(1) (2) (3) (4) 1

Size: px
Start display at page:

Download "(1) (2) (3) (4) 1"

Transcription

1 8 3 4

2 B [, ] ψ NECDET BATIR A A A

3 . B B B B B B B B d B B. B. B B tdt + B. B. B k. B B B d * B k k.3 k + B d B tdt + B + B. B, B [ ] + B + B. k B k k k B + B B..3 * C k k 3

4 .3. + k B k k B tdt + B + k k B k t k + B + k B k [ k + +! k!k! B + + k k k ] t k+ + B k + + B k k k + k+ + B +. B k + B k k+ + B + k k +.3 B + + B k + k. k k + +! k +!k! k + k+ + B + + k B d [B ] B B. B B B B k B k.5 k.5 B, B 6, B 3 B, B, B 6, B 3, B 4 3, B 5, B 6 4, B 7, B 8 3, B 9, B 5 66, B, B 69 73, B 3, B 4 7 6, B 5, B , B 7, B ,... 4

5 . B, B t, B + 6, B , B , B , B , B , B , B , B , y B y B +, I B.6 B B.6 B B II k.6 B k k B k k + f B k+ k+ B k+ f B k+ k+ B k+ f C k + B k k+ k + B k k + [ B k k B k ] fd fd B k+ d k+ B k+ d B k+ s ds s B k+ sds. Cd C C. k +.6 5

6 B B B B.4 B + B +.7 B + B + B +..8 B.8 B B.9 B. B + B. I B.. B + B + [II] k. B k + B k k k. k + f B k+ + B k+ f B k+ + B k+ k + {B k + B k } k + k k. f k + k k d k + k + C. C B k+ B k+ C..4 B B B C. f B k+ + B k+ k + k k

7 q B + B + q + B + + q q + + B q q B q. B. I B q B + k q k q k. + k q + q qq II. + q f B + k + q k q f + B + k + k q q + B + k q k + q [ q k B + k q f C q + B + q q B q q + B + q q + B ] q B fd q fd k q q k.. q B + + k q q k+ q k q B + sds B + sds. Cd C C. B d q B + d + k q s + B + B. 7

8 . B + B B B B..3.3 B [, ] 3 B [, ] B B B y B [, ] B [, ],, y B B [, ],, y B α, β < α < < β I B + 6, B B 6, B B [, ],, y B 3 B 3 3B B [, ] s, t < s < < t < s t B B 3 α 3 s, β 3 t II k k, k + k + B k+ k + B k+, k + y B k+ 8

9 B k+ α k+ β k+ + + B k+ B k+ α k+ β k+ + B k+ y B K+ B k+ + B k+ B k+, \ B k+ < B k+ d < B k+ d B k+ > B k+ B k+ B k+ d > B k+ d B k+ B k+ < B k+ [, ],, y B k+ k + 3 B k+3 k + 3B k+, k + y B k B k+ + B k+ B k+ >, B k+ B k+ <. 9

10 4 B k+ + B k+ B k+ <, B k+ B k+ >. 3 B k+ [, ] s k+, t t+ < s t+ < < t t+ < B k+3 s k+ t k+ + B k+3 α k+3 s k+, β k+3 t k+ 4 B [, ] B B B B.3 B B.4 B B < B B [, ] B B B y.5 y B 3 y B 7 O.5.5

11 y.5 y B 8 y B 4 O.5.5 y.5 y B 9 y B 5 O.5.5 y.5 y B O.5 y B 6.5

12 .4. f [a, b] +. N h b a N N fa + jh h j + b a k θ < θ < fd + [fa + fb] B [ ] k k! hk f k b f k a + B N + +! h+ f + a + θh + jh j B B. 4 g [, ] + gtdt g + g + + k + +! g + g + k B + +! B k k! B k k! g k g k B + tg + tdt.5 g k g k { B } +t g + tdt.6 B +.5.6!!.5.6. I.

13 gtdt B tgtdt [B tgt] B tg tdt, g + g g + g g + g B tg tdt [ B tg t + B! ] B t t, B t B t + g g B tg tdt, B 3t 3B t [ ] + 3! B 3tg t 3! B 3tg tdt B 3 B 3, B 4t 4B 3 t g + g g + g g + g + g + g + B! + B! + B! g g 4! B 4tg tdt [ g g 4! B 4tg t g g + B 4 4! 4! B 4tg 4 tdt + k B k k! ] + g 3 g 3 g k g k + 4! 4! B 4tg 4 tdt B 4 tg 4 tdt..5 +! B + tg + tdt + 3! [ ] + 3! B +3tg + t B + 4! +4tg +3 tdt [ ] + 4! B +4tg +3 t + B ! g +3 g +3 B +3tg + tdt + 3! + 4! + + 4! B +3 tg +3 tdt B +4 tg +4 tdt B +4 tg +4 tdt. 3

14 gtdt g + g + g + g + B ! g + g k +! + + k B k k! B k k! g k g k B + tg + tdt g k g k g +3 g k + 4! B k k! gtdt g + g + + B + +! R B + +! B + +! +! B + +! k B k k! + + 4! g k g k B +4 tg +4 tdt g k g k g + g + g + g g + tdt + +! + +! {B + B + t} g + tdt { B } +t g + tdt B + +! B +4 tg +4 tdt B + tg + tdt. B + tg + tdt B + tg + tdt 4

15 F [, N] + N F j j N θ < θ < 4 g F + j, F t + jdt t + j s j+ j F d + [F + F N] + k B k k! [ ] F k N F k + B N + F + θ + j.7 +! F tdt j F j + F j + j,,..., N + B + +! F t + jdt F j + F j + j+ j + B + +! j,,..., N k B k k! F k j F k j + { B +t B + F sds k B k k! } F + t + jdt. F k j F k j + { B +t B + } F + t + jdt. N j j+ j F tdt N j F j + F j + B + +! + k B k k! N j { B +t B + F k j F k j + } N j F + t + jdt. i N N j G F tdt N [F + F N] + B + +! j F k + F + + j N j k { B +t B + B k k! } N [ ] F k f k N j F + t + jdt. F + + j [, ] G m, M. 5

16 wt B +t B + < t < wt > 3 B [, ] B B B, < t < B + t < B + B +t < B + < t < wt > [, ] G m M m G M. w> mw wg Mw. m wd < wgd < M wd> m < G wd / wgd wd < M. θ Gθ wgd wd, < θ < wd R B + +! B + +! d B + +! Gθ B + B + d { B } +t Gtdt B + wtgtdt B N + F + θ + j. +! j 6

17 [F + F N] N F tdt + N [F + F N] F k +.7 ii G N j j F + + j R B + +! B +Gt +! k B k k! B N + F + θ + j. +! B + +! Gt B + +! Gθ j { B +t B + { B +t B + B N + F + θ + j. +! j [ ] F k k N } Gtdt } dt θ < θ <. [F + F N] N F tdt + N [F + F N] F k + j k B k k! B N + F + θ + j. +! j [ ] F k k N.7 [, N] [a, b]. [, N] [a, b], t a + ht, h b a N 7

18 f [a, b] +. N h b a N h N fa + jh j b a fd + [fa + fb] + k B [ ] k k! hk f k b f k a + B N + +! h+ f + a + θh + jh.8 j θ < θ < F fa + h N fa + jh j N h fa + hd + b a + k B k k! [fa + fa + Nh] [ ] h f k a + Nh h f k a + B N + +! h+ f + a + hθ + j j fsds + [fa + fb] B [ ] + k k! h f k b f k a k + h + B + +! N j f + a + θh + jh. a + h s.8. 8

19 ... f a, b PCF. a, b f + lim f, f lim f +. f PCF. a, b fa +. lim f, fb lim f a+ b a, b f [a, b]. a, b. P CF. fa fa + lim f, fb fb lim f fa, fb f a+ b [a, b] [a, b]. a, b f,,..., m a < < < < m < m b. a, b m,,,,..., m, m. i, i+ f i +, f i+ i+ i f d. m m f d + f d + + f d f d m. b a f d, f [, ] s f.. f d +s +s f d f f + f. 9

20 f, [ + s, + s]. +s fd. t fd + +s +s +s fd +s fd +s ft + dt +s ftdt. +s fd fd + +s fd +s +s fd +s fd +s fd... f f + f f lim +. f. f lim f f f f lim + f f, lim + +. f f R f f lim + +. f f L lim f f

21 . [, ] f. < < f < < f R, f L, f R, f L, f R, f L f +, f, f +, f, f +, f,...3 m, si m cos d, cos m cos d cos m cos d { m \ si m si d m, m \ si m si d m.

22 cos k k si + si \ m, m, ±, ±,...,. si + si d... si.. si + cos k si + cos k si k k si + k cos k + si + + si si + si + + si cos k si k. cos k. si + si d [ + cos k d + k k si k k ]..

23 . I si + d,,... I + I. si I + I [ si si + cos si cos d ] si si si d + d I + I. I d I I I...5. θ si θ θ,.3 θ si θ θ..4 i θ θ si θ θ. fθ θ si θ, gθ θ + si θ f θ cos θ, g θ + cos θ fθ, gθ θ fθ f, gθ g. θ θ θ si θ θ θ si θ θ ii F θ si θ θ θ F θ cos θ. F θ θ θ ξ. 3

24 ξ / F F F θ. 3 y θ y O - y θ y si θ 3 θ.4 θ F θ si θ < θ F θ θ. F θ θ cos θ si θ Gθ θ cos θ si θ G θ θ y y si θ θ si θ <. Gθ < θ y θ lim G θ Gθ < F θ <. θ + F θ < θ F θ G O θ θ si θ.. e +,.5 log >..6 i f e + f e. f. f + f 4

25 f f f e +. ii g log > g. g. f + f g g g log. y y e y + y y log O 3. e > + +! + 3 3! + +! >..7. i f e + f e. > f > [, f. 5

26 f > f > f e > +. ii m m.7 e > + +! g e + +! + 3 3! + 3 3! + + m m! + + m m! g e + +! > * + m+ m +! + 3 3! + + m. m! * > g > [, g. g > g > g e > + +! + 3 3! m m m! i ii.7. + m+ m +!. 4 α. lim lim e,.8 log,.9 lim log,. + lim + α log.. i >.7 e > + k k k! > + +!. lim ii i lim t +! t e t. lim < +! < e log lim lim e. e t log 6 lim t. log t t e t.

27 iii t lim log lim + t t log log t lim t t t. iv t α lim + α log lim + α α log α α lim t log t. t a, b] f a α f α < α < b a f d. [a, b f b α f α < α < b a f d. 3 [a, f α f α α > a f d. lim a+ aα f lim a+ aα f a α f. a, b] f lim a+ aα f α < α < b a f d. a, b] f lim a+ aα f α < α < b a f d. 3 [a, b f lim b b α f α < α < b a f d. 4 [a, b f lim b b α f α < α < b a f d. 5 [a, f lim α f α α > a f d. 7

28 6 [a, f lim α f α α > a f d...7 I {f }. f I f I ϵ > N N f f < ϵ. N ϵ N Nϵ,. N ϵ f I {f } I f ϵ > N I N f f < ϵ. I f f. {f } I I ϵ > N m, N f m f < ϵ. {f } I ϵ > N I m, N f m f < ϵ. 4 I f,, 3,... f f I. 5 [a, b] f,, 3,... f. f d a a f d. 8

29 6 [a, b] f,, 3,... f f {f } f f...8 f,, 3,... I f + f + + f + f. I : S f + f + + f f k {S }. k f lim S f I f I ϵ > N N. f f k < ϵ k N ϵ N Nϵ,. N ϵ f I f I f ϵ > N I N. f f k < ϵ k 9

30 f I I ϵ > N m >, N m f k < ϵ k+. f I ϵ > N I m >, N m f k < ϵ k+. 7 I f M f I M 8 I f,, 3,... f I f f I. 9 [a, b] f,, 3,... f [a, b] f a b ft dt a a f dt. I f,, 3,... f I f f I d d f d d f. 3

31 ..9 K : a b, α α α f, α. f, α K α α. g [a, b] ϵ > δ > α α < δ, α \ α f, α g < ϵ. δ ϵ δ δϵ,. δ ϵ f, α α α K g f, α α α K g ϵ > δ > [a, b] α α < δ, α \ α α f, α g < ϵ. α K : a b, α α α f, α α K g ϵ > R > [a, b] α > R α f, α g < ϵ. K : a b, α α α f, α, α b a α f, α d α α α α. b b α f, α d dα f, α dα d. α a a α 3 f α, α K d dα b a f, α d b K : c, α α α f, α F α, t t F α c c a f, α d f α, α d. f, α d α F α ϵ > R > α [α, α ] t > R t fα, t g < ϵ. 3

32 K : c, α α α f, α, α F α F α α α c c c f, α d f, α d α α α α. f, α d dα c α 3 f α, α K F α d dα c α f, α dα d. c f, α d f, α d c f α, α d. 3 α α α f, α M c f, α d α α α. c M d.. a + a + a + + a + a. < R. > R. R. 4 α\. < α.. 5. β. > β. 6. R R lim a. 7. R. a a + 3

33 R lim a a + 8 a R >.. f a, < R a R, R R, R [ ρ, ρ] ρ < R.f R, R. b R, R f. c < R f a a R. d < R. a f d a + + a + + R a, b a b + a b + a b + + a b a b + a b + + a b 9 < R mir, R a, b R, R a b + a b + + a b a b + a b + + a b a b. a R f a, < R 33

34 f R, R.. a R > R f. a lim f fr a R. R.. s > s. s s > y s > y s s < y s > S N N N s < + d s + s N s < + s. {S N } N. s s. y > S N N N+ > N + s >. s ζs d logn s ζs. ζs s s >. 34

35 .. a log,,... {a }. y > y y < y > k k + O k k + k k+ k + < k d < k > + d log +. a log > log + >. 35

36 < d log + log. a a + log + log + >. {a } lim a γ. γ. γ lim log. 36

37 ..3 [a, b] f f b lim a f cos d, b lim a f si d..4 f a, b b lim a f cos d, b lim a f si d..5 a, b fa +, fb fa fa, fb fb f [a, b]. f [a, b] ϵ δ ξ < δ f fξ < ϵ b a. [a, b] N a,,,..., N b. b a N < δ N. f [a, b] f M M. b a f cos d N k N k N k < N N f cos d k N k f f k cos d + f k cos d k k k N k f f k d + f k cos d k k k k k k ϵ b a k k + N M si k si k ϵ b a b a N + N M ϵ + MN. 37

38 4MN ϵ MN < ϵ b f cos d < ϵ. a b lim a f cos d. f m µ, µ,..., µ m µ a < µ < µ < < µ m < µ m b. [a, b] m [µ, µ ], [µ, µ ],..., [µ m, µ m ]. [µ k, µ k+ ] µk+ lim f cos d. µ k lim b a f cos d lim b lim a m k µk+ f si d µ k f cos d.. 3, f α β α + β. f cos d,,,.... f si d,,... S N α N + α cos + β si {f S N } d {f S N } d 3. {f} d fs N d + {S N } d 38

39 { 3 fs N d {S N } α f α α + { α α 4 α 4 { α } N + α cos + β si d α f d + N {α f cos d + β N α α + β β } N + α + β. N + α cos + β si } { N N + α α cos + β si + α cos + β si N + α α cos + β si + } f si d d } N α cos + β si + α i α j cos i cos j + β i β j si i si j + i<j i,j α i α j cos i si j α N + α 4 + β { } α N + α + β. {f S N } d. A {f} d { } N + α + β α {f} d α N + α + β..6 N α + β {A N }. α + β. 39

40 3.6N. {f} d α + α + β.7 3 α α + β, β α + β α + β α, β. lim α, 4 lim β lim α, lim β., g a f cos d,,,..., b f si d,,... lim a, lim b 3. g < < f g+ g < < f, f, f cos α f cos d lim a lim α. f cos d g cos d a. g < < f g < < f, f, 4

41 f si β f si d lim b lim β. 5 f si d, g f si d b. lim g si + d. 4. g si + d g si si cos + cos si d g cos si d + g si cos d. g cos, g si, 4 lim g cos si d, lim g si + d. lim g si cos d. 6 f, f R lim f si + si d f+. 5. f si + d {f f+} si + d si si + f+ si + d. si 4

42 . si + d si. {f f+} si + si d f f+ si si + d g f f+ si lim g lim + + f f+ si f R. g, 5 lim lim g si {f f+} + si d. + si d. lim f si + si d f+...4 si p < q q p si d si q p d, si si d. d. d. ϵ ϵ < p < q [ cos d cos ] q p 4 q p cos d cos p p cos q q q p cos d,

43 q p si d p + q q + p d p + [ q + ] q p p < ϵ. si + si d..8 si d. f si <, f f f. f. lim f lim si si lim + + si + si lim + lim + f. cos lim si + cos + si + cos + cos si si si + cos + cos [, ] lim f cos + d. lim si + d lim si + si d..8 lim si + d. t + lim si + + d lim si t t dt si t t dt si t t dt. 43

44 si d cos cos d d cos si d. d [ cos ] +. si d si d cos d. cos si t si d.. si t t dt... [, ] f f f, f a b f cos d,,...,.9 f si d,,.... a, b f a, b a + a cos + b si f f a + a cos + b si. 44

45 . f f + f, f + f f f... 7, f, f f L f R f + + f a + a cos + b si.. f f a + a cos + b si a S N S N a N + a cos + b si f cos d, b fs ds + N { + fs ds + N f si d,,... fs cos s ds cos } fs si s ds si fs cos s cos + si s si ds fs ds + N fs cos s ds { N } fs + cos s ds. 45

46 { } fs N + cos s,, S N { } + fs N + + cos s ds { N } fs + + cos s ds + { } + fs N + cos s ds { } f u N + cos u du u s + { } f + u N + cos u du u s { } f u N + cos u du + { } f + u N + cos u du f u si N + u si u du + f + u si N + u si u N + u si f u si u du. gu f u gu, g R lim u + 6. lim gu g+ u f u si f u f lim u + u N + u si u f L du g+ f du. lim f + u si N + u si u du f + 46

47 lim S N f + f + {f + f + }.. f. f f + + f. Dii. S N f u si N + u du + f + u si N + u du si u si u si N + u du si u S N f. {f u + f + u f} f u + f + u f u si u si u φ u f + u + f u f N + u si u si du N + u du. φ u u [, ] φ u u u si u [, ] lim N f u + f + u f u u si u si N + u du. 47

48 lim N {S N f}. f f. 8, f, f u + f + u f u du f f. f a + a cos + b si [, ] f f f f, f [, ] f. f + f, f,. f f R f L f. 7 f. f a + a cos + b si. f, 3 α β α + β. a f cos d { [ ] si f β, f cos d,,,..., f si d,,... f si 48 d f si d } f si d

49 b f si d { [ ] cos f + { cos f + cos α. α + β + α α + β f cos } f cos d f + f f cos d f f α + β + β d cos } d α + β + a cos + b si a + b α + β α + β. 3 α + β +. [, ] f f f f,.f f a + a cos + b si f a si + b cos. f f + f. f f + f. f. f + f f f. f f R f L f. 7 f f f α + α cos + β si. 49

50 . α β f cos d,,,.... f si d,,... 9 α b, β a. α f 3 f d [f] f f a b cos a si + a cos + b si., f +, f f f. F f a + a cos + b si ft dt ft dt a + + F [, ]. F F. 3 F f a 7, a si b cos + + ft dt + ft dt ft dt a +,. F α + α cos + β si 5

51 .. α β F cos d,,,... F si d,,... α F cos d { [ ] F si b, f si d + a β F si d { [ ] F cos +. a F si } F si d f cos d a α F. si d F cos F cos cos d } d d d F α + α cos α + α { f a } si d { f a } cos d α + α. ft dt a + + α + α cos + β si a + + a + + [ α { cos + + } + β si ] [ b { cos + + } + a si ] 5

52 a d + a cos d + b si d f a + a cos + b si a. 5

53 .3 f f + f,..3. f, y O f si b f si d. f cos. a f d d [ 3 3 ] 3. a f cos d cos d { [ ] si } si d 4 4 cos d 4 { [ ] cos } cos d 4 { [ ] } cos si 4. si d si d 53

54 3 4 cos.4 cos + cos cos < < f < < y O 3 4, f cos a f cos d. f si. 54

55 b f si d { [ cos { [ si ] } ] si d } d cos cos d., < < si..8 t t si si t < <..8 < t <. t si t < t <. t si < < t f < < 55

56 a, b f si d ] cos + { [ { [ si ] si d } cos d } cos d., si < < si < < si < <. f,.3. t dt si t dt. 6 4 { cos } t 4 dt cos cos t dt. 56

57 3 si ζ f cos λ, b, a f cos d cos λ cos d {cosλ + + cosλ } d [ siλ + + λ + siλ + + λ + siλ λ siλ λ ]. siλ ± si λ cos ± cos λ si si λ cos si λ a si λ λ + + λ si λ λ λ. cos λ si λ λ + λ si λ λ cos. cos λ si λ λ + λ si λ λ. 57

58 λ cos si + si. si cot \, ±, ±, t cot t t + t t t + t +. t + t cot ±, ±,.... < d d log si log si si.33 cot cot d [ log ] cot + si log d. log <..35 < < g + + g +. < <, g + + g < < 58

59 .33 si f si λ, a, b f si d [ siλ + λ + siλ + λ + si λ λ. siλ λ siλ λ si λ si λ si d ] si λ {cosλ + cosλ } d si λ λ + λ λ si. si λ si λ λ si. si λ si λ cos λ cos λ 4 λ. z sec z 4 4z

60 z sec a >. f { cosh a + cosh a e p cos q d e p si q d ep p p cos q + q si q + C,.4 + q ep p p si q q cos q + C..4 + q b, a f cos d e a + e a cos d } {e a e a cos + e a e a cos d { [ ] [ e a e a a a cos + si + e a e a + a a cos si + { } e a a + ae a cos + a + e a a + ae a cos a aea e a a +. cosh a ea e a a + a a cos. + ] } e a + e a ea e a a + a a +. a a + ea + e a e a e a a. 6

61 a a + a + a a + ea + e a e a e a. a + ea + e a ae a e a.4. a, a <. f + e + e e e, e + e..44 a a cos + a a cos + a a cos + si >. a a cos + a a ae i ae i ae i + i ae ae i + a e i + a e i + a e i + e i + a cos.. a a cos + a + a cos..45 a cos d, a cos + a a a cos + a cos d a. 6

62 cos a d a cos + a a a <. f log a cos + a.45 a \ a a cos + a + a cos a cos a a cos + a a cos. cos a a cos + a a cos. a. q < q a q a cos q q a q < a a cos. cos a a cos + a a cos a a cos + a a cos + a da a a da. log a cos + a a cos..47 6

63 λ cos log a cos + a d, log a cos + a cos d a. log a cos + a d,.48 log a cos + a cos d a.49 cos m m, ±, ±,.... m. si. 5 {λ } λ >,,... λ cos m m, ±, ±,... λ si. m. δ > [δ, δ]. m m > λ ν cos ν λ ν cos ν m λ ν cos ν. ν ν ν+ si cos ν si ν + si ν si m m λ ν cos ν λ ν si ν + m ν+ ν+ m ν+ λ ν si ν + ν+ λ ν si ν + λ m si m + 63

64 m ν+ m ν+ λ ν si ν λ ν λ ν+ si ν + λ + si + + λ m si m + λ + si +. [δ, δ] m ν+ λ ν cos ν m ν+ m ν+ λ ν λ ν+ + λ m + λ + si λ ν λ ν+ + λ m + λ + si δ λ + λ m + λ m + λ + si δ λ + si δ. ϵ > λ si δ < ϵ m > > m λ ν cos ν λ + ν+ si δ λ si δ < ϵ. λ cos [δ, δ]. λ cos [m + δ, m + δ]. δ < δ < λ cos λ cos m m, ±, ±,.... λ si m m, ±, ±,.... α >, λ α. 64

65 6 si α α > cos α m m, ±, ±,.... m f log cos < < f +, f f,..47 log a cos + a a cos a <.5. a cos 6 m m, ±, ±,....5 a cos si log cos log si log si cos cos cos < <.,,. t t log si log cos t log cos cos cos t cos 65., < <..5 < t <. < <..5

66 8 Dii. < < f log cos f+ f,. m m, ±, ±,... fm. φ u f + u + f u f. φ u u du <.53 f <.. φ u u du φ u u du + φ u u < u < < + u < + < { } f + u f + u log cos + u log cos + u. φ u u < { } { } φ u log cos + u + log cos u log cos cos + u cos u log cos log cos u + cos. + cos < u < { φ u log cos + u cos + u cos u log cos { } log. < δ < δ φ u du u lim u + φ u u cos u + cos + cos δ φ u u lim u + du } { } + log cos u log cos du + δ φ u u 66 lim u + φ u u du. si u cos u + cos

67 δ φ u du. u φ lim u α > u u. u α φ u u α log cos u cos + u u α log u u α log + cos u α log cos u cos + u α u α log u α u α log + cos log si + α u cos u cos lim cos u u u u si, lim t log t. t + α > lim φ u u uα u δ φ u u φ u du. u φ u u du. du. log cos cos < <..54 log log log cos d, cos cos d log cos d,.54 cos cos d log cos d log

68 θ log cos θ dθ log θ log si d log [, ].9 si < <. B. φ ν φ φ + + si ν ν ν ν φ φ < <.58 cos ν ν,, si ν ν +,,,....6 < <.6 cos ν ν ν, si ν ν + + ν ν 3 φ, φ +. ν ν φ. φ φ φ + + φ ν ν si ν ν cos ν ν ν ν ν 3 si ν ν cos ν ν 68

69 φ + φ.6 φ d φ d, [ ] d cos ν ν d ν φ + d + + ν [ si ν ν + ν ν ] si ν ν [ cos ν ν + d ], φ. P, P!φ φ d,, P, P P, P d,,... P B [, ] B! ν B + + +! B! ν cos ν ν,, ν ν si ν ν +,,....65! ζ

70 B [, ] B B B..64 [, ] B! ν cos ν ν,..66! ν ν! ζ..67 B!!! ζ ζ 6 4!. B 4!.. B, B, B +,,... B 4!,,, z < B! z zez e z [, ] B! ν B + + +! cos ν ν,,... ν si ν ν +,, B!! ζ ζ B z! z ζ. 7

71 . B! z z < t φ, z B! z.7,, z < B + B + B +! z + + B + B! φ, z + ze z.! z + z z z! φ +, z φ, z + ze z.7. B!. B B z z < t d d φ, z B! zφ, z z B! z z B! z d d φ, ze z d d φ, ze z φ, zze z zφ, ze z φ, zze z φ, ze z gz φ, z gze z..7 gze +z gze z + ze z. gz z e z φ, z zez e z. 7

72 B B B! z zez e z {B }. B! z z e z B B B B B B B B d B! z zez e z. 7

73 .3.3 DI log si d log cos d log. 9 log cos cos < <. log cos d log. log cos d log, log si d log. log si d. y y log si O + log si. 73

74 α >. α log si α log si + α log si + log α log si. lim t log t t + + α log α α log α. lim + α log si. I log si d. t I I I log si t dt. + α log log si d + log si d log si d. log si d t I log cos t dt. I θ log si d + log cos d log si d log si d. I log si d log si θ dθ logsi θ dθ log dθ I log log si d log cos d log si θ dθ I log..7 74

75 DI cos a d a cos + a a a <,,,, a a cos + a + a cos a cos d, a cos + a a a cos + a cos d a. cos a d a cos + a a. a < a cos a a cos. a a a cos + a + a cos a cos + a a cos + a + a cos a., a a cos + a cos, a a cos + a cos a cos + a a cos 4 cos + a 3 a {cos 4 cos + } a, a cos + a cos a cos + a a cos a { cos 4 cos cos + cos } a [ cos {cos + cos } + cos ] 75

76 a cos + a + a cos a. a < a cos + a a cos + si > a cos + a.73. a a cos + a + a k cos k k cos a cos a cos + a d [ si a. cos d + ] a k cos k cos d k + a cos a d a cos + a a a <,,,.... a a cos + a + a k cos k k a a cos + a d d + a k cos k cos d k [ ] + [ a k si k k. k ] cos a d a cos + a a a <,,,,

77 a cos θ + a e iθ ae iθ a eiθ aae iθ e iθ J J e iθ a cos θ + a dθ e iθ e iθ aae iθ e iθ dθ z e iθ, dz izdθ C J C z z aaz z fz dz iz i C z z aaz z z aaz dz C : z e iθ z a Resa lim z a z afz lim z a J i i a a z az a a. cos θ a dθ a cos θ + a a. a a. [, ] [, ] θ ϕ cos θ a cos θ + a dθ cos θ a cos θ + a dθ + cos θ a cos θ + a dθ + cos θ a cos θ + a dθ cos θ a dθ a cos θ + a a cos θ a cos θ + a dθ cos ϕ a cos ϕ + a dϕ. 77

78 a cos + a e i ae i a C i C dz tz z aaz t <. z a fz tz z aaz Resa lim z a z afz lim z a tz az at a. z e iθ i C dz tz z aaz i ie iθ dθ te iθ e iθ aae iθ dθ te iθ a cos θ + a i dθ te iθ a cos θ + a at a. t t t a cos θ + a { + te iθ + t e iθ + + t e iθ + } dθ a + at + a t + + a t +. e iθ a dθ a cos θ + a a. cos θ a dθ a cos θ + a a..74 cos θ a cos θ + a dθ s θ cos θ a cos θ + a dθ + cos θ a cos θ + a dθ cos s a cos s + a ds cos θ a cos θ + a dθ. 78

79 .74 cos θ a cos θ + a dθ cos θ a cos θ + a dθ. cos a d a cos + a a a <,,,, a > <.75 a a a. cos a cos + a d a a a >,,,, DI 3 a < log a cos + a d log a a > a f, a log a cos + a, φa log a cos + a d f, a d a < ; a cos + a a cos + si > a cos f, a, f a, a φa. a cos + a φ a a a φa φ. a < f a, a d a cos a cos + a d a cos + a d a a a.75 cos a cos + a d log a cos + a d

80 log a cos + a d, { log a cos + a log a } d. a > 3 a φ a 4 4 log a cos + a d log a..78 log cos d log si d log si θ dθ log si d θ log si θ + log dθ 4 log si θ dθ + log 4 log + log. φ 4 4 log + cos d log cos d log cos θ dθ.7 log cos d θ log cos θ + log dθ 4 log cos θ dθ + log 4 log + log..7 DI 4 a a < log a cos + a cos d a a > 8

81 , a < log a cos + a cos d [ ] log a cos + a si log a cos + a si a si si a cos + a a si si a cos + a d a cos + a cos + a d cos a cos + a d a a + a a a.75 a. log a cos + a cos d a a > a a d d a <,,, { log a cos + a log a } cos d a log a cos + a cos d a a >,,,.... log a cos + a cos d a. DI 5 log si cos d log cos cos d,,...,,, a 8

82 7 {f } δ < δ < a + b [a + δ, b δ] f g g b a f d b a f d b lim a f d [a + δ, b δ] f g. b δ a+δ f d δ +o. b a f d b a b δ a+δ b δ a+δ f d b a [a + δ, b δ] f f d,. b g d < a b b a g d g d a g d < f d b a g d. {f } [a + δ, b δ] f f g f g b a f d b a b a g d. f f. b b f d lim f d f d. a a {f } [a + δ, b δ] f ϵ > > f f < ϵ. b {f f} d a a+δ a a+δ a b δ b {f f} d + {f f} d + a+δ b δ {f f} d b δ b f + f d + f f d + f + f d a+δ b δ 8

83 a+δ b g d + b a δϵ + g d a b δ b a {f f} d a+δ a b g d + b a δϵ + g d b δ. δ + b a {f f} d b aϵ. b lim a f d b a f d. < a < lim a {a }..79 log a cos + a cos k d ak k..8 f log a cos + a cos k. δ < δ < [δ, δ] f g g a cos + a a cos + si < a < si a cos + si ma { cos + si, cos + si }. g d { f ma log si, ma log 4 si, log 4 } cos. { [ g ma log si, ma log si, log cos ]} f g. log si d, log si d, log cos d δ < δ < [δ, δ] f f log cos 83

84 . f f log a cos + a log a si log si log a + a si. si + a si [δ, δ] M si δ a a + a si a + M a. a a + M a log a log { a + M a }. ϵ >, > f f log a + a si log a < ϵ, a + M a < ϵ ma { log a, a + M a } < ϵ. 7 lim f d f d. lim a k k log si cos k d. log si cos k d k. θ log cos θ cos kθ dθ k k. 84

85 3 3. I f I α, β, α + β α, β, y I fα + βy αf + βfy f : I R I I,, < <. f f f f f f 3. y f f + f. B f f f f f. f f f f f f f f f.. f f 3. A, f, P, f, B, f AP AB PB. O A P 85

86 8 f : I R f f f. f f. I,, < < 3. + f f f f f f f f f. f f f. f f f. < y. F X αfx + βfy fαx + βy X y F X α [f X f αx + βy]. X αx + βy αx + βx αx + βy βx y X αx + βy f X f αx + βy. F X F y F X. F fα + βy αf + βfy. f : I R f f I f. I f f. 3. Γ e t t dt >. ft e t t < < t + ft + g ft dt, g ft dt 86

87 . < < t α ft e t t α α < α < lim t + tα ft lim t + e t. J. g. g α > g. lim t tα ft lim t +α t e t e t t dt. >. Γ Γ >. g e t t dt lim s + < t < e t t e t t s e t t dt 3. e t t dt <. e t t dt. g. > g >. g e t t e t t e t t dt. e t t dt. < t g. > g >. >. Γ + Γ g + g e t t dt [ e t t ] + e t t dt Γ Γ e t dt [ e t] Γ + Γ, Γ

88 Γ + Γ Γ Γ!! Γ Γ e t t log tdt e t t log tdt Γ d d e t t dt e t t log tdt.. t t > log t t < t t e t log t dt t e t log t t dt < t e t dt < ϵ. < < lim t + t log t t t log t <.. t t e t log t dt e t log t dt Γ t t γ lim log e t t log t dt e t dt < ϵ e t t log tdt ,

89 R # { R ; \,,,... } 3.4 R # Γ Γ lim Γ 3.6, R # { R ; \,,,... }. a Γ, I f : I R LC I f >, LC log f I,. > Γ. Γ d log Γ d d d e t t dt, Γ u e t t dt >. Γ Γ Γ Γ {Γ } {Γ } Γ u + Γ u + Γ e t t log tdt, Γ D 4 {Γ } Γ Γ d d log Γ Γ Γ {Γ } b Γ : R # R e t t log t dt e t t [ u + u log t + log t ] dt e t t u + log t dt. {Γ }. Γ e γ lim k e k + k e γ k e k + k

90 3.7 Γ eγ + +! k + e k. 3.8 k e log + e + e + e e log + e k k c Γ : R # R k Γ Γ γ + k k k d m d m Γ Γ m+ m! k m+, m k 3.7, Γ. I, Γ > 3.7 log Γ γ log + k k { k log + }. k { k log + } k k + k. k k k + k k + k k + k < k k k k log Γ, k + k Γ Γ γ + k + k 9 k,.

91 . Γ e log Γ,. II R # Γ m, m + Γ m, m Γ., Γ m m, m + Γ. m, m + Γ., m, m u +, u + u, u m, m +. Γ + Γ Γ Γ Γ Γ lim Γ + Γ + u u lim u u u u Γ u u Γ u u u u u {Γ u Γ u } Γ u u u u u. u {u Γ u Γ u } m, m Γ. [ u {Γ u Γ u ] } Γ u u u R # Γ ψ Γ Γ {log Γ }. Γ + Γ Γ + Γ + Γ ψ + Γ + Γ + Γ + Γ Γ + Γ Γ + ψ. R # ψ + ψ +. I, ψ γ + k k + k 9

92 m m, m + m, m ψ γ + k ψ γ + k k + k k + k. m, m + m, m +. ψ ψ + γ + + k + k + k γ + + k + + k + + k k + k γ + + k k + k k + k γ + + k + + k k k γ + + k + + k + γ + k k k + k III R # Γ R # Γ ii ψ Γ {log Γ } Γ. d m d m ψ m+ m! k m. i m ψ γ + 9 m+, m 3. + k k k + k

93 + k. k lim + k + < M M k k k. k k + k k + < M k k ψ,. ψ + ii m k k d m d m ψ m+ m!,. + k + k k k + k + k m+ m+ m +! k + k m+. lim + m+ k + m+ < M k k k M. k m+ k + k m+ k m+ + m+ < M k k ψ m,. d m d m+ ψ m+ m +! k m+ m+,. + k k + k m+ d d log Γ Γ Γ Γ digamma psi ψ d d log Γ 3. 93

94 ψ γ + k k + k 3.3 d m d m ψ m+ m! k m+, m k 3.3 k k log + γ + O, ψ γ + k γ + k + lim k + k k k lim k γ lim log. + k + k k k k ψ lim log k k Γ + Γ Γ + Γ + Γ ψ + Γ + Γ + Γ + Γ Γ + Γ Γ + ψ. R # ψ + ψ Γ Γ, < < 3.7 si 94

95 Γ Γ 3.8 Γ eγ k + e k, k Γ e γ k e k. k Γ Γ k k..35 si < < } {Γ Γ > Γ f + f, f cosγ 3 G :, R G + G G > G Γ G :, R G + G G G!, G G. G + + G G G G G. 95

96 G +! G G!. < s <,. y log G log G + s log G + s log G log G log G log G log G + log G + log G + s log G + s log G + s log G s G!, G!, G +! log G + log G + s + + s log G + s log G + s log G + log G... log log G + s log G s s G G + s s G. G + s ss + s + Gs s G ss + s + Gs + log, s G ss + s + s G + ss + s + s +. s G + ss + s + Gs s G + ss + s + s + Gs s G + ss + s + Gs. s +. Gs lim s G + ss + s + lim s! ss + s +. Γ :, R Γ + Γ Γ. Γ s lim Gs Γ s < s <. s! ss + s + Gs + ss + s + Gs ss + s + Γ s Γ s +. G Γ! > G Γ., Γ

97 Γ lim Γ R # Γ Γ + + Γ + + Γ , +, Γ,. Γ m, m + m, m. R # Γ. 3.8 R # Γ. Γ + Γ, R # Γ + f :, R f + f > f fγ G f f. Γ Γ + Γ. 3.9 Γ Γ + Γ + Γ + Γ

98 9. z z k cos k z k si k 3. + i si k z z z z z z z. eki/ k,,..., z + z + + z + z z z z z z. z z z z z z z z k si k z k cos k i si k cos k + cos k 4 si k si k z z z 3.. k si k k si k. z z z. z k cos k si k si k i si k i si k cos k i cos k + i si k i si k eki/ 98

99 z z z k i si k eki/ i e i/ f i e i/ i cos + i si m k f 4m+ i 4m cos m + i si m, { f 4m+ i 4m+ cos m + + i si m + } i cos + i si i i, f 4m+3 i 4m+ {cosm + + i sim + } si k.. i cos + i si, { f 4m+4 i 4m+3 cos m i si m + 3 i 3 cos 3 + i si 3 i i } f.. z z z i e i/ k si k g Γ Γ G g. + Γ k si k f k si k + Γ + Γ +, G + + Γ + Γ + + Γ + + Γ + Γ + Γ + Γ + Γ + Γ G

100 . log G log + log Γ k + k log Γ log G k d d log Γ + k. G G cγ g c Γ. c Γ Γ Γ Γ c Γ. { Γ Γ Γ Γ si si } Γ Γ Γ Γ si Γ Γ Γ Γ c. g Γ.. c >. log Γ log + log + O

101 > log g log Γ k k + k { log + + k log + k + k } + O { log + + k log + k } k { + + k log + k + k } log + O k k { log + + k log + k } + + k log + k k log + k log + O k log + k + O. log + + O + k log + k + k { } k + O k + O. + k log + k k k log g log + log + log + log + O k + O + O. + + O log c + log Γ log c + log + log + O log c log + log c.

102 log! log! log + log + log + O.! Γ > log Γ log + log + µ µ. µ. + log Γ + log + log + log + + µ + log + log µ µ + µ µ + + log +. λ + log + µ µ + λ. µ λ + λ + λ + + λ µ µ + λ. λ λ + log + > λ k k + + k, < λ < + log + t + t, t <. i

103 t t log + t i ii + log + t t t, t <. ii + {t t }, t <. log + t t k t k+ k +, t <. t + > + log + k k + + k + k k + + k. λ k k + + k. λ > λ < k k k + + k 3 + k < λ < µ λ + 3. µ :, R < µ, > 3.3 3

104 < µ. λ + < m λ + < m m µ. 34 > log Γ log F log + µ. µ λ +. + m + log + µ µ + λ + + λ + λ µ λ F + + log + + µ + + log + + µ + log + µ + log + + F + log. G e F G + G. λ + log + λ log + + +, λ λ µ f log > λ +. f log, f + > 4

105 f, F. G 3 G GΓ. log Γ F + C. C log Γ F + C log! log + µ + C. log log! + log + µ + C. 33 < µ log! log + log + log + O log + O µ + C. < µ. lim µ. C log. 34 ψ 35 > < ψ log < log Γ log + log + µ ψ log + µ. < µ < µ λ k > > k k k k + + k+ + k+ + k k+ + + k λ + k + k + + k+ k + + k [ + ] 5

106 µ λ + > µ < ψ m B 4m <, B 4m+ > B B! ζ m B 4m m 4m! 4m ζ4m 4m! 4m ζ4m <. m + B 4m+ m 4m +! 4m+ ζ4m + 36 ψ > k ψ ψ 6 3 4m +! 4m+ ζ4m + >. + < ψ < k + k + k + + k + k + k + + k + + k + k + >, k + k + k + + k + k + k + + k k k k + k k k k 3 + k + 3 k 6 + k 3 + k + 3 <. k 6

107 >, N + + N k B k k+ < ψ < + N + k B k k N ψ k + k \,,, N k B k k+ < k + k < + N+ + k B k k+ f f [, + m] f N+ m f + k k +m + N k ftdt + B k k! + B N+ N +! f + m + f f k + m f k m k θ, f f N+ + k + θ +m ftdt +m t dt [ t ] +m + m, f k k!, f N+ N + 3! 7

108 m k + m + m + + B k k! + m + N ] [ k! + m k+ + k! k+ k + B N+ N +! m N + 3! + k + θ N+4 k m k + m N k B k k+ + m N + m m + N + 3B N+ k k B k + m k+ + k + θ N+4. SN + + N k B k k+, T m, N + m + m N k B k + m k+, m Em, N N + 3B N+ k + k + θ N+4 Em, N B N+ N SN + T m, N < m k < SN + + T m, N m > N 3.6 m T m, N T m, N N k B k k+ k + k + N+ + k B k k+ > N + + N k B k k+ < ψ < + N+ + k B k k N, 8

109 > < ψ < , < ψ < >, N log N k N B k < ψ < log k k k k B k k k+ 3.8 f ψ log N B k k k > f ψ N k B k k+ < < ψ log < lim ψ log lim f. > f > log N k B k k k < ψ g ψ log N k g ψ B k k k N k lim ψ log B k k+ > lim g. > g < ψ < log N k B k k k+ 9

110 N N N + ψ log N+ { θ. k B 4N+ < ψ 4N+ 4N + log N k B k < ψ < log N k k k B k k k+ { } log N B 4N+ 4N + k k { } < ψ log N B k k k+ B k k k+ B k k k+ } < θ 4N+ < θ < < B 4N N 4N { } ψ log N B k k k+ θ. k. B 4N 4N θ 4N < θ < 39 >, f ψ { log k k B k k k+ { } g ψ log B k k k+ } θ, θ. f B g B 4 4 θ 4+ < θ < 3.9 θ 4 < θ < 3.3

111 N, > log < ψ < log + 4, log < ψ < log >, N log + log + < log Γ F Γ N k B k kk k < log + N log + k { log + log + F ψ log + + N lim k N k B k kk k 3.3 B k kk k B k k k+ < [ { Γ log + }] log lim F. > F > log + log + G Γ { log + N k B k kk k N log + + k G ψ log + N + k lim ψ log B k k k+ > < log Γ } B k kk k }

112 lim G. > G < log Γ < log + N log + k B k kk k N N N + log + log + < log Γ N k B k kk k < log + N+ log + k B k kk k < log Γ { log + log + N k B k kk k } < log Γ B 4N+ 4N + 4N + 4N+ { log + log + N k B k kk k } θ. B 4N+ 4N + 4N { > log Γ log + θ 4N+ < θ < N log + k B k kk k } > log Γ B 4N 4N 4N 4N { log + N log + k B k kk k } θ. B 4N 4N 4N. θ 4N < θ <

113 4 >, { F log Γ G log Γ { log + log + log + k log + k B k kk k B k kk k } } F G B B θ 4+ < θ < 3.33 θ 4 < θ < 3.34 θ, θ lim F, lim G log Γ log + log + k log Γ log + log + k B k kk k B k kk k. log Γ.. log Γ log + log N, k B k kk k [ ] 3

114 > log + < log Γ log + log < log + < log Γ < log + log +, log log

115 4 N.Batir Iequalities for the gamma fuctio[] C.Mortici Ramauja s estimate for the gamma fuctio via mootoicity argumets [] < log Γ + < e 4.. Theorem.6. N.Batir For all positive real umbers we have e + a < Γ + e + b, with the best possible costats a ad b e.765 Theorem.. C.Mortici For every [,, we have + α < Γ + < + β, e e where α ad β N.Batir e + α < Γ + e + β, with the best possible costats α e ad β.35 < C.Mortici. N.Batir. N.Batir. + < Γ +. e 3 + < Γ + e 3 log + log + log + < log Γ + log Γ + log 3 5

116 3.33 log Γ > log + log { log Γ + log log + log + log + } 3 > log + log log { log + log + log + } 3 log + log log + f 3. f < f lim f lim log log log + log. f >. Γ + + β + β e e, β e. {Γ + } g e, [, g Γ + Γ + e {Γ + } { log + e e } e Γ + Γ + {Γ + } log e {Γ + } {ψ + log } e {Γ + } e ψ log + { } {Γ + } Γ + Γ + log e 6

117 g < {Γ + } ψ log + < e log Γ + + log ψ log + < log + log G ψ log + < ψ log < < G <. H log Γ + + log G log log + H ψ + + G G log ψ + log + G G G + G G [G] + G G 3.7 > < ψ G ψ < < [G] < 4 [ G ] + G < < < 3 5 < < 3 5 H < g < g [, {Γ + } e, g {Γ + } e g e β [G] + G < > + e < ψ G ψ < + e [G] + G < + e 3 e <. 7

118 4. NECDET BATIR NECDET BATIR INEQUALITIES FOR THE GAMMA FUNCTION 6 Theorem.6. N.Batir For all positive real umbers we have e + a < Γ + e + b, with the best possible costats a ad b e.765 log ψ > log + ψ < > log < ψ < log g. {Γ + } e, [, g {Γ + } ψ e log + log + ψ <? < log Γ + < e g <

119 NECDET BATIR INEQUALITIES FOR THE GAMMA FUNCTION.. > F >, F <, F >.. Let be a positive real umber. The the fuctio defied by F log + log log Γ + + log + is strictly completely mootoe i,. strictly completely mootoe A fuctio f is completely mootoic i a iterval I if f has derivatives of all orders i I which alterate i sig, that is f for all I ad,,, 3,... if this iequality is strict for all I ad all o-egative itegers, the f is said to be strictly completely mootoic. > F >, F <, F >. > F log ψ F ψ. 8 ψ k k + k, m + k m + k + m k F + k + + k + + k + k + k k + k + / + k + 3/ k 3 + k + 3/8 3 + k + /8 3 k + k m,, 3 G + k6 + k + k + + k + + k + / k + k + 3/ + k + 3/8 3 + k + /8 3 G t + k > 9

120 Gt t t t t t t t > F > > F lim log ψ lim F > F < > F > log Γ log + > log + µ log Γ + log + log Γ log + + log + µ. F F log + log log Γ + + log + log + log + log + log log + + log + + log 6 log + µ µ µ lim µ lim F > F >.

121 A A. p >, q > Bp, q p q d.. A. J p q d, J J, J. J < p < < α < J. J < q < < α < J. A. t p q d lim + p q + α p lim + α p q lim + q lim p q + α q lim α p q lim p Bp, q A. cos θ t p t q dt Bp, q Bq, p. θ Bp, q cos p θ si q θ dθ. t q t p dt Bq, p. A. A.3 p q B, dθ

122 B,. A.4 A. + t t Bp, q p t q dt + t + t + t Bp, q t q p+q dt. + t t q p+q dt. A.5 + t A. Γ Γ y e u u du e v v y dv. u u v v y Γ Γ y 4 lim R 4 lim R R R R e u u du R e v v y dv e u +v u v y du dv. R R R S R. R/ S R/ R C R O R R +v u v y du dv < S R/ e u < C R e u S R e u +v u v y du dv +v u v y du dv. 3 R e u u du e v v y dv

123 lim R S R e u. +v u v y du dv lim R C R e u +v u v y du dv u, v r, θ u r cos θ, v r si θ J u, v r, θ u r v r u θ v θ lim e u +v u v y du dv R C R lim R lim R R R cos θ r si θ si θ r cos θ r e r r cos θ r si θ y rdr dθ e r r +y dr e r r +y dr. r t e r r +y dr e t t +y r cos θ si θ y dθ cos θ si θ y dθ dt r A.3 B, y/... Γ Γ y Γ + yb, y B, y Γ Γ y Γ + y A.6 y A.5 Γ Γ B, e t t +y dt t + t dt Γ + y. A.6 A.7. / si Γ Γ < < A.8 si. [] [] M 3

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h 6 6.1 6.1.1 O y A y y = f() y = f() b f(b) B y f(b) f() = b f(b) f() f() = = b A f() b AB O b 6.1 2 y = 2 = 1 = 1 + h (1 + h) 2 1 2 (1 + h) 1 2h + h2 = h h(2 + h) = h = 2 + h y (1 + h) 2 1 2 O y = 2 1

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information