 ζ 2 y ( 2 ) = e 2ω 2 ζ Re ω + 2 ζ 2 ϑ 2. (4.2.79) (4.2.80), (2.2.14), ( ) ( ) ζ t + ζ e ω u r ω + u ζ ϑ = e 2ω 2 ζ ϑ Re ω + 2 ζ 2 ϑ 2 (4.2.82) (4.2.83). (4.2.83).

38 ( π ϑ < π/2, π/2 < ϑ π) R U x,. (2.2.15), (4.2.52), (4.2.53), ϕ, ϕ = u = U, (4.2.84) v = 0 (4.2.85) y 0 Udy = Uy + const = Uy = Ur sin(ϑ π) = Ue ω sin(ϑ π) (4.2.86). (4.2.86) ϕ = 0. (2.3.19), ζ,. ζ = U y = 0 (4.2.87) (ϑ = π/2),,.,,. (2.2.15), (4.2.54), ϕ, u = U, (4.2.88) v = 0 (4.2.89) ϕ = UR = Ue ωmax (4.2.90)

39 (2.3.19), ζ,. ζ = U y = 0 (4.2.91) (ϑ = π/2),. ϕ ζ,. u = U, (4.2.92) v = 0 (4.2.93) ϕ = UR = Ue ωmax (4.2.94) ζ = U y = 0 (4.2.95) ( π/2 < ϑ < π/2) :. u x = 0, (4.2.96) v x = 0 (4.2.97),,, u r = 0, (4.2.98) v ϑ = 0. (4.2.99)

40 (2.2.15),, ϕ ϑ = 0, ( ) ϕ r = 0, ( ) ϕ = 0 ( ) (). 9 :. 8, (ω, ϑ), 9. ω i, ϑ j.,, (ω, ϑ) = (0, π)., ω, ϑ, I ω = ω max, J ϑ = π.

41 (ω = ω max, π ϑ < π/2, π/2 < ϑ π, 0 j J/4 1, 3J/4 + 1 j J), (4.2.84), (4.2.85), u I,j = U, ( ) v I,j = 0 ( )., (4.2.86), ϕ I,j = Ue I ω sin(j ϑ π) = Ue ωmax sin(j ϑ π) ( = Ue ω max sin ϑ j π ) ( ϑ = Ue ω max sin ϑ j J ) 2 ( )., J/2, ϕ I,J/2 = 0 ( )., (2.3.19), ζ I,j, ζ I,j = 0 ( ). (ω = ω max, ϑ = π/2, j = 3J/4), (4.2.88), (4.2.89),., (4.2.90),., R, u I,3J/4 = U, ( ) v I,3J/4 = 0 ( ) ϕ I,3J/4 = Ue I ω ( ) ζ I,3J/4 = 0 ( ) r., ζ I,3J/4,. ζ I,3J/4 = ζ I 1,3J/4 ( )

42 (ω = ω max, ϑ = π/2, j = J/4), (4.2.92), (4.2.93), u I,J/4 = U, ( ) v I,J/4 = 0 ( )., (4.2.94), ϕ I,J/4 = Ue I ω ( ).,, ζ I,J/4 = ζ I 1,J/4 ( ). (ω = ω max, π/2 < ϑ < π/2, J/4 + 1 j 3J/4 1) (4.2.96), (4.2.97), ϕ I,j = ϕ I 1,j ( ).,, ζ I,j ω = 0 ( ), ( ), ζ I,j ζ I 1,J ω, ζ I,j, = 0 ( ) ζ I,j = ζ I 1,j ( ). (ω = 0),, u 0,j = 0, ( ) v 0,j = 0, ( ) ϕ 0,j = 0 ( )

43 , :, ϕ 1,j,. ( ), ϕ 1,j = ϕ 0,j + ϕ 0,j ω ω ϕ 0,j 2 ω 2 ( ω)2 + ϕ 0,j + ϕ 0,j ω ω ϕ 0,j ω 2 ( ω)2 ( ) v 0,j = ϕ 0,j ω = 0 ( ). ( ), ( ), ( ), ω 2,. (2.3.19),. ( ), ( ), ζ 0,j,. ϕ 1,j = 1 2 ϕ 0,j 2 ω 2 ( ω)2 ( ) 2 ϕ 0,j ω 2 = ζ 0,j ( ) ζ 0,j = 2ϕ 1,j ( ω) 2 ( )

44 5.1 von Neumann 41 5, von Neumann., von Neumann.,.,.,,., Poisson., Gauss - Seidel ( B.4 ), Poisson..,,,.,.,, (2.2.18), (2.3.23), 2 Adams-Bashforth ( B.2 )., (2.2.18) Arakawa Jacobian ( B.3 ). 5.1 von Neumann, von Neumann., x = 0.1, t = 0.001, (3.3.88), µ = U t x = = (5.1.1)

45 5.2 42, (3.3.89), µ = 1 t Re ( x) 2 = 1 Re von Neumann, (3.3.97) (5.1.1),, (3.3.98) (5.1.2), = 1 Re (5.1.2) Re, Re (5.1.3) 0 1 Re , Re (5.1.4). (5.1.3) (5.1.4), von Neumann Re , 2 ( A, B)., 100 (Re = 100) (,, 2010). 1, 2.

46 :. U = 1 1 S = 1 x = y = 0.1 t = t 100 Re = 100 ϕ i,j :. A B (x, y) = (10, 5) (x, y) = (10, 10) 10, : A. t = 100.,

47 : B. t = A, B,. A, 10,. B, 11,.,, 0.,, B.,, B, y = ,, B, 2 ( C, D)., 100 (Re = 100). 3, 4

48 :. U = 1 1 S = 1 x = y = 0.1 t = t 100 Re = 100 ϕ i,j (x, y) = (10, 10) 4 :. C D , : C. t =

49 : D. t = B D,. B, 11, x = 40, C, D, 12, 13,.,, B, C, D.,,.,, B, x = , Poisson, E., 100,., 100(Re = 100)., Gauss-Saidel τ τ + 1, ( ϕ) max = ϕ τ+1 i,j ϕ τ i,j 0 t 100. E 5.

50 : E. U = 1 1 S = 1 x = y = 0.1 t = t 100 Re = (x, y) = (10, 10) τ = : E t = , E, 14,

51 5.4 48,, ϕ = Uy, U = 1, 10 y ,. (2012) Poisson, SOR, 10 6.,, (2012),, 100, 10 5.

52 Kármán (1911),, h l h l = 0.28., Kármán., : 6 :. U = 1 1 S = 1 x = y = 0.1 t = t 100 ϕ i,j (x, y) = (10, 10)

53 (Re = 80, 90, 100) h l , A, B, C..., (, ), h *1 l,, h/l : Re = 80, t = 100.,., A F. A B ( ) a, B C b., A C l 1, B l 1 h 1. *1 h 1 h., A, B, C,. l 1 a, b.,, A, B, C S 1. S 1 l 1 h 1.

54 : Re = 80 A F, a e., h, l. (h/l) A (19.3, 11.0) a = 4.12 h 1 = 2.22 l 1 = 7.31 h 1 /l 1 = 0.30 B (22.8, 9.0) b = 4.44 h 2 = 2.50 l 2 = 7.51 h 2 /l 2 = 0.33 C (26.6, 11.3) c = 4.58 h 3 = 2.84 l 3 = 7.61 h 3 /l 3 = 0.37 D (30.3, 8.6) d = 4.92 h 4 = 3.10 l 4 = 7.90 h 4 /l 4 = 0.39 E (34.2, 11.6) e = 5.12 F (38.2, 8.4) 16 : Re =

55 : Re = 90 A G, a f., h, l. (h/l) A (17.3, 9.4) a = 3.58 h 1 = 1.79 l 1 = 6.71 h 1 /l 1 = 0.27 B (20.5, 11.0) b = 4.03 h 2 = 2.14 l 2 = 7.11 h 2 /l 2 = 0.30 C (24.0, 9.0) c = 4.27 h 3 = 2.44 l 3 = 7.31 h 3 /l 3 = 0.33 D (27.6, 11.3) d = 4.52 h 4 = 2.74 l 4 = 7.41 h 4 /l 4 = 0.37 E (31.3, 8.7) e = 4.70 h 5 = 3.13 l 5 = 7.72 h 5 /l 5 = 0.41 F (35.0, 11.6) f = 5.25 G (39.0, 8.2) 17 : Re =

56 : Re = 100 A G, a f., h, l. (h/l) A (18.6, 9.4) a = 3.67 h 1 = 1.74 l 1 = 6.71 h 1 /l 1 = 0.26 B (21.9, 11.0) b = 3.89 h 2 = 1.95 l 2 = 6.70 h 2 /l 2 = 0.29 C (25.3, 9.1) c = 3.86 h 3 = 2.14 l 3 = 6.91 h 3 /l 3 = 0.31 D (28.6, 11.1) d = 4.27 h 4 = 2.40 l 4 = 6.90 h 4 /l 4 = 0.35 E (32.2, 8.8) e = 4.14 h 5 = 3.28 l 5 = 6.52 h 5 /l 5 = 0.50 F (35.5, 11.3) f = 5.16 G (39.7, 8.3) 7 9, Re = 80, 90, 100 h l, h/l Kármán 0.28.,, Re = 80, 90, 100 Kármán., (, 1988), h/l. h/l,. 6.2,., 80,., (2010),, Re = 46.2.,, 46 Re 46.5,.,. Re = 46, 46.2, 46.5 t = 100 t =

57 : Re = 46, t = 100.,., : Re = 46, t =

58 : Re = 46, t = 100 t = : Re = 46.2, t =

59 : Re = 46.2, t = : Re = 46.2, t = 100 t =

60 : Re = 46.5, t = : Re = 46.5, t =

61 : Re = 46.5, t = 100 t = Re = 46, , 23, y = 10,,,.,,. Re = , y = 10,..,,., 46.2 < Re 46.5.

62 ,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 100.., Poisson Gauss-Seidel , 40 20, Poisson 100, t = 0.01, Re von Neumann. Re = 80, 90, 100. Re = 80, 90., Re = 80, 90, 100 h l Kármán, h/l 0.28,, h/l.., (2010) t = 100 t = < Re Adams- Bashforth,.,.

63 A.1 Lagrange Euler 60 A 1 Lagrange Euler 2, Lagrange Euler.., ( ),. A = A(x, y, z, t) δa,, δa = A t.,, (A.1),. δt + A x A A δx + δy + y z δz DA Dt = lim δa δt 0 δt DA Dt = A t + u A x + v A y + w A z u = lim δt, v = lim δt 0, u x, y, z. δt 0 δx (A.3), δy δt, w = lim δz δt 0 δt DA Dt = A + (u )A t (A.5). A,,, (A.1) (A.2) (A.3) (A.4) D Dt = t + u (A.6)., D/Dt Lagrange, / t Euler. Lagrange, Euler.

64 B.1 Euler 61 B 1 Euler, dx = f(x, t) dt (B.1). 3.1, t = t k, (B.1), x k+1 x k t f(x k, t k ) (B.2), (B.2), x k+1 = x k + f(x k, t k ) t (B.3). (B.1) (B.3) Euler. x 0, t 0 f(x 0, t 0 ), (B.3) t 1 x 1., x 1, t 1 (B.3) t 2 x 2.,, x. 2 Adams-Bashforth Euler 1.. 2, Adams-Bashforth.

65 B.3 Arakawa Jacobian 62 x k+1. t 3, x k+1 x k + dx k dt t + 1 d 2 x k 2! dt 2 t2 = x k + f(x k, t k ) t + 1 df(x k, t k ) t 2 2! dt x k + f(x k, t k ) t + 1 f(x k, t k ) f(x k 1, t k 1 ) t 2 ( 2 t 3 = x k + 2 f(x k, t k ) 1 ) 2 f(x k 1, t k 1 ) t (B.4), f. (B.4) 2 Adams-Bashforth., f(x k, t k ), f(x k 1, t k 1 ). t 0 Euler t 1. 3 Arakawa Jacobian Arakawa Jacobian.,. (2.2.16) : ζ t ϕ ζ y x + ϕ ζ x y = 1 Re 2 ζ. (2.2.16) (2.2.16) 2 3,., (2.2.16), ζ t ϕ ζ y x + ϕ ζ x y = 0 (B.5). (B.5), ( 2 ).. B.1 S.

66 B.3 Arakawa Jacobian 63 B.1 : x y S., x = 0, I., y = 0, J ϕ = ζ = 0., (B.5). E. 2, E = = = (u 2 + v 2 )ds = (u 2 + v 2 )dxdy [ ( ϕ ) 2 ( ) ] 2 ϕ + dxdy y x [ ϕ ϕ ] y=j dx ϕ 2 ϕ y y=0 y dxdy 2 [ + ϕ ϕ ] x=i dy ϕ 2 ϕ x x dxdy 2 x=0 (B.6). ϕ = , x = 0, I 3 0., (B.6), E = ϕ 2 ϕ y dxdy ϕ 2 ϕ 2 x dxdy ( ) 2 2 ϕ = ϕ x + 2 ϕ dxdy 2 y 2 = ϕζdxdy (B.7)

67 B.3 Arakawa Jacobian 64. de/dt = 0,., (B.7), de = d ϕζdxdy = 0 (B.8) dt dt. (B.5) ϕ, S, ϕ ζ ( ϕ t dxdy + ζ ϕ x y ϕ ) ζ dxdy = 0 y x (B.9). (B.9) 1, ϕ ζ ( ϕζ t dxdy = t ζ ϕ ) dxdy t = d ϕ ϕζdxdy dt t = d ϕζdxdy dt [ ] x=i ϕ ϕ dy + t x x=0 [ ] y=j ϕ ϕ dx + t y y=0 ( ) 2 ϕ x + 2 ϕ dxdy 2 y 2 x y ( ) ϕ ϕ t x dxdy ( ϕ t ) ϕ dxdy (B.10) y., x = 0, I, (B.10) 2 0., y = 0, J ϕ = 0, ϕ/ t = 0., (B.10) 4 0. (B.10), ϕ ζ t dxdy = d ϕζdxdy dt ( ) ( ) ϕ ϕ ϕ ϕ + x t x dxdy + y t y dxdy = d [ ( ) ϕ ϕ ϕζdxdy + dt x t x + ( ϕ y t = d ϕζdxdy + 1 ( ) 2 ϕ dt 2 t x + 2 ϕ dxdy 2 y 2 = d ϕζdxdy + 1 d (u 2 + v 2) dxdy dt 2 dt = de dt + 1 de 2 dt = 1 de 2 dt ) ϕ y ] dxdy (B.11)

68 B.3 Arakawa Jacobian 65., (B.9) 2, ( ϕ ζ ϕ x y ϕ ) ζ dxdy y x [ ( ) 1 ζ = x 2 ϕ2 y ( ) ] 1 ζ y 2 ϕ2 dxdy x [ = ζ ( )] [ 1 y x 2 ϕ2 dxdy ζ ( )] 1 x y 2 ϕ2 dxdy [ = ζ ( )] y=j [ 1 x 2 ϕ2 dx ζ ( )] x=i 1 y 2 ϕ2 dy y=0 x=0 (B.12)., (B.10), (B.12) , ( ϕ ζ ϕ x y ϕ ) ζ dxdy = 0 (B.13) y x. (B.11) (B.13), (B.9), 1 de 2 dt + 0 = 0, de dt = 0 (B.14), (B.8).,., (B.5). Q. 2, ( ) ( ) 1 1 Q = 2 ζ2 ds = 2 ζ2 dxdy (B.15). dq/dt = 0,., (A.15), dq dt = d ( ) 1 dt 2 ζ2 dxdy = 0 (B.16). (B.5) ζ, S, ζ ζ ( ϕ t dxdy + ζ ζ x y ϕ ) ζ dxdy = 0 y x. (B.17) 1, ζ ζ ( ) 1 t dxdy = t 2 ζ2 dxdy = d ( ) 1 dt 2 ζ2 dxdy (B.17) (B.18)

69 B.3 Arakawa Jacobian 66., (B.17) 2, ( ϕ ζ ζ x y ϕ ) ζ dxdy y x [ ( ) ϕ 1 = x y 2 ζ2 ϕ ( )] 1 y x 2 ζ2 dxdy [ ( ) 1 ϕ = ζ2 ( )] 1 ϕ ζ2 dxdy y 2 x x 2 y [ ] y=j [ ] x=i 1 ϕ 1 ϕ = ζ2 dx ζ2 dy 2 x 2 y y=0 x=0 (B.19).,, (B.19) 1 2 0, ( ϕ ζ ζ x y ϕ ) ζ dxdy = 0 (B.20) y x. (B.18) (B.20), (B.17), ( ) d 1 dt 2 ζ2 dxdy = dq dt = 0 (B.21), (B.16).,.,,.,, Arakawa Jacobain., (2.2.16) ϕ ζ x y ϕ y., (B.22), ζ x = 1 ( ϕ ζ 3 x y ϕ ) ζ y x + 1 [ ( ϕ ζ ) ( ϕ ζ )] 3 x y y x + 1 [ ( ζ ϕ ) ( ζ )] 3 y x x x Ji,j L = ϕ ζ x y ϕ y ( ) J C i,j = x J R i,j = y ζ x, ϕ ζ ( ϕ ζ ), y y x ) ( ζ ) x x ( ζ ϕ x (B.22)

70 B.3 Arakawa Jacobian 67,, J L i,j, J C i,j, J R i,j, J L i,j = J C i,j = J R i,j = 1 4 x y [(ϕ i+1,j ϕ i 1,j )(ζ i,j+1 ζ i,j 1 ) (ϕ i,j+1 ϕ i,j 1 )(ζ i+1,j ζ i 1,j )], 1 4 x y [ϕ i+1,j(ζ i+1,j+1 ζ i+1,j 1 ) ϕ i 1,j (ζ i 1,j+1 ζ i 1,j 1 ) ϕ i,j+1 (ζ i+1,j+1 ζ i 1,j+1 ) + ϕ i,j 1 (ζ i+1,j 1 ζ i 1,j 1 )], 1 4 x y [ζ i,j+1(ϕ i+1,j+1 ϕ i 1,j+1 ) ζ i,j 1 (ϕ i+1,j 1 ϕ i 1,j 1 ) ζ i+1,j (ϕ i+1,j+1 ϕ i+1,j 1 ) + ζ i 1,j (ϕ i 1,j+1 ϕ i 1,j 1 )]., (B.22), ϕ ζ x y ϕ y ζ x 1 3 ( J L i,j + J i,j C + J ) i,j R (B.23). Arakawa Jacobian..,. (B.9) 2, ϕ ( ϕ ζ x y ϕ y ζ x ) dxdy i,j 1 ( ϕ i,j J L 3 i,j + J i,j C + J ) i,j R. ϕ i,jj L i,j, ϕ i,jj C i,j, ϕ i,jj R i,j 4 x y,, (4 x y)ϕ i,jj L i,j = ϕ i,j (ϕ i+1,j ϕ i 1,j )(ζ i,j+1 ζ i,j 1 ) ϕ i,j (ϕ i,j+1 ϕ i,j 1 )(ζ i+1,j ζ i 1,j ) = ϕ i,j ϕ i+1,j ζ i,j+1 ϕ i,j ϕ i+1,j ζ i,j 1 ϕ i,j ϕ i 1,j ζ i,j+1 + ϕ i,j ϕ i 1,j ζ i,j 1 ϕ i,j ϕ i,j+1 ζ i+1,j + ϕ i,j ϕ i,j+1 ζ i 1,j (B.24) +ϕ i,j ϕ i,j 1 ζ i+1,j ϕ i,j ϕ i,j 1 ζ i 1,j, (B.25) (4 x y)ϕ i,jj C i,j = ϕ i,j ϕ i+1,j (ζ i+1,j+1 ζ i+1,j 1 ) ϕ i,j ϕ i 1,j (ζ i 1,j+1 ζ i 1,j 1 ) ϕ i,j ϕ i,j+1 (ζ i+1,j+1 ζ i 1,j+1 ) + ϕ i,j ϕ i,j 1 (ζ i+1,j 1 ζ i 1,j 1 ) = ϕ i,j ϕ i+1,j ζ i+1,j+1 ϕ i,j ϕ i+1,j ζ i+1,j 1 ϕ i,j ϕ i 1,j ζ i 1,j+1 + ϕ i,j ϕ i 1,j ζ i 1,j 1 ϕ i,j ϕ i,j+1 ζ i+1,j+1 + ϕ i,j ϕ i,j+1 ζ i 1,j+1 +ϕ i,j ϕ i,j 1 ζ i+1,j 1 ϕ i,j ϕ i,j 1 ζ i 1,j 1, (B.26)

71 B.3 Arakawa Jacobian 68 (4 x y)ϕ i,jj R i,j = ϕ i,j ζ i,j+1 (ϕ i+1,j+1 ϕ i 1,j+1 ) ϕ i,j ζ i,j 1 (ϕ i+1,j 1 ϕ i 1,j 1 ) ϕ i,j ζ i+1,j (ϕ i+1,j+1 ϕ i+1,j 1 ) + ϕ i,j ζ i 1,j (ϕ i 1,j+1 ϕ i 1,j 1 ) = ϕ i,j ζ i,j+1 ϕ i+1,j+1 ϕ i,j ζ i,j+1 ϕ i 1,j+1 ϕ i,j ζ i,j 1 ϕ i+1,j 1 + ϕ i,j ζ i,j 1 ϕ i 1,j 1 ϕ i,j ζ i+1,j ϕ i+1,j+1 + ϕ i,j ζ i+1,j ϕ i+1,j 1 +ϕ i,j ζ i 1,j ϕ i 1,j+1 ϕ i,j ζ i 1,j ϕ i 1,j 1 (B.27)., B.2 9 T.,, T,. B.2 : 9 T. T (i, j) = (5, 5), (B.25), ϕ 5,5 J 5,5 L = ϕ 5,5 ϕ 6,5 ζ 5,6 ϕ 5,5 ϕ 6,5 ζ 5,4 ϕ 5,5 ϕ 4,5 ζ 5,6 + ϕ 5,5 ϕ 4,5 ζ 5,4 ϕ 5,5 ϕ 5,6 ζ 6,5 + ϕ 5,5 ϕ 5,6 ζ 4,5 + ϕ 5,5 ϕ 5,4 ζ 6,5 ϕ 5,5 ϕ 5,4 ζ 4,5 (B.28)

72 B.3 Arakawa Jacobian 69. (B.26), (6, 5), ϕ 6,5 J 6,5 C = ϕ 6,5 ϕ 4,5 ζ 4,6 ϕ 6,5 ϕ 4,5 ζ 4,4 ϕ 6,5 ϕ 5,5 ζ 5,6 + ϕ 6,5 ϕ 5,5 ζ 5,4 ϕ 6,5 ϕ 6,6 ζ 4,6 + ϕ 6,5 ϕ 6,6 ζ 5,6 + ϕ 6,5 ϕ 6,4 ζ 4,4 ϕ 6,5 ϕ 6,4 ζ 5,4, (B.29) (4, 5), ϕ 4,5 J 4,5 C = ϕ 4,5 ϕ 5,5 ζ 5,6 ϕ 4,5 ϕ 5,5 ζ 5,4 ϕ 4,5 ϕ 6,5 ζ 6,6 + ϕ 5,5 ϕ 6,5 ζ 6,4 ϕ 4,5 ϕ 4,6 ζ 5,6 + ϕ 4,5 ϕ 4,6 ζ 6,6 + ϕ 4,5 ϕ 4,4 ζ 5,4 ϕ 4,5 ϕ 4,4 ζ 6,4, (B.30) (5, 6), ϕ 5,6 (5, 4), ϕ 5,4 J 5,6 C = ϕ 5,6 ϕ 6,6 ζ 6,5 + ϕ 5,6 ϕ 4,6 ζ 4,5 + ϕ 5,6 ϕ 5,5 ζ 6,5 ϕ 5,6 ϕ 5,5 ζ 4,5, (B.31) J 5,4 C = ϕ 5,4 ϕ 6,4 ζ 6,5 ϕ 5,4 ϕ 4,4 ζ 4,5 ϕ 5,4 ϕ 5,5 ζ 6,5 + ϕ 5,4 ϕ 5,5 ζ 4,5 (B.32). (B.28) 1, 2 (B.29) 3, 4, (B.28) 3, 4 (B.30) 1, 2, (B.28) 5, 6 (B.31) 3, 4, (B.28) 7, 8 (B.32) 3, 4.,., T (B.25) (B.26) 0. (B.27), (5, 5), ϕ 5,5 J 5,5 R = ϕ 5,5 ζ 5,6 ϕ 6,6 ϕ 5,5 ζ 5,6 ϕ 4,6 ϕ 5,5 ζ 5,4 ϕ 6,4 + ϕ 5,5 ζ 5,4 ϕ 4,4 ϕ 5,5 ζ 6,5 ϕ 6,6 + ϕ 5,5 ζ 6,5 ϕ 6,4 + ϕ 5,5 ζ 4,5 ϕ 4,6 ϕ 5,5 ζ 4,5 ϕ 4,4 (B.33). (6, 6), ϕ 6,6 (4, 6), ϕ 4,6 (6, 4), ϕ 6,4 (4, 4), ϕ 4,4 J 6,6 R = ϕ 6,6 ζ 6,5 ϕ 4,5 + ϕ 6,6 ζ 6,5 ϕ 5,5 + ϕ 6,6 ζ 4,6 ϕ 4,5 ϕ 6,6 ζ 5,6 ϕ 5,5, (B.34) J 4,6 R = ϕ 4,6 ζ 4,5 ϕ 5,5 + ϕ 4,6 ζ 4,5 ϕ 6,5 + ϕ 4,6 ζ 5,6 ϕ 5,5 ϕ 4,6 ζ 6,6 ϕ 6,5, (B.35) J 6,4 R = ϕ 6,4 ζ 6,5 ϕ 4,5 ϕ 6,4 ζ 6,5 ϕ 5,5 ϕ 6,4 ζ 4,4 ϕ 4,5 + ϕ 6,4 ζ 5,4 ϕ 5,5, (B.36) J 4,4 R = ϕ 4,4 ζ 4,5 ϕ 5,5 ϕ 4,4 ζ 4,5 ϕ 6,5 ϕ 4,4 ζ 5,4 ϕ 5,5 + ϕ 4,4 ζ 6,4 ϕ 6,5 (B.37)

73 B.4 Jacobi Gauss-Seidel 70. (B.33) 1, 5 (B.34) 2, 4, (B.33) 2, 7 (B.35) 1, 3, (B.33) 3, 6 (B.36) 2, 4, (B.33) 4, 8 (B.37) 1, 3.,., T (B.27) 0., (B.24), ( ϕ ζ ϕ x y ϕ y ζ x ) dxdy = 0 (B.38), (B.23)., J L i,j J i,j C, J R i,j.,. (B.17) 2, ( ϕ ζ ζ x y ϕ ) ζ dxdy 1 ( ζ i,j J L y x 3 i,j + J i,j C + ) Ji,j R (B.39) i,j.,, (B.39), ( ϕ ζ ζ x y ϕ ) ζ dxdy = 0 (B.40) y x., (B.23).,, J L i,j J i,j R., J C i,j. 4 Jacobi Gauss-Seidel Poisson,., Jacobi Gauss-Seidel., (2.3.19), ϕ i+1,j 2ϕ i,j + ϕ i 1,j ( x) 2 + ϕ i,j+1 2ϕ i,j + ϕ i,j 1 ( y) 2 = ζ i,j (B.41). ϕ i,j, ϕ i,j = ( x)2 (ϕ i,j+1 + ϕ i,j 1 ) + ( y) 2 (ϕ i+1,j + ϕ i 1,j ) ( x) 2 ( y) 2 ζ i,j 2 [( x) 2 + ( y) 2 ] (B.42)

74 B.4 Jacobi Gauss-Seidel 71 (B.42) ϕ i,j, ϕ i+1,j, ϕ i 1,j, ϕ i,j+1, ϕ i,j 1 ζ i,j. (B.42) f(ϕ, ζ), Jacobi,. ϕ τ i,j. ϕ τ i,j, ϕ τ+1 i,j = f(ϕ τ i 1,j, ϕ τ i+1,j, ϕ τ i,j 1, ϕ τ i,j+1, ζ i,j ) (B.43) ϕτ+1 i,j ϕτ+1 i,j, τ, τ + 1 ϕ i,j = ϕ τ+1 i,j ϕ τ i,j (B.44).,,., Gauss-Seidel, ϕ i,j., ϕ τ+1 i,j = f(ϕ τ+1 i 1,j, ϕτ i+1,j, ϕ τ+1 i,j 1, ϕτ i,j+1, ζ i,j ) (B.45). Gauss-Seidel, ϕ τ+1 i 1,j ϕτ+1 i.j 1, Jacobi.,, Gauss-Seidel.

75 C.1 72 C 1.,., 35,800 km,.,,,.,,.,,,,.,,.,,.,,,.,.,, ( ). ( ).,. 500 m., (, ),.,,.,.,,, ( )

76 C C.1 : ( ) (, 2015). A :,.,.

77 C.1 74 B :.,. C :,.,, C.,, C.. D : 15, 12,., D.,. E :,.,,,.,.,, km.,,.,,,.,.,,.,..

78 C ( ). C.2 : ( ) (, 2015). A :,. B.1 A.,..

79 C.1 76 B :. C.1,. C :,. C.1. C.1. D :, C.1,., D. E :,. E.,,, C., E 30. F :,. C.1, F,.

80 C.1 77,. ( ), ( ).,,.,., ( ). C.3 : ( ) (, 2016).

81 C.1 78 A :,. B :,. C :,,. D :.. C.3, ( ),.

82 C.1 気象衛星画像 79 図 C.4 : 2015 年 1 月 9 日 10 時 (日本時間) の可視画像. (高知大学気 象情報頁, 2016) 図 C.5 : 2015 年 1 月 9 日 10 時 (日本時間) の赤外画像. (高知大学気 象情報頁, 2016) 学部卒業研究 2016/03/08(石崎 渓)

83 C.2 80 C.6 : ( ). (, 2016), C.4,,,.,,.,. C.5,,. C.6,,.,,.,,,,. 2, (ASAS), 60, , 9, 15, 21,, 1 4., ( ),.

84 C.2 81 C.7 : ( ) (, 2016). C.7,. 4 hpa, 20 hpa.,,.,,,,,,., 15 20, ,

85 C.3 82,,.,. C.7 H.,,.,,,,.,,. C.7, 2.,,.,. C.7 L.,,.,,,.,,. C.7., ( ),., ( ),. C.7,,. 3., ( ),.

86 C.3 83 C.8 : ( ) (University of Wyoming, 2016). (hpa), ( ), ( : 5 kt, : 10 kt, : 50 kt). 2, (). 3,.,,.,., 2 /km, 2 km, 2 /km., 500 hpa

87 C.4 84., C.8, 850 hpa, 850 hpa.,., 10 /km.., 5 /km..,,,,. C.8, 850 hpa, 850 hpa.. g/kg, 1 kg.,,. 4 (2003),,., ( ) ( C.7),,.,,,. (.), ( C.8), 850 hpa (1507 m)., ( ), 1950 m, 400 m.,.

88 85,...,, B4...,,, (, 2007),,, dcl ( dcl.

89 86 Hirota. I, and K. Miyakoda, 1964: Numerical Solution of Kármán Vortex Street behind a Circular Cylinder. J. Meteor. Soc. Japan, Vol. 43, 30-41,, 2015:., 2015,, 311 Kármán, T. von, 1911, 1912: Uber den Mechanismus des Widerstandes, den ein bewegter Korper in einer Flussigkeit erfahrt. Gottingen Nachrichten, Math. Phys. Kl. 12, , 13, , 2003:., , 2016:., :., :. JAXA, : ), 27-30, 2016:., : OpenGL + GLSL.,,,, 2012:.,, 1776, 28-41, 1988:., 98-99

90 87 University of Wyoming, College of Engineering, Department of Atmospheric Science, 2016: Upper Air Soundings. University of Wyoming,

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t + B: 2016 12 2, 9, 16, 2017 1 6 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : t = ν 2 u x 2, (1), c. t + c x = 0, (2). e-mail: iwayama@kobe-u.ac.jp,. 1 3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t +

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information