70 : 20 : A B (20 ) (30 ) 50 1
|
|
- せいごろう さどひら
- 3 years ago
- Views:
Transcription
1 70 : 0 : A B (0 ) (30 ) 50 1
2 A B A ( 1) A B A B ( ) A B A B A B A B A B A B A B A B A B A B A
3 7.7 B A B A B A B A B A B A B A B A B A B A B A B A B A B
4 1 (1) α( ) θ( ) θ = π 180 α α = 180 π θ (1) ( ) () P O X O OP OP OX n : α n () : θ + πn (3) (3) S l r θ( ) l S : l = rθ (4) : S = 1 r θ = 1 rl (5) r ( ):θ 4
5 1.1 (1) π π π α( ) θ( ) α : θ = 360 : π π θ = 180 α α = 180 π θ (3) ( ) r θ l S r πr r π ( ) = ( ) l : πr = θ : π l = rθ S l r r πr ( ) = ( ) S : πr = θ : π S = 1 r θ 5
6 1. A A1-1 (1) 15 () 45 (3) π 8 (4) 5 1 π A1- OX OP (1) 30 () 60 (3) 780 (4) 410 A1-3 OP OP α n(n ) 0 α 360 (1) 480 () 315 (3) 810 (4) 930 A1-4 (1) 4 π ()
7 1.3 B B1-1 (1) 30 () 60 (3) 7 (4) 40 (5) π 3 (6) 11 6 π (7) 7 1 π (8) B1- OX OP (1) 10 () 110 (3) 90 (4) 760 B1-3 OP OP α n(n ) 0 α 360 (1) 550 () 1190 (3) 400 (4) 1370 B1-4 (1) 5 5 π ()
8 (1) y r 0 θ < 180 -r x O r x sin θ = y r cos θ = x r (6) (7) y tan θ = y x (8) -r () 1 (3) θ sin θ cos θ 1 sin θ 1 (9) 1 cos θ 1 (10) tan θ sin cos! (4) θ 0 0 < θ < π sin θ cos θ tan θ π π < θ < π π θ π < θ < 3 π 3 sin θ cos θ tan θ π 3 π < θ < π π 8
9 .1 A A-1 ( ( ) ) α θ sin θ cos θ tan θ 9
10 A- ( ( ) ) α θ sin θ cos θ tan θ 10
11 3 ( 1) 3 tan θ = sin θ cos θ (11) sin θ + cos θ = 1 (1) 1 + tan θ = 1 cos θ (13) (1) sin θ = 1 cos θ cos θ = 1 sin θ 11
12 3.1 (11) sin θ = y r cos θ = x r tan θ = y x x, y ( ) = sin θ cos θ = *1 tan θ x, y ( ) = tan θ = * ( ) ( ) (1) sin θ = y r, cos θ = x r ( ) x, y, r ( ) = *3 r, x, y *4 ( ) = *5 (13) (1) *6 *7 *1 y * x y x *3 x +y r *4 x + y = r *5 1 *6 cos θ *7 sin θ cos θ + 1 = 1 cos θ 1
13 3. A A3-1 (1) θ 3 sin θ = 3 5 cos θ tan θ () π < θ < π tan θ = 1 sin θ cos θ A3- (1) tan θ + 1 tan θ = 1 sin θ cos θ () (sin θ + cos θ) + (sin θ cos θ) = (3) tan θ + (1 tan 4 θ) cos θ = 1 13
14 3.3 B B3-1 (1) θ 4 cos θ = 5 sin θ tan θ 13 () 0 < θ < π tan θ = sin θ cos θ B3- (1) (tan θ + cos θ) (tan θ cos θ) = 4 sin θ cos θ () 1 + sin θ + cos θ 1 sin θ = cos θ 14
15 3.4 A A3-3 (1) sin θ + cos θ = 1 sin θ cos θ sin3 θ + cos 3 θ () sin θ cos θ = 1 sin θ cos θ sin3 θ cos 3 θ A3-4 θ (1) y = cos θ + sin θ 0 θ < π () y = tan θ + 4 tan θ + 5 π < θ < π 15
16 3.5 B B3-3 (1) sin θ + cos θ = 1 5 sin θ cos θ sin3 θ + cos 3 θ () sin θ cos θ = 1 5 sin θ cos θ sin3 θ cos 3 θ B3-4 θ (1) y = sin θ + 4 cos θ 0 θ < π () y = tan θ + tan θ + π < θ < π 16
17 4 ( ) Point (1) θ + nπ n θ + nπ θ 3 sin(θ + nπ) = sin θ (14) cos(θ + nπ) = cos θ (15) tan(θ + nπ) = tan θ (16) () θ sin( θ) = sin θ (17) cos( θ) = cos θ (18) tan( θ) = tan θ (19) (3) θ + π sin(θ + π) = sin θ (0) cos(θ + π) = cos θ (1) tan(θ + π) = tan θ () (4) θ + π sin(θ + π ) = cos θ (3) cos(θ + π ) = sin θ (4) tan(θ + π ) = 1 tan θ (5) 17
18 4.1 θ θ θ P, Q P, Q θ y ( P ( Q (a) (c),, (b) (d) ) ) -1 O 1 P Q -1 1 x P Q x (e) P Q x P y 1 Q y (f) tan( θ) sin( θ) cos( θ) tan( θ) = (g) (h) (e)(f) tan( θ) = (i) (j) = (k) 18
19 θ + π θ θ + π P, Q P, Q θ ( ) (l) (m) P, y 1 P(a,b) Q ( (n), (o) ) -1 O 1 x P, Q P (a, b) Q a, b Q -1 Q( (p), (q) ) ( (cos θ, sin θ) = (r), (s) ) (t) (u) tan(θ + π) tan(θ + π) = (v) (w) = (x) 19
20 θ + π θ θ + π P, Q P, Q θ ( ) (y) (z) P, Q y 1 P(a,b) Q ( (aa), (bb) ) -1 O 1 x OQ OP π P (a,b) Q ( (cc), (dd) ) (ee) -1 (ff) tan(θ + π ) tan(θ + π ) = (gg) (hh) = (ii) 1 0
21 4. A A4-1 sin 8 3 π cos 9 17 π tan 4 π A4- ( sin π ) 6 ( cos π ) ( tan π ) 4 3 A4-3 sin 7 6 π cos 7 6 π tan 7 6 π A4-4 sin 19 ( 6 π cos 15 ) 4 π tan 0 3 π 1
22 4.3 B B4-1 sin π cos π tan 3 6 π B4- sin ( 34 ) π cos ( 56 ) π tan ( 3 ) π B4-3 sin 5 4 π cos 5 4 π tan 5 4 π B4-4 sin 11 ( 3 π cos 31 ) ( 6 π tan 5 ) 6 π
23 4.4 A A4-5 sin π + cos π + sin 7 9 π sin π 18 A4-6 ( (1) sin θ + π ) ( π ) cos (θ + π) + sin ( θ) cos ( θ () tan θ + tan θ + π ) ( π ) + tan θ + tan(π θ) 3
24 4.5 B B4-5 sin 13 6 π + tan 7 ( 6 π sin π ) + cos π B4-6 ( π ) ( ) 3 (1) cos + θ sin(3π θ) sin π + θ cos(π θ) ( () cos θ + cos θ + π ) + cos(θ + π) + cos (θ + 3 ) π 4
25 5 (1) y = sin θ θ sin θ ( y = sin θ ) y π π 1 y 1 0 () y = cos θ θ cos θ ( y = cos θ ) y π y π 1 y 1 0 5
26 (3) y = tan θ θ tan θ ( y = tan θ ) y y π π : y θ 1 +α (θ = π 4 ) 6
27 (1) y = A sin θ y = sin θ θ y (a) ( A ) y 0 () y = sin(θ p) y = sin θ (b) (c) (d) y = (x p) y = x (3) y = sin aθ y = a sin y = sin θ y θ (e) y = cos θ y = tan θ 7
28 5.1 A A5-1 (1) y = sin θ () y = 1 cos θ (3) y = 3 tan θ A5- ( (1) y = sin θ π ) ( () y = cos θ π ) 6 ( (3) y = tan θ + π ) 6 8
29 5. B B5-1 (1) y = 3 sin θ () y = 3 cos θ (3) y = 1 3 tan θ B5- ( (1) y = sin θ π ) ( () y = cos θ + π ) 3 ( (3) y = tan θ + π ) 3 9
30 5.3 A A5-3 (1) y = sin 3θ () y = cos 1 θ (3) y = tan θ A5-4 ( (1) y = sin x + π ) ( () y = sin x + 1 (3) y = cos x (4) y = 3 sin x π )
31 5.4 B B5-3 (1) y = sin θ () y = cos 3 θ (3) y = tan 3θ B5-4 (1) y = cos (3θ + 3 ) ( π () y = cos x + 1 (3) y = sin x (4) y = sin θ π )
32 6! θ 0 θ 90 ABC ABC = θ, ACB = 90, AB = r, BC = x, AC = y ( ) sin α = y r (6) ( ) cos α = x r (7) -r P(x,y) x r y r y O r x ( ) tan α = y x (8) 0 θ < π θ r = 1 (6) (7) r = 1 y 1 sin θ = y 1 = y = (y ) (9) cos θ = x = x = (x ) (30) 1 (9) (30) sinθ y -1 O 1 x cosθ x -1 3
33 P (x, y) x θ y tan θ = y x (31) x x = 1 tan θ = (y ) (3) P O 1 x x = 1 y 33
34 6.1 A A6-1 0 θ < π θ 3 (1) sin θ = () cos θ = 1 A6-0 θ < π θ (1) sin θ < 1 () cos θ > 1 (3) cos θ 1 (4) sin θ 1 34
35 6. B B6-1 0 θ < π θ (1) cos θ = 1 () sin θ = 1 (3) cos θ = 3 () 4 sin θ = B6-0 θ < π θ 3 (1) sin θ () cos θ < 1 (3) sin θ 1 (4) cos θ > 0 35
36 6.3 A A6-3 0 θ < π θ ( (1) cos θ + π ) 3 = () sin θ = 1 ( (3) cos θ + π ) 3 = 4 3 A6-4 0 θ < π θ ( (1) sin θ π ) < 1 () cos θ ( 6 1 (3) sin θ + π ) >
37 6.4 B B6-3 0 θ < π θ ( (1) sin θ π ) = 1 () cos θ 6 = 1 ( (3) sin θ + π ) = 1 6 B6-4 0 θ < π θ ( (1) cos θ + π ) 3 < () sin θ 1 ( (3) cos θ + π ) 3 >
38 6.5 A A6-5 π < θ π (1) tan θ = 3 () tan θ = 1 (3) tan θ 3 (4) ( 3 < tan θ < 1 (5) tan θ + π ) >
39 6.6 B B6-5 π < θ π (1) tan θ = 1 () tan θ = 1 (3) 3 tan θ > 1 (4) 1 < tan θ < 3 ( 3 (5) tan θ π ) >
40 6.7 A A6-6 0 θ < π (1) sin θ + cos θ = 0 () sin θ 3 cos θ = 0 A6-7 0 θ < π (1) cos θ + 7 sin θ () sin θ 4 < 5 cos θ (3) sin θ < tan θ 40
41 6.8 B B6-6 0 θ < π (1) cos θ 3 sin θ 3 = 0 () *8 tan θ = sin θ B6-7 0 θ < π (1) sin θ 3 sin θ < 0 () cos θ sin θ + 1 (3) 3 tan θ + ( 3 + 1) tan θ *8 tan θ = sin θ cos θ 41
42 7 (1) sin(α + β) = sin α cos β + cos α sin β (33) sin(α β) = sin α cos β cos α sin β (34) cos(α + β) = cos α cos β sin α sin β (35) cos(α β) = cos α cos β + sin α sin β (36) () tan α + tan β tan(α + β) = 1 tan α tan β tan α tan β tan(α β) = 1 + tan α tan β (37) (38) 4
43 7.1 ( ) 43
44 7. A A7-1 (1) sin 75 () sin 105 (3) cos 15 A7-0 < α < π, 0 < β < π sin α = 3 5, cos β = 5 13 (1) sin(α + β) () cos(α + β) (3) sin(α β) (4) cos(α β) 44
45 7.3 B B7-1 (1)cos 75 ()sin 195 (3) cos 165 B7- π < α < π, 3 π < β < π sin α = 5 13, cos β = 4 5 (1) sin(α + β) () cos(α + β) (3) sin(α β) (4) cos(α β) 45
46 7.4 A A7-3 (1) tan 75 () tan 105 (3) tan 15 A7-4 (1) y = x + 1 y = 1 x 4 θ 3 () y = x 3 y = x + 1 θ tan θ 46
47 7.5 B B7-3 (1)tan 165 ()tan 195 (3) tan 55 B7-4 (1) y = 3x + 1 y = x + 3 θ () y = x 1 y = 3x + θ tan θ 47
48 7.6 A A7-5 α β γ tan α = 1 tan β = tan γ = 3 α + β + γ A7-6 sin x + cos y = 1 cos x + sin y = 1 4 sin(x + y) 48
49 7.7 B B7-5 A B C tan A = tan B = 4 tan C = 13 A + B + C B7-6 sin x sin y = 1 cos x + cos y = 1 3 cos(x + y) 49
50 7.8 A A7-7 ( π ) ( π ) (1) tan 4 + θ tan 4 θ () tan α + tan β sin(α + β) = tan α tan β sin(α β) = 4 tan θ 1 tan θ 50
51 7.9 B B7-7 (1) cos(x + y) sin(x y) = sin x cos x sin y cos y () cos(x + y) cos(x y) = cos x sin y 51
52 8 3 3 sin α = sin α cos α (39) cos α = cos α sin α = 1 sin α = cos α 1 (40) tan α = tan α 1 tan α (41) sin 3α = 3 sin α 4 sin 3 α (4) cos 3α = 3 cos α + 4 cos 3 α (43) 5
53 8.1 A A8-1 0 < α < π sin α = 3 5 sin α cos α tan α A8-0 θ < π θ (1) sin θ = cos θ () cos θ + 3 cos θ + = 0 53
54 8. B B8-1 π < α < π cos α = 1 sin α cos α tan α 3 B8-0 θ < π θ (1) sin θ = sin θ () cos θ = cos θ 1 54
55 8.3 A A8-3 (1) sin α = 1 sin 3α 3 () cos α = cos 3α HA8-4 θ = 18 (1) cos 3θ = sin θ () sin θ 55
56 8.4 B B8-3 (1) sin α = 1 sin 3α 3 () cos α = 1 cos 3α 3 HB8-4 θ = 36 (1) sin θ = sin 3θ () cos θ 56
57 8.5 A A8-5 0 x < π x y = cos x sin x 57
58 8.6 B B8-5 0 x < π x y = cos x + 4 cos x
59 9 sin α = 1 cos α cos α = 1 + cos α tan α = 1 cos α 1 + cos α (44) (45) (46) t = tan θ ( θ (n + 1)π (n )) sin θ cos θ tan θ sin θ = t 1 + t (47) cos θ = 1 t 1 + t (48) tan θ = t 1 t (49) 59
60 9.1 A A9-1 sin.5 cos.5 tan.5 A9- π < α < π sin α = 3 5 sin α cos α 60
61 9. B B9-1 sin 11.5 cos 11.5 tan 11.5 B9-3 π < α < π sin α = 4 5 sin α cos α 61
62 9.3 A HA9-3 (1) tan θ = t sin θ cos θ tan θ t () sin θ + cos θ = tan θ 6
63 9.4 B HB9-3 (1) tan θ = t sin θ cos θ tan θ t () sin θ + cos θ = 1 5 tan θ 63
64 10 ( ) α sin α = a sin θ + b cos θ = a + b sin(θ + α) (50) b a + b cos α = a a + b ( ) α sin α = a sin θ + b cos θ = a + b cos(θ α) (51) a a + b cos α = b a + b 64
65 10.1 A A10-1 r sin(θ + α) r > 0 (1) sin θ + cos θ () 3 sin θ + cos θ (3) sin θ cos θ A10- r sin(θ + α) r > 0 (1) 5 sin θ + 3 cos θ () 3 sin θ + 4 cos θ (3) 5 sin θ cos θ 65
66 10. B B10-1 r sin(θ + α) r > 0 (1) sin θ + 3 cos θ () sin θ + cos θ (3) 3 sin θ 3 cos θ B10- r sin(θ + α) r > 0 (1) sin θ + cos θ () 4 sin θ 3 cos θ 66
67 10.3 A A x < π x (1) y = 6 sin x 3 cos x () y = 5 cos x + 1 sin x A10-4 sin θ + 3 cos θ r cos(θ α) r > 0 67
68 10.4 B B x < π x (1) y = 3 3 sin x + 3 cos x () y = cos x + 5 sin x B sin θ cos θ r cos(θ α) r > 0 68
69 10.5 A A10-5 y = 3 sin x sin x cos x + cos x (1) y sin x cos x () 0 x π y x 69
70 10.6 B B x π y = 5 cos x + 8 sin x cos x 3 sin x x 70
71 10.7 A A x π x ( y = sin x + sin x + π ) + sin (x + 3 ) 3 π 71
72 10.8 B B x π x ( (1) y = sin x cos x () y = cos x + sin x + π ) 6 7
73 10.9 A A10-7 y = (sin x + cos x) sin x cos x 1 y x 73
74 10.10 B B10-7 y = sin x cos x (sin x + cos x) y x 74
75 10.11 A A θ < π θ (1) sin θ cos θ = 1 () cos θ 3 sin θ + 1 = 0 A θ < π θ (1) 3 sin x + cos x < () sin x + cos x 1 75
76 10.1 B B θ < π θ (1) sin θ + cos θ = 1 () 3 sin θ cos θ 1 = 0 B θ < π θ (1) sin θ cos θ > 1 () sin θ + 3 cos θ
77 11 sin α cos β = 1 {sin(α + β) + sin(α β)} (5) cos α sin β = 1 {sin(α + β) sin(α β)} (53) cos α cos β = 1 {cos(α + β) + cos(α β)} (54) sin α sin β = 1 {cos(α + β) cos(α β)} (55) sin A + sin B = sin A + B sin A sin B = cos A + B cos A + cos B = cos A + B cos A cos B = sin A + B cos A B sin A B cos A B sin A B (56) (57) (58) (59) 77
78 11.1 A A11-1 (1) sin 75 cos 15 () cos.5 cos 67.5 (3) sin 11.5 sin.5 A11- (1) sin 105 sin 15 () cos 75 + cos 15 78
79 11. B B11-1 (1) sin 105 cos 75 () cos 105 sin 15 (3) cos 8.5 cos 37.5 (4) sin 17.5 sin 5.5 B11- (1) sin 75 +sin 15 () sin 165 sin 105 (3) cos 105 +cos 165 (4) cos 195 cos 75 79
80 1 1.1 Point (1) sin(α + β) = sin α cos β + cos α sin β (60) sin(α β) = sin α cos β cos α sin β (61) cos(α + β) = cos α cos β sin α sin β (6) cos(α β) = cos α cos β + sin α sin β (63) () tan α + tan β tan(α + β) = 1 tan α tan β tan α tan β tan(α β) = 1 + tan α tan β (64) (65) 1. Point (3) sin α = sin α cos α (66) cos α = cos α sin α = 1 sin α = cos α 1 (67) tan α = tan α 1 tan α (68) (4) sin α = 1 cos α cos α = 1 + cos α tan α = 1 cos α 1 + cos α (69) (70) (71) (5)3 sin 3α = 3 sin α 4 sin 3 α (7) cos 3α = 3 cos α + 4 cos 3 α (73) 80
81 1.3 Point (1) sin α cos β = 1 {sin(α + β) + sin(α β)} (74) cos α sin β = 1 {sin(α + β) sin(α β)} (75) cos α cos β = 1 {cos(α + β) + cos(α β)} (76) sin α sin β = 1 {cos(α + β) cos(α β)} (77) () sin A + sin B = sin A + B sin A sin B = cos A + B cos A + cos B = cos A + B cos A cos B = sin A + B cos A B sin A B cos A B sin A B (78) (79) (80) (81) 1.4 Point (1) ( ) α sin α = a sin θ + b cos θ = a + b sin(θ + α) (8) b a + b cos α = a a + b () ( ) (1) α sin α = a sin θ + b cos θ = a + b cos(θ α) (83) a a + b cos α = b a + b 81
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1
ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD
4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X
4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0
さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a
... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ
4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ
(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n
3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +
6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4
... A F F l F l F(p, 0) = p p > 0 l p 0 P(, ) H P(, ) P l PH F PF = PH PF = PH p O p ( p) + = { ( p)} = 4p l = 4p (p 0) F(p, 0) = p O 3 5 5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 =
A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π
4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
0226_ぱどMD表1-ol前
No. MEDIA DATA 0 B O O K 00-090-0 0 000900 000 00 00 00 0000 0900 000900 AREA MAP 0,000 0,000 0,000 0,000 00,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 00,000 0,000
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
31 33
17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2
θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =
#A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
数学Ⅲ立体アプローチ.pdf
Ⅲ Ⅲ DOLOR SET AMET . cos x cosx = cos x cosx = (cosx + )(cosx ) = cosx = cosx = 4. x cos x cosx =. x y = cosx y = cosx. x =,x = ( y = cosx y = cosx. x V y = cosx y = sinx 6 5 6 - ( cosx cosx ) d x = [
9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =
5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l
ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE
( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
あさひ indd
2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
5
2004 9 5 29 9 5 0 4 0 40 2 73 46 33 3 6 27 6 3 5 82 6 77 60 7 5 20 K 7 7 6 6 5 70 5 20 2 5 G U U B U U 0 792 f 0 d f C C D E F C F A A A G C D D F C F A E F E E F F A C F F F E F D F F F B E E F F 0 5
Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n
Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a
18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (
8 ) ) [ ] [ ) 8 5 5 II III A B ),,, 5, 6 II III A B ) ),,, 7, 8 II III A B ) [ ]),,, 5, 7 II III A B ) [ ] ) ) 7, 8, 9 II A B 9 ) ) 5, 7, 9 II B 9 ) A, ) B 6, ) l ) P, ) l A C ) ) C l l ) π < θ < π sin
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a
009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
function2.pdf
2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)
r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t
1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
no35.dvi
p.16 1 sin x, cos x, tan x a x a, a>0, a 1 log a x a III 2 II 2 III III [3, p.36] [6] 2 [3, p.16] sin x sin x lim =1 ( ) [3, p.42] x 0 x ( ) sin x e [3, p.42] III [3, p.42] 3 3.1 5 8 *1 [5, pp.48 49] sin
BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B
2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト
名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {
04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory
A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %
A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office
2
2 6 7 9 4 6 7 2 3 4 5 6 7 8-0 - G G G G G G f f 9 e f - e f 0 5 e fe e c c cc B FD F 5 2 5 D F C e e e b 3 f f 5 ff ff f f f f b b bb b b b c c c ee ee e ee ee e f f 4 e e 7 5 5 e bb 6 7 f GE 8 f 9 5 F
untitled
0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.
18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C
8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x
11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,
ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2
CD口頭目次.indd
A15-0900 A15-0915 A15-0930 A15-0945 A15-1000 A15-1015 A15-1030 A15-1045 A15-1100 A15-1115 A15-1130 A15-1145 A15-1345 A15-1400 A15-1415 A15-1430 A15-1445 A15-1500 A15-1515 A15-1530 A15-1545 A15-1600 A15-1615
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
4 1 2 34 56 1
2016 8 2 2 4 1 2 34 56 1 3 2 4 2 78 910 2 1 3 10,000 A 100 A 9,900 9,900 A 100 100 POINT! 4 2 2 2 5 2100 100 3 50 5050100 POINT! 6 3 2 7 ABC 2 10010,0001100 2 100 2 5,000 1 50 32 16,000 13,000 10,000 7,000
arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =
arctan arctan arctan arctan 2 2000 π = 3 + 8 = 3.25 ( ) 2 8 650 π = 4 = 3.6049 9 550 π = 3 3 30 π = 3.622 264 π = 3.459 3 + 0 7 = 3.4085 < π < 3 + 7 = 3.4286 380 π = 3 + 77 250 = 3.46 5 3.45926 < π < 3.45927
Chap10.dvi
=0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.
知能科学:ニューラルネットワーク
2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,
知能科学:ニューラルネットワーク
2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,
) 9 81
4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +
1 2 IT 1 *1 1 2 3 π i 1i 2i 3i πi i 2 1 *2 2 + 3 + 4i π ei 3 4 4 2 2 *1 *2 x 2 + 1 = x 2 + x + 1 = 2 3 1 2 2 2 2 *3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i 1 2 1 2 2 1 i r 3r + 4i 1
f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f
208 3 28. f fd f Df 関数 接線 D f f 0 f f f 2 f f f f f 3 f lim f f df 0 d 4 f df d 3 f d f df d 5 d c 208 2 f f t t f df d 6 d t dt 7 f df df d d df dt lim f 0 t df d d dt d t 8 dt 9.2 f,, f 0 f 0 lim 0 lim
(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {
7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3
1
GL (a) (b) Ph l P N P h l l Ph Ph Ph Ph l l l l P Ph l P N h l P l .9 αl B βlt D E. 5.5 L r..8 e g s e,e l l W l s l g W W s g l l W W e s g e s g r e l ( s ) l ( l s ) r e l ( s ) l ( l s ) e R e r
I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re
I ( ). ( ) () a ρ. f() d ( a) n d n p π (ρe iθ ) n ρie iθ dθ n p { πia n n () f() n.. n f()d πi es f( k ) k n n. f()d n k k f()d. n f()d πi esf( k ). k I ( ). ( ) () f() p g() f() g()( ) p. f(). f() A