25 3 4

Size: px
Start display at page:

Download "25 3 4"

Transcription

1 25 3 4

2 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W (0.46 ± 0.02) (0.46 ± 0.01) 1

3 G F Discriminator Coincidence FAN-IN / OUT Gate & Delay Generator TAC ADC MCA Scaler Discriminator TAC+ADC Discriminator

4 µs delay TAC veto

5 1 1 τ µ m µ G F G F (= ) τ µ TAC+ADC G F, g, Weinberg θ W 8 4

6 ( ) ( ) W ± Z 0 β β β β β β n p + e + ν e (1) 1935 E. Fermi β 1.25 V-A µ V-A 4 W Z 0 2 W ± Z

7 1 4- β 2 β W 2.2 1/2 2 µ e + ν e + ν µ µ + e + + ν e + ν µ (2) W 6

8 W 3 t N decay (t) N 0 τ µ N decay (t) = N 0 N 0 e t/τ µ = N 0 (1 e t/τ µ ) (3) t dn decay dt = N 0 τ e t/τ µ (4) τ µ E e N(E e )de e N(E e )de e = G 2 F 12π 3 ( c) 6 (m µc 2 ) 2 E 2 e (3 4E e m µ c 2 )de e (5) E e (MeV) MeV 0 < E e < ( ) W ( ) W + 7

9 4 37 MeV N(E_e) (x^(-19)) E_e (MeV) 4 37 MeV G F V-A Γ Γ = τ µ = G 2 F 192π 3 ( c) 6 (m µc 2 ) 5 (1 + ϵ) (6) ϵ m µ τ µ G F G F Particle Data Group [3] m µ τ µ m µ = (38) MeV/c 2 (7) τ µ = ± µs (8) 8

10 M fi g 1 Q 2 c 2 + M 2 W c4 g g2 M 2 W c4 (Q2 0) (9) g M W W Q 2 4 G F g G F G F 2 = πα 2 g2 e 2 ( c) 3 M 2 W c4 () α = G F M W = ( ± 0.015) GeV/c 2 g e = C g e = g sin θ W (11) g (Weinberg )θ W dx Bethe-Bloch de dx = D Z 1 ( [ 2mc 2 β 2 γ 2 ] A z2 β 2 ln β 2 + δ ) (12) I 2 β = v/c γ = 1/ 1 β 2 Z A z e 4 ( ) n A Z D = 4πϵ 2 0 mc2 ρ Z MeVcm2 /g n = ρ N A A ρ N A I δ D MeVcm 2 /g Z/A = I = 64.7eV ρ = 1.032g/cm 3 δ 9

11 T de/dx 5 5 T 200 MeV de/dx 2 MeV/cm 5 T de/dx T 200 MeV de/dx 2 MeV/cm Bethe-Bloch The National Institute of Standards and Technology (NIST) ESTAR [9] T de/dx 6 6 T 1 MeV de/dx 2 MeV/cm 7

12 6 T de/dx T 1 MeV de/dx 2 MeV/cm 7 ( ) ( ) 11

13 2.3.3 : R(T 0 ) = T0 0 ( de ) 1 dx (T ) dt (13) T 0 T E Mc 2 de dx (T ) = D Z A z2 β 2 = Bethe-Bloch ( ( T Mc + 1) 2 2 T Mc ( T 2 Mc 2 T = E Mc 2 (14) T Mc ( T 2 Mc + 2) 2 ( T (15) Mc + 1) 2 2 [ 2mc 2 + 2) ln I T Mc 2 ( T ] ) Mc 2 + 2) 1 + δ 2 β T (13) 8 9 Bethe-Bloch 6 de/dx MeV/cm T MeV (13) 8 cm 60 MeV 0 MeV 0 MeV (16) 12

14 8 Bethe-Bloch T MeV R cm 9 T MeV R cm de/dx MeV/cm T MeV (13) 13

15 ( ) ( ) 14

16 2.4 ( ) 20 ev 11 π K π + µ + + ν µ (17) π µ + ν µ (18) K + µ + + ν µ (19) K µ + ν µ (20) 1 cm 2 1 τ µ 144 cm Hz 15

17 11 16

18 ( ) 8 cm 18 cm 1 cm 8 cm 16 cm cm ([6]) 2 2 ([7]) 2 3 % 17

19 2 NaI 2 12 [CH 3 C 6 H 4 CHCH 2 ] n

20 20 50 ns 2 R7724 H mm 3 3 (R7724, H7195) R7724 H7195 ( ) 1750 V ( 2000 V) 2000 V ( 2700 V) 2.1 ns (typical) 2.7 ns (typical) 29 ns (typical) 40 ns (typical) 1.2 ns (typical) 1.1 ns (typical) R µs 3 µs H NIM Discriminator Discriminator N-TM 405 8CH Discriminator (Non- Updating) ( ) Discriminator 19

21 updating discriminator non-updating discriminator Coincidence Coincidence N-TM 3 3CH 4-Fold Coincidence 2 veto (anti-coincidence) veto FAN-IN / OUT OR PHILLIPS SCIENTIFIC MODEL 740 QUAD LINEAR FAN-IN/FAN-OUT 3 veto Gate & Delay Generator Gate & Delay Module N-TM 307 2CH Gate and Delay Generator Type2 START delay TAC Time to Amplitude Converter (TAC) ORTEC Model 566 Time to Amplitude Converter START STOP ADC Analog to Digital Converter (ADC) Laboratory Equipment ADC500 20

22 装置である 本研究では TAC から出力された 時間差を波高に変換したアナログパル スをデジタル値 (チャンネル数) に変換するために利用する MCA Multi-Channel Analyzer (MCA) として Laboratory Equipment 社の MCA5 を 使用した これは 入力されたデジタル信号をチャンネル毎に積算する装置である 本研 究では デジタル値 (チャンネル数) の積算により ミューオン崩壊の寿命の時間スペク トルを得るために利用する Scaler Scaler として N-OR 425 8CH 0MHz Visual Scaler を使用した これは 入力し た信号をカウントするモジュールである 本研究では 光電子増倍管からの信号をカウン トして測定時間で割ることにより 計数率の測定に利用する 図 13 本研究で用いるデータ収集系 左から HV 電源 Discriminator Coincidence FAN-IN/OUT Gate & Delay Generator TAC ADC MCA Scaler である 21

23 4 4.1 Discriminator Discriminator updating non-updating 1 1 Discriminator non-updating (PMT1 PMT2 ) R acc (Hz) (21) R acc = R 1 R 2 (h 1 + h 2 2h 3 ) (21) R 1 [Hz] R 2 [Hz] PMT1 PMT2 h 1 (s) h 2 (s) PMT1 PMT2 Discriminator h 3 (s) (21) R 1 R 2 Coincidence module h 1 h 2 h 3 h 1 h 2 PMT1 h 1 ns PMT2 h 2 ns 14 2 Coincidence module h 2 Coincidence module h 2 h 3 Discriminator 3 ns Coincidence module h 3 3 ns 22

24 14 PMT2 h 1 ns h 2 6 ns TAC+ADC START STOP TAC (Time to Amplitude Converter) ADC (Analog to Digital Converter) TAC ADC 15 2 TAC START Gate & Delay Generator delay TAC STOP TAC Gate & Delay Generator TAC 20 µs START STOP 4, 8, 12, 16 µs Channel (ch) Time (µs) 23

25 15 TAC START Discriminator STOP Gate&Delay Generator Delay Counts per channel (x^5) Channel (ch) 16 TAC 4, 8, 12, 16 µs 4, 8, 12, 16 µs 17 Time = (4.797 ± 0.008) 3 Channel + ( 0.15 ± 0.02) (22) 5 6 (22) TAC+ADC 24

26 4 TAC START STOP (µs) (ch) (µs) (ch) Time (µ s) Channel (ch) 17 TAC 20 µs Time = (4.797 ± 0.008) 3 Channel + ( 0.15 ± 0.02) 25

27 5 R acc = R 1 R 2 (h 1 + h 2 2h 3 ) 1. R 1, R 2 2. h 1, h 2 3. delay PMT1, 2 R 1, R 2, R coin Scaler

28 Discriminator R 1, R 2 2 (H7195) PMT1, PMT Discriminator3, Discriminator4, Coincidence Scaler1,2, Discriminator1,2 Discriminator3,4 Discri1,2 Discri3 Discri4 Coincidence (ns) 70 6 PMT1 Discriminator1 70 ns Discriminator3 4 ns Discriminator 2 1 Discriminator 2 Discriminator PMT2 Discriminator2 Discriminator4 4 6 ns 27

29 Coincidence module 2 Discriminator1 Discriminator3 50, 0, 150, 200, 250 mv 3 (800 ) 2 R 1 R 2 V th R 1, R 2 R coin (21) R acc V th (mv) R 1 (Hz) R 2 (Hz) R coin ( 3 Hz) R acc ( 3 Hz) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± R coin R acc R 1, R 2 28

30 Counting Rate (Hz) Vth (mv) mv 50 mv ( ) ( ) 29

31 5.1.2 h 1, h 2 19 h 1 Discriminator 1 Discriminator 2 mv Discriminator 4 6 ns h 1, 20, 30, 40, 50,60 ns h 1 =, 20, 30 ns 1800 h 2 = 40, 50, 60 ns 3600 PMT1 PMT2 R Hz, R Hz (21) h 1 + h 2 2h 3 ns ( Width ) R 1, R 2, R coin (21) R acc 7 h 1 + h 2 2h 3 (ns) (Hz) R 1, R 2, R coin 21 R coin R acc 22 7 h 1 (21) h 1 + h 2 2h 3 ns (= Width) R 1, R 2, R coin (21) R acc Width (ns) R 1 (Hz) R 2 (Hz) R coin ( 3 Hz) R acc ( 3 Hz) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.3 R 1 R 2 22 R coin R acc R acc h 1 (21) R acc R 1 R 2 = h 1 + h 2 2h 3 (23) (23) h 1 + h 2 2h 3 ns R coin /(R 1 R 2 ) ns 30

32 Counting Rate (Hz) Width (ns) 21 h 1 PMT1 R 1 ( ) PMT2 R 2 ( ) R coin ( ) R 1 R 2 R Hz, R Hz 23 (21) R acc h 1 31

33 Counting Rate (Hz) Width (ns) 22 h 1 (21) R acc ( ) PMT1 PMT2 R coin ( ) R coin 21 R coin R acc Racc/(R1*R2) (ns) Width (ns) 23 2 h 2 6 ns h 1 ns 60 ns 2 ( ) R acc /(R 1 R 2 )( ) 32

34 h 2 Discriminator 1 Discriminator 2 mv Discriminator 3 ns h 2 6, 16, 26, 36, 46, 56 ns h 2 = 6, 16, 26 ns 1800 h 2 = 36, 46, 56 ns 3600 PMT1 PMT2 R Hz, R Hz (21) h 1 + h 2 2h 3 [ns] R 1, R 2, R coin (21) R acc 8 h 1 h 1 + h 2 2h 3 (ns) (Hz) R 1, R 2, R coin 24 R coin R acc 25 8 h 2 (21) h 1 + h 2 2h 3 ns (= Width) R 1, R 2, R coin (21) R acc Width (ns) R 1 (Hz) R 2 (Hz) R coin ( 3 Hz) R acc ( 3 Hz) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.3 h 2 R 1 R 2 25 (21) h 2 h 1 h 1 + h 2 2h 3 ns R coin /(R 1 R 2 ) ns PMT1 PMT2 R coin /(R 1 R 2 ) (23) 24 (21) R acc h 2 (21) R acc h 1 + h 2 2h 3 33

35 Counting Rate (Hz) Width (ns) 24 h 2 PMT1 R 1 ( ) PMT2 R 2 ( ) R coin ( ) R 1 R 2 R Hz, R Hz Counting Rate (Hz) Width (ns) 25 h 2 (21) R acc ( ) PMT1 PMT2 R coin ( ) R coin 24 R coin R acc 34

36 Racc/(R1*R2) (ns) Width (ns) 26 2 h1 ns h2 6 ns 56 ns 2 ( ) R acc /R 1 R 2 ( ) 35

37 µs delay 1 µs delay h 1 = 40 ns h 2 = 6 ns 27 PMT 2 1µs delay PMT PMT1 PMT2 R 1, R 2 R coin (21) R acc 9 R acc R coin delay delay (21) 27 2 Delay Box delay Discri2 Discri4 Delay Box PMT2 1µs delay Discriminator3, Discriminator4, Coincidence Scaler1, 2, 3 9 h 1 = 40 ns h 2 = 6 ns R 1, R 2, R coin (21) R acc R 1 (Hz) R 2 (Hz) R coin ( 3 Hz) R acc ( 3 Hz) ± ± ± ±

38 Counting Rate (Hz) Width (ns) 28 h 1 = 40 ns, h 2 = 6ns PMT1 1µs delay ( ) ( ) h 1 37

39 ns 1 µs delay delay 6 ns delay delay h 1 = ns, h 2 = 6 ns V th 25, 50, 75, 0, 125 mv 6 (21600 ) PMT1 PMT2 R 1, R 2 R coin R acc R coin R acc (21) 29 2 ns 1 µs delay 38

40 V th 25mV R 1, R 2, R coin (21) R acc V th (mv) R 1 (Hz) R 2 (Hz) R coin ( 3 Hz) R acc ( 3 Hz) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0. Counting Rate (Hz) Vth (mv) 30 2 ns 1 µs delay ( ) ( ) 39

41 5.3 TAC 31 TAC START PMT1 PMT2 STOP PMT3 PMT1 PMT2 12 cm 2 PMT3 PMT1 PMT2 START STOP TAC ADC START STOP TAC µs START STOP µs START µs STOP PMT1 PMT2 R 1 (Hz), R 2 (Hz) R acc (Hz) (21) µs ( 6 s) R acc R 1 R 2 ( 6 ) (24) R acc TAC 18 (65000 ) START STOP R 1, R 2 (24) R acc µs µs n 0 n 0 = 2.18 ± 0.42 ( / µs) R BG R BG = (6.43 ± 1.34) 4 (Hz) R BG (24) R acc (24) TAC ADC 40

42 31 2 TAC START STOP µs START STOP R 1, R 2 (24) R acc (Hz) R ± R ± 0.04 (6.12 ± 0.03) 4 R acc 41

43 Counts per channel Time (µ s) 32 TAC START STOP 18 (65000 ) 42

44 START µs STOP TAC (4) n 0 dn decay dt = N 0 τ e t/τ µ + n 0 (25) τ µ 3 0 Scaler Discriminator 50 mv H7195 R TAC START #1 #2 #3 STOP #2 43

45 33 4 #1 #2 #3 #1 # (ns) #1.0 #2 6.0 # #1 #2 #3.0 44

46 34 TAC Start #1 #2 #3 Stop #

47 図 36 片側読み出しのブロック型プラスチック シンチレータを用いた従来のミュー オン寿命測定の実験装置 図 37 片側読み出し回路による寿命測定に使用するブロック型プラスチック シンチ レータとライトガイドの寸法 プラスチック シンチレータからの信号を 片側に接着 したライトガイドを通して光電子増倍管に伝える 46

48 6.2.2 (25) (30 ) 34 TAC START STOP R ST ART, R ST OP (24) R acc TAC START STOP R 1, R 2 (24) R acc (Hz) R ST ART 0.80 ± 0.09 R ST OP ± 1.8 R acc (5.0 ± 0.6) 3 Counts per channel Time (µ s) (30 ) 1.0 µs 20 µs (25) t n

49 n 0 39 t 0.5 (µs) (25) t 0.5 (µs) t = 1.0 (µs) Counts per channel Time (µ s) µs 20 µs 48

50 τ µ, n 0 6 µs 20 µs (25) τ µ n n 0 R BG (Hz) 42 tau (µ s) Max value of fitting range (µ s) 40 τ µ 1.0 µs 12 µs 2 µs µs 49

51 n_0 (/0.4797*µ s) Max value of fitting range (µ s) 41 n µs 13 µs 35.5 /0.48 µs 12 µs R_BG (x^(-3) Hz) Max value of fitting range (µ s) 42 n 0 R BG (Hz) 1.0 µs 13 µs R BG 50

52 40 τ µ 12 µs 2 µs µs 41 n 0 13 µs 35.5 /0.48µs 12 µs 12 µs 42 (4.9 ± 0.2) 3 Hz 12 µs (5.0 ± 0.6) 3 Hz 20 µs 1.0 µs 20 µs τ µ = (2.04±0.) µs (4.9±0.2) 3 Hz 51

53 µs 20 µs τ µ = 2.13 ± 0.21 µs 1 n 0 = (6.08 ± 0.61) /(0.48 µs) R BG R BG = (3.9 ± 0.4) 3 Hz START STOP R ST ART R ST OP R acc 14 τ µ τ µ = 2.20µs[3] R BG R acc µs ( ) (295 ± 25) R µ (4.5 ± 0.4) 3 Hz R BG R µ : R BG 5 : 4 14 START STOP R ST ART R ST OP R acc (Hz) R ST ART 0.78 ± 0.09 R ST OP ± 1.7 R acc (4.5 ± 0.6) 3 52

54 Counts per channel Time (µ s) µs µs τ µ = 2.13 ± 0.21 µs n BG = 12.7 ± 1.3 /µs 53

55 6.3 veto veto 1 3 START veto veto R µ (Hz) 3 TAC START 0.8 Hz START veto 4 2 TAC START 0.4 Hz 1/ (ns) #1.0 #2 6.0 #3, 4, #1 #2 (#3 #4 #5).0 54

56 44 34 veto 3 3 OR coincidence module veto TAC Start #1 #2 (#3 #4 #5) Stop # PMT 55

57 46 veto µs 20 µs τ µ = 2.04±0.18 µs 1 n 0 = (2.65±0.40) /(0.48µs) R BG R BG = (1.7 ± 0.3) 3 Hz START STOP R ST ART R ST OP R acc 16 R ST ART 0.4 Hz τ µ τ µ = 2.20 µs[3] R BG R acc µs ( ) (280 ± 16) R µ (4.3 ± 0.2) 3 Hz R BG R µ : R BG 5 : 2 1/2 56

58 16 3 veto START STOP R ST ART R ST OP R acc (Hz) R ST ART 0.41 ± 0.06 R ST OP ± 1.6 R acc (2.0 ± 0.4) 3 Counts per channel Time (µ s) 47 veto 3 20 µs µs τ µ = 2.04 ± 0.18 µs n BG = 5.5 ± 0.8 /µs 57

59 TAC START #1 #2 #3 STOP #2 #2 STOP #2 STOP TAC STOP STOP Hz TAC STOP Hz B 1,B 2 (ns) #1.0 B 1.0 B #2.0 # #1 #2 #

60 48 #2 TAC Start #1 #2 #3 Stop #

61 図 51 両側読み出し回路によるミューオン寿命測定の実験装置 実験結果 TAC の設定を 20µs にして約 18 時間 (65000 秒) ミューオンの寿命測定を行った結果 図 52 のような時間スペクトルが得られた フィットの範囲は 1.0 µs 20 µs である フィットにより得られたミューオンの寿命は τµ = 1.60 ± 0.15 µs 1 ビンのバックグラウ ンドは n0 = (1. ± 0.28) /(0.48µs) となった 得られたバックグラウンドを計数率 RBG に変換すると RBG = (7.0 ± 1.8) 4 Hz である この実験における START 信号と STOP 信号の計数率 RST ART, RST OP と 予想されるバックグラウンドの計数率 Racc は表 18 のようになった 表 18 両側読み出し回路によるミューオン寿命測定の START 信号と STOP 信号の 計数率 RST ART RST OP と予測されるバックグラウンドの計数率 Racc 信号 計数率 (Hz) RST ART RST OP Racc 0.98 ± ± 0.57 (6.8 ± 0.7) 4 得られたミューオンの寿命 τµ は 文献値 τµ = 2.20µs[3] よりも小さな値となってい るが 得られたバックグラウンドの計数率 RBG は 予測されるバックグラウンドの計数 60

62 Counts per channel Time (µ s) µs µs τ µ = 1.60 ± 0.15 µs n BG = 2.28 ± 0.58 /µs R acc µs (181 ± 22) R µ (2.8 ± 0.2) 3 Hz (4.3±0.2) 3 Hz 2/ (30 ) µs 20 µs τ µ = 2.09 ± 0.11 µs 1 n 0 = (3.54 ± 0.49) /(0.48 µs) R BG R BG = (4.9 ± 0.7) 4 Hz START STOP R ST ART R ST OP R acc 19 τ µ τ µ = 2.20 µs[3] R BG 61

63 Counts per channel Time (µ s) µs µs τ µ = 2.09 ± 0.11 µs n BG = 7.34 ± 1.02 /µs 19 START STOP R ST ART R ST OP R acc (Hz) R ST ART 0.88 ± 0.05 R ST OP ± 0.23 R acc (5.4 ± 0.6) 4 R acc µs (732 ± 19) R µ (2.44 ± 0.06) 3 Hz R BG R µ : R BG 5 : 1 62

64 7 7.1 ( 1) veto 3 ( 2) ( 3) 54 τ µ R BG R µ R µ R BG 20 Counts per channel Counts per channel Counts per channel Time (µ s) ( A ) Time (µ s) ( B ) Time (µ s) ( C ) 54 (A) 1 18 (B) 2 18 (C) , 2, 3 τ µ R BG R µ R µ R BG µs (s) τ µ (µs) R BG ( 3 Hz) R µ ( 3 Hz) R µ : R BG ± ± ± : ± ± ± : ± ± ± : 1 τ µ 2 1 veto 3 63

65 1/2 τ µ 3 1 1/8 1/2 3 τ µ , 2, 3 G F /( c) 3, g, Weinberg θ W , 2, 3 τ µ G F /( c) 3, g, Weinberg sin θ W τ µ (µs) G F /( c) 3 ( 5 /GeV 2 ) g ( 19 C) sin θ W ± ± ± ± ± ± ± ± ± ± ± ± 0.01 τ µ ± µs[3] G F /( c) 3 = ( ± ) 5 /GeV 2, g = (3.4505±0.0006) 19 C, sin θ W = ±

66 ( 1) veto 3 ( 2) ( 3) 3 τ µ G F g Weinberg θ W 1 18 τ µ (2.13 ± 0.21)µs R BG (3.9 ± 0.4) 3 Hz 1 20µs 5 : 4 R µ (4.5±0.4) 3 Hz sin θ W (1.18 ± 0.) 5 /GeV 2, (3.48 ± 0.15) 19 C, (0.46 ± 0.02) 2 TAC START 2 2 veto 3 18 τ µ (2.04 ± 0.21)µs R BG (1.7 ± 0.3) 3 Hz 1 τ µ 1/2 1 20µs 5 : 2 R µ (4.3±0.2) 3 Hz sin θ W 65

67 (1.21 ± 0.09) 5 /GeV 2, (3.52 ± 0.13) 19 C, (0.46 ± 0.02) 3 TAC STOP 84 τ µ (2.09 ± 0.11)µs R BG (4.9 ± 0.7) 4 Hz 1 1/8 1 20µs 5 : 1 R µ (2.44 ± 0.06) 3 Hz 1 R µ 1/2 R µ sin θ W (1.19 ± 0.05) 5 /GeV 2, (3.49 ± 0.08) 19 C, (0.46 ± 0.01) 8.2 START veto 2 veto 2 veto START R µ 3 STOP 2 6 (R BG /R µ ) 3 66

68 6 Discriminator 50 mv STOP 67

69 Root 68

70 [1] 2009 [2] B [3] J. Beringer et al. (Particle Data Group), PR D86, 0001 (2012) [4] Kanetada Nagamine, Introductory Muon Science, 2011, Cambridge University Press [5] [6] [7] I [8] 20 [9] NIST (National Institute of Standards and Technology) the ESTAR program, 69

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ - 28 2 15 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ 1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2..............................

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.............

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2............. Fe muonic atom X 25 5 21 3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.......................... 6 1.2.1...................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

Thick-GEM 06S2026A 22 3

Thick-GEM 06S2026A 22 3 Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

CsI(Tl) 2005/03/

CsI(Tl) 2005/03/ CsI(Tl) 2005/03/30 1 2 2 2 3 3 3.1............................................ 3 3.2................................... 4 3.3............................................ 5 4 6 4.1..............................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

Microsoft Word - N-TM307取扱説明書.doc

Microsoft Word - N-TM307取扱説明書.doc Page 1 of 12 2CHGATEANDDELAYGENERATORTYPE2 N-TM307 取扱説明書 初版発行 2015 年 10 月 05 日 最新改定 2015 年 10 月 05 日 バージョン 1.00 株式会社 テクノランドコーポレーション 190-1212 東京都西多摩郡瑞穂町殿ヶ谷 902-1 電話 :042-557-7760 FAX:042-557-7727 E-mail:info@tcnland.co.jp

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

http://radphys4.c.u-tokyo.ac.jp/~torii/lecture/radiolect-kn.html 21 KOMCEE K303 2013 / 10 / 18 / 21 KOMCEE K303 Billet de 500 Francs Français en circulation: 1993 1999 α β γ X VIDEO http://eneco.jaero.or.jp/20110322/

More information

スライド 1

スライド 1 実験 III 素粒子テーマ 素粒子物理学とは 物質の究極の構造 ( 素粒子 ), 素粒子間に働く力 ( 相互作用 ) 時空の構造, 対称性を探求する分野です 担当教員 : 佐藤 TA: 和田 内山連絡先 : 自然学系棟 D208 (x4270) ksato@hep.px.tsukuba.ac.jp 実験スケジュール 第 1 回 : 素粒子物理概説,μ 粒子寿命測定法, 同軸ケーブルとインピーダンス,NIMモジュールの機能.

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

π + e + ν e

π + e + ν e π + e + ν e 2 2013 2 5 π + e + ν e π + µ + ν µ R = Γ(π + e + ν e )/Γ(π + µ + ν µ ) 0.1% PIENU 2009 TRIUMF R 0.01% 10 R 0.1% 1000TeV PIENU 0.1% 1980 TRIUMF π + e + ν e π + µ + ν µ KEK COPPER 500MHz Flash

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21 1 3 KamLAND shimizu@awa.tohoku.ac.jp 014 ( 6 ) 1 31 1 KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR.1 ν e ν µ ν τ ν 1 ν ν 3 3 3 MNS m 1 = 7.5 10 5 ev m 31 m 3 =.3 10 3 ev 100 m ν e [1] 71 Ga SAGEGallex

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency STB-Ring Tagging Efficiency Study GEANT4 2010 3 STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency ( )

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

データ収集用 NIM/CAMAC モジュールマニュアル 2006/5/23 目次 クレート コントローラ CC/ NIM ADC 1821 (Seiko EG&G)...3 ADC インターフェイス U デッドタイム

データ収集用 NIM/CAMAC モジュールマニュアル 2006/5/23 目次 クレート コントローラ CC/ NIM ADC 1821 (Seiko EG&G)...3 ADC インターフェイス U デッドタイム データ収集用 NIM/CAMAC モジュールマニュアル 2006/5/23 hiromi@tac.tsukuba.ac.jp 目次 クレート コントローラ CC/7700...2 NIM ADC 1821 (Seiko EG&G)...3 ADC インターフェイス U9201...4 デッドタイム カウンター NK-1000...5 AD811 8ch ADC (Ortec)...6 C011 4ch

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information