数値計算:フーリエ変換

Size: px
Start display at page:

Download "数値計算:フーリエ変換"

Transcription

1 ( ) 1 / 72

2 ( ) 2 / 72

3 ( ) 3 / 72

4 ( ) 4 / 72

5 ( ) 5 / 72

6 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t)); plot(fs*t(1:1000),y(1:1000)) xlabel( time (milliseconds) ) ( ) 6 / 72

7 sample.m fft NFFT = 2^nextpow2(L); Y = fft(y,nfft)/l; ( ) 7 / 72

8 sample.m f = Fs/2*linspace(0,1,NFFT/2+1); % Plot single-sided amplitude spectrum. plot(f,2*abs(y(1:nfft/2+1))) xlabel( Frequency (Hz) ) ylabel( Amplitude Spectrum ) ( ) 8 / 72

9 (discrete Fourier transform; DFT) g 0, g 1,, g N 1 G 0, G 1,, G N 1 N 1 G k = g n w kn n=0 i 2π/N w = e ( ) 9 / 72

10 8 8 Im i 2π/8 w = e i -1 -i w 1 Re ( ) 10 / 72

11 8 8 Im i 2π/8 w = e Im -1 i -i w 1 Re w 4 w 5 w 3 w 2 w 6 w 7 Re w 0 w 8 w w 9 ( ) 10 / 72

12 8 8 Im i 2π/8 w = e Im -1 i -i w 1 Re w -4 w -3 w -5 w -6 w -2 w -1 Re w 0 w -8 w w -7 ( ) 10 / 72

13 8 8 G 0 = g 0 w g 1 w g 2 w g 6 w g 7 w 0 7 G 1 = g 0 w g 1 w g 2 w g 6 w g 7 w 1 7 G 2 = g 0 w g 1 w g 2 w g 6 w g 7 w 2 7. G 6 = g 0 w g 1 w g 2 w g 6 w g 7 w 6 7 G 7 = g 0 w g 1 w g 2 w g 6 w g 7 w 7 7 ( ) 11 / 72

14 8 8 G 0 G 1 G 2. G 6 G 7 = w 0 0 w 0 1 w 0 2 w 0 6 w 0 7 w 1 0 w 1 1 w 1 2 w 1 6 w 1 7 w 2 0 w 2 1 w 2 2 w 2 6 w w 6 0 w 6 1 w 6 2 w 6 6 w 6 7 w 7 0 w 7 1 w 7 2 w 7 6 w 7 7 g 0 g 1 g 2. g 6 g 7 ( ) 12 / 72

15 8 8 G 0 G 1 G 2. G 6 G 7 = w 0 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 6 w 7 w 0 w 2 w 4 w 12 w w 0 w 6 w 12 w 36 w 42 w 0 w 7 w 14 w 42 w 49 g 0 g 1 g 2. g 6 g 7 ( ) 13 / 72

16 8 8 F 8 = w 0 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 6 w 7 w 0 w 2 w 4 w 12 w w 0 w 6 w 12 w 36 w 42 w 0 w 7 w 14 w 42 w 49 ( ) 14 / 72

17 8 8 G 0 G 1 G 2. G 6 G 7 = F 8 g 0 g 1 g 2. g 6 g 7 ( ) 15 / 72

18 g 0 g 1 g 2. g 6 g 7 = F 1 8 G 0 G 1 G 2. G 6 G 7 ( ) 16 / 72

19 F 8 = w 0 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 6 w 7 w 0 w 2 w 4 w 12 w w 0 w 6 w 12 w 36 w 42 w 0 w 7 w 14 w 42 w 49 ( ) 17 / 72

20 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 ( ) 18 / 72

21 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 F 8 F 8 (0, 0) = w 0 + w 0 + w w 0 + w 0 = 8 ( ) 18 / 72

22 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 F 8 F 8 (1, 0) = w 0 + w 1 + w w 6 + w 7 = 0 ( ) 18 / 72

23 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 F 8 F 8 (2, 0) = w 0 + w 2 + w w 12 + w 14 = 0 ( ) 18 / 72

24 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 F 8 F 8 (0, 1) = w 0 + w 1 + w w 6 + w 7 = 0 ( ) 18 / 72

25 F 8 F 8 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 7 w 0 w 2 w 4 w w 0 w 6 w 12 w 42 w 0 w 7 w 14 w 49 F 8 F 8 (1, 1) = w 0 + w 0 + w w 0 + w 0 = 8 ( ) 18 / 72

26 { 8 (i, j) = (0, 0), (1, 1),, (7, 7) F 8 F 8 (i, j) = 0 F 8 F 8 = 8 I 8 8 F 1 8 = 1 8 F 8 ( ) 19 / 72

27 g 0 g 1 g 2. g 6 g 7 = 1 8 F 8 G 0 G 1 G 2. G 6 G 7 ( ) 20 / 72

28 g 0 g 1 g 2. g 6 g 7 = 1 8 w 0 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 6 w 7 w 0 w 2 w 4 w 12 w w 0 w 6 w 12 w 36 w 42 w 0 w 7 w 14 w 42 w 49 G 0 G 1 G 2. G 6 G 7 ( ) 21 / 72

29 (fast Fourier transform; FFT) DFT Cooley and Tukey, 1965 N DFT 2 (N/2) DFT FFT DFT N log 2 N FFT DFT N/ log 2 N ( ) 22 / 72

30 8 G 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 G 1 w 0 w 1 w 2 w 3 w 4 w 5 w 6 w 7 G 2 w 0 w 2 w 4 w 6 w 8 w 10 w 12 w 14 G 3 G 4 = w 0 w 3 w 6 w 9 w 12 w 15 w 18 w 21 w 0 w 4 w 8 w 12 w 16 w 20 w 24 w 28 G 5 w 0 w 5 w 10 w 15 w 20 w 25 w 30 w 35 G 6 w 0 w 6 w 12 w 18 w 24 w 30 w 36 w 42 G 7 w 0 w 7 w 14 w 21 w 28 w 35 w 42 w 49 g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 ( ) 23 / 72

31 G 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 g 0 G 1 w 0 w 2 w 4 w 6 w 1 w 3 w 5 w 7 g 2 G 2 w 0 w 4 w 8 w 12 w 2 w 6 w 10 w 14 g 4 G 3 G 4 = w 0 w 6 w 12 w 18 w 3 w 9 w 15 w 21 g 6 w 0 w 8 w 16 w 24 w 4 w 12 w 20 w 28 g 1 G 5 w 0 w 10 w 20 w 30 w 5 w 15 w 25 w 35 g 3 G 6 w 0 w 12 w 24 w 36 w 6 w 18 w 30 w 42 g 5 G 7 w 0 w 14 w 28 w 42 w 7 w 21 w 35 w 49 g 7 ( ) 24 / 72

32 w 2 = e i 2π/4 4 DFT = = w 0 w 0 w 0 w 0 w 0 w 2 w 4 w 6 w 0 w 4 w 8 w 12 w 0 w 6 w 12 w 18 (w 2 ) 0 (w 2 ) 0 (w 2 ) 0 (w 2 ) 0 (w 2 ) 0 (w 2 ) 1 (w 2 ) 2 (w 2 ) 3 (w 2 ) 0 (w 2 ) 2 (w 2 ) 4 (w 2 ) 6 (w 2 ) 0 (w 2 ) 3 (w 2 ) 6 (w 2 ) 9 = F 4 (4 DFT ) ( ) 25 / 72

33 w 8 = 1 = = = F 4 w 0 w 8 w 16 w 24 w 0 w 10 w 20 w 30 w 0 w 12 w 24 w 36 w 0 w 14 w 28 w 42 w 0 w 0 w 0 w 0 w 0 w 2 w 4 w 6 w 0 w 4 w 8 w 12 w 0 w 6 w 12 w 18 ( ) 26 / 72

34 = = = w 0 w 0 w 0 w 0 w 1 w 3 w 5 w 7 w 2 w 6 w 10 w 14 w 3 w 9 w 15 w 21 w 0 w 1 w 0 w 1 w 2 w 3 w 2 w 3 F 4 w 0 w 0 w 0 w 0 w 0 w 2 w 4 w 6 w 0 w 4 w 8 w 12 w 0 w 6 w 12 w 18 ( ) 27 / 72

35 = = = w 4 w 4 w 4 w 4 w 5 w 7 w 9 w 11 w 6 w 10 w 14 w 18 w 7 w 13 w 19 w 25 w 4 w 5 w 4 w 5 w 6 w 7 w 6 w 7 F 4 w 0 w 0 w 0 w 0 w 0 w 2 w 4 w 6 w 0 w 4 w 8 w 12 w 0 w 6 w 12 w 18 ( ) 28 / 72

36 8 G 0 g 0 G 1 G 2 = F g 2 4 g 4 + G 3 g 6 G 4 G 5 G 6 G 7 = F 4 g 0 g 2 g 4 g 6 + w 0 w 1 w 4 w 5 w 2 w 3 w 6 w 7 F 4 F 4 g 1 g 3 g 5 g 7 g 1 g 3 g 5 g 7 ( ) 29 / 72

37 8 G 0 g 0 G 1 G 2 = F g 2 4 g 4 + G 3 g 6 G 4 G 5 G 6 G 7 = F 4 g 0 g 2 g 4 g 6 + w 0 w 1 w 4 w 5 w 2 w 3 w 6 w 7 F 4 F 4 g 1 g 3 g 5 g 7 g 1 g 3 g 5 g 7 ( ) 29 / 72

38 8 G 0 g 0 G 1 G 2 = F g 2 4 g 4 + G 3 g 6 G 4 G 5 G 6 G 7 = F 4 g 0 g 2 g 4 g 6 + w 0 w 1 w 4 w 5 w 2 w 3 w 6 w 7 F 4 F 4 g 1 g 3 g 5 g 7 g 1 g 3 g 5 g 7 ( ) 29 / 72

39 8 G 0 g 0 G 1 G 2 = F g 2 4 g 4 + G 3 g 6 G 4 G 5 G 6 G 7 = F 4 g 0 g 2 g 4 g 6 + w 0 w 1 w 4 w 5 w 2 w 3 w 6 w 7 F 4 F 4 g 1 g 3 g 5 g 7 g 1 g 3 g 5 g 7 ( ) 29 / 72

40 C 8 D u 8 = w 0 w w 2 w 3 D8 u D8 d + +, Dd 8 = 8 w 4 w 5 w 6 w 7 ( ) 30 / 72

41 4 Q 0 Q 2 Q 4 Q 6 = F 4 g 0 g 2 g 4 g 6 [ Q0 Q 2 [ Q4 Q 6 ] ] = F 2 [ g0 g 4 = F 2 [ g0 g 4 ] [ w 0 + ] [ w 4 + w 2 w 6 ] ] F 2 [ g2 g 6 F 2 [ g2 g 6 ] ] ( ) 31 / 72

42 4 Q 0 Q 2 Q 4 Q 6 = F 4 g 0 g 2 g 4 g 6 [ Q0 Q 2 [ Q4 Q 6 ] ] = F 2 [ g0 g 4 = F 2 [ g0 g 4 ] [ w 0 + ] [ w 4 + w 2 w 6 ] ] F 2 [ g2 g 6 F 2 [ g2 g 6 ] ] ( ) 31 / 72

43 4 Q 1 Q 3 Q 5 Q 7 = F 4 g 1 g 3 g 5 g 7 [ Q1 Q 3 [ Q5 Q 7 ] ] = F 2 [ g1 g 5 = F 2 [ g1 g 5 ] [ w 0 + ] [ w 4 + w 2 w 6 ] ] F 2 [ g3 g 7 F 2 [ g3 g 7 ] ] ( ) 32 / 72

44 4 Q 1 Q 3 Q 5 Q 7 = F 4 g 1 g 3 g 5 g 7 [ Q1 Q 3 [ Q5 Q 7 ] ] = F 2 [ g1 g 5 = F 2 [ g1 g 5 ] [ w 0 + ] [ w 4 + w 2 w 6 ] ] F 2 [ g3 g 7 F 2 [ g3 g 7 ] ] ( ) 32 / 72

45 C 4 2 D4 u + 2 D4 d + 4 [ w D4 u 0 = w 2 ] [ 1 = i ] [ w, D4 d 4 = w 6 ] [ 1 = i ] ( ) 33 / 72

46 2 [ P0 P 4 [ P2 P 6 [ P1 P 5 [ P3 P 7 ] ] ] ] = = = = [ 1 w 0 1 w 4 [ 1 w 0 1 w 4 [ 1 w 0 1 w 4 [ 1 w 0 1 w 4 ] [ g0 g 4 ] [ g2 g 6 ] [ g1 g 5 ] [ g3 g 7 ] ] ] ] ( ) 34 / 72

47 C 2 1 D2 u + 1 D2 d + 2 D u 2 = w 0 = 1, D d 2 = w 4 = 1 ( ) 35 / 72

48 g000 g100 g010 g110 g001 g101 g011 g111 C2 C2 C2 C C4 C4 4 4 C8 8 G000 G001 G010 G011 G100 G101 G110 G111 ( ) 36 / 72

49 g 0 g 4 g 2 g 6 g 1 = g 5 g 3 g 7 g 000 g 100 g 010 g 110 g 001 g 101 g 011 g 111 G 0 G 1 G 2 G 3 G 4 G 5 G 6 G 7 = G 000 G 001 G 010 G 011 G 100 G 101 G 110 G 111 ( ) 37 / 72

50 (8 FFT ) = 2 (4 FFT ) (4 FFT ) = 2 (2 FFT ) FFT 2 [ ] [ ] [ ] [ ] P g0 g0 + (+1) g = = 4 P g 4 g 0 + ( 1) g 4 ( ) 38 / 72

51 (2 FFT ) = 2 = 2 log 2 2 (4 FFT ) = = 8 = 4 log 2 4 (8 FFT ) = = 24 = 8 log 2 8 (16 FFT ) = = 64 = 16 log (N FFT ) = N log 2 N = DFT: FFT: (8 + 8) /(8 + 8) = 4096 ( ) 39 / 72

52 6 i 2π/6 w = e G 0 G 1 G 2 G 3 G 4 G 5 = w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 1 w 2 w 3 w 4 w 5 w 0 w 2 w 4 w 6 w 8 w 10 w 0 w 3 w 6 w 9 w 12 w 15 w 0 w 4 w 8 w 12 w 16 w 20 w 0 w 5 w 10 w 15 w 20 w 25 g 0 g 1 g 2 g 3 g 4 g 5 ( ) 40 / 72

53 6 i 2π/6 w = e G 0 G 1 G 2 G 3 G 4 G 5 = w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 2 w 4 w 1 w 3 w 5 w 0 w 4 w 8 w 2 w 6 w 10 w 0 w 6 w 12 w 3 w 9 w 15 w 0 w 8 w 16 w 4 w 12 w 20 w 0 w 10 w 20 w 5 w 15 w 25 g 0 g 2 g 4 g 1 g 3 g 5 ( ) 41 / 72

54 6 w 0 w 0 w 0 w 0 w 2 w 4 w 0 w 4 w 8 w 0 w 0 w 0 w 1 w 3 w 5 w 2 w 6 w 10 w 3 w 9 w 15 w 4 w 12 w 20 w 5 w 15 w 25 = w 0 w 6 w 12 w 0 w 8 w 16 w 0 w 10 w 20 w 0 = w 1 w 3 = w 4 w 2 w 5 = F 3 F 3 F 3 ( ) 42 / 72

55 9 i 2π/9 w = e G 0 G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 = w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w 3 w 6 w 1 w 4 w 7 w 2 w 5 w 8 w 0 w 6 w 12 w 2 w 8 w 14 w 4 w 10 w 16 w 0 w 9 w 18 w 3 w 12 w 21 w 6 w 15 w 24 w 0 w 12 w 24 w 4 w 16 w 28 w 8 w 20 w 32 w 0 w 15 w 30 w 5 w 20 w 35 w 10 w 25 w 40 w 0 w 18 w 36 w 6 w 24 w 42 w 12 w 30 w 48 w 0 w 21 w 42 w 7 w 28 w 49 w 14 w 35 w 56 w 0 w 24 w 48 w 8 w 30 w 56 w 16 w 40 w 64 g 0 g 3 g 6 g 1 g 4 g 7 g 2 g 5 g 8 ( ) 43 / 72

56 9 = = = = = = F 3 w 0 w 1 F 3, = w 3 w 5 w 6 w 7 w 2 w 5 w 8 F 3, = F 3, = w 0 w 2 w 6 w 8 w 12 w 14 w 4 w 10 F 3 w 16 F 3 F 3 ( ) 44 / 72

57 ( ) 45 / 72

58 ( ) 46 / 72

59 40x40 4x4 ( ) 47 / 72

60 (pixel) picture element ( ) 255 ( ) ( ) 48 / 72

61 = = = /1024 = ( ) 49 / 72

62 FFT FFT ( ) 50 / 72

63 g m,n (m, n = 0, 1, 2,, N 1) i 2π/N w = e G j,k = m = m g m,n w jm w kn n n i 2π(jm+kn)/N g m,n e ( ) G(ξ, η) = g(x, y) e i(ξx+ηy) dx dy ( ) 51 / 72

64 (matched filter) Input G inp Reference DDFT G G inp ref G ref DIDFT ( ) 52 / 72

65 (matched filter) (x, y) g(x, y) g(x, y) g(x, y) G(ξ, η) = F[g(x, y)] = g(x, y) e i(ξx+ηy) dx dy g(x, y) = F 1 [G(ξ, η)] = G(ξ, η) e i(ξx+ηy) dξ dη ( ) 53 / 72

66 (matched filter) g ref x x 0 y y 0 g inp g ref (x x 0, y y 0 ) = g inp (x, y) G ref (ξ, η) G inp (ξ, η) G ref (ξ, η) e i(x 0ξ+y 0 η) = G inp (ξ, η), ξ, η [ ] F 1 Ginp (ξ, η) = δ(x x 0, y y 0 ). G ref (ξ, η) ( ) 54 / 72

67 (matched filter) ( ) 55 / 72

68 (phase only correlation; POC) Input G inp Reference DDFT G G inp ref = G G inp inp G G ref ref G ref DIDFT ( ) 56 / 72

69 (phase only correlation; POC) G(ξ, η) G (ξ, η) G(ξ, η) G (ξ, η) = G(ξ, η), G(ξ, η) = G(ξ, η) G (ξ, η) G ref (ξ, η) G inp (ξ, η) G ref (ξ, η) e i(x 0ξ+y 0 η) = G inp (ξ, η), ξ, η G ref (ξ, η) e i(x 0ξ+y 0 η) = G inp (ξ, η), ξ, η ( ) 57 / 72

70 (phase only correlation; POC) G ref G ref G inp / G ref G ref = G ref, G ref 2 = G ref G ref G inp = G inp/ G inp G ref G ref / G ref = G inp G ref G ref G inp = G inp G ref G ref G ref G inp G ref = G inpg ref G ref G ref G inp G ref = G inpg ref G inp G ref [ ] F 1 Ginp G inp G ref = δ(x x 0, y y 0 ) G ref ( ) 58 / 72

71 (phase only correlation; POC) ( ) 59 / 72

72 F N F 1 N = (1/N) F N N log 2 N ( ) 60 / 72

73 x(t) = c a 1 cos t + b 1 sin t +a 2 cos 2t + b 2 sin 2t +a 3 cos 3t + b 3 sin 3t + a 1 cos t + b 1 sin t (a 1 ib 1 )(cos t + i sin t) a 2 cos 2t + b 2 sin 2t (a 2 ib 2 )(cos 2t + i sin 2t). x(t) = c c 1 e it + c 2 e 2it + c 3 e 3it + ( ) 61 / 72

74 x(t) = c c 1 e it + c 2 e 2it + c 3 e 3it + ( ) 62 / 72

75 c 1 = a 1 ib 1 r 1 α 1 a 1 = r 1 cos α 1, b 1 = r 1 sin α 1 c 1 e it = a 1 cos t + b 1 sin t = r 1 (cos t cos α 1 sin t sin α 1 ) = r 1 cos(t α 1 ) c 1 c 1 c 1 ( ) 63 / 72

76 c 0 2π 0 1 dt = 2π, 2π 0 2π 0 [ e e it it dt = i [ e e 2it 2it dt = 2i. ] t=2π t=0 ] t=2π t=0 = 0, = 0, 2π 0 x(t) dt = c 0 2π c 0 = 1 2π x(t) dt 2π 0 ( ) 64 / 72

77 c 1 e it x(t) e it = c 0 e it + c c 2 e it + c 3 e 2it + 2π 0 x(t) e it dt = c 1 2π c 1 = 1 2π x(t) e it dt 2π 0 ( ) 65 / 72

78 c 2 e 2it x(t) e 2it = c 0 e 2it + c 1 e it + c c 3 e it + c 4 e 2it + 2π 0 x(t) e 2it dt = c 2 2π c 2 = 1 2π x(t) e 2it dt 2π 0 ( ) 66 / 72

79 < f (t), g(t) >= 2π 0 f (t) g(t) dt < x(t), 1 > = < x(t), e it > = < x(t), e 2it > = 2π 0 2π 0 2π 0 x(t) dt x(t) e it dt x(t) e 2it dt ( ) 67 / 72

80 x(t) = c c 1 e it + c 2 e 2it + c 3 e 3it + c 0 = 1 2π < x(t), 1 > c 1 = 1 2π < x(t), eit > c 2 = 1 2π < x(t), e2it > c 3 = 1 2π < x(t), e3it >. ( ) 68 / 72

81 < 1, 1 >=< e it, e it >=< e 2it, e 2it >= = 2π 0 1 dt = 2π < 1, e it >=< e it, e 2it >=< e 2it, e 3it >= = < 1, e 2it >=< e it, e 3it >=< e 2it, e 4it >= = 2π 0 2π 0. e it dt = 0, e 2it dt = 0, ( ) 69 / 72

82 g 0 = 1, g 1 = e it, g 2 = e 2it, g 3 = e 3it, < g i, g j >= { 2π i = j 0 i j g i g j ( ) 70 / 72

83 (8 ) h = 2π/8 f (0) = f 0, f (h) = f 1, f (2h) = f 2,, f (7h) = f 7 2π 0 f (t) dt = f 0 h + f 1 h + f 2 h + + f 7 h w = e i (2π/8) 2π 0 x(t) e it dt = (x 0 1)h + (x 1 w)h + (x 2 w 2 )h + + (x 7 w 7 )h c 1 = h { x0 + x 1 w + x 2 w x 7 w 7} 2π ( ) 71 / 72

84 c 1 x 0 + x 1 w + x 2 w x 7 w 7 c 0 x 0 + x 1 + x x 7 c 1 x 0 + x 1 w + x 2 w x 7 w 7 c 2 x 0 + x 1 w 2 + x 2 w x 7 w 14 c 3 x 0 + x 1 w 3 + x 2 w x 7 w 21. c 7 x 0 + x 1 w 7 + x 2 w x 7 w 49 ( ) 72 / 72

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

impulse_response.dvi

impulse_response.dvi 5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound

More information

main.dvi

main.dvi 4 DFT DFT Fast Fourier Transform: FFT 4.1 DFT IDFT X(k) = 1 n=0 x(n)e j2πkn (4.1) 1 x(n) = 1 X(k)e j2πkn (4.2) k=0 x(n) X(k) DFT 2 ( 1) 2 4 2 2(2 1) 2 O( 2 ) 4.2 FFT 4.2.1 radix2 FFT 1 (4.1) 86 4. X(0)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

untitled

untitled JPEG yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka u.ac.jp/member/yoshi/ (Computer Graphics: CG) (Virtual/Augmented(Mixed) Reality: VR AR MR) (Computer Graphics: CG) (Virtual/Augmented(Mixed)

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

sp3.dvi

sp3.dvi 3 15 5 22 1 2 1.1... 2 1.2... 4 1.3... 5 1.4... 8 1.5 (Matlab )... 11 2 15 2.1... 15 2.2... 16 2.3... 17 3 19 3.1... 19 3.2... 2 3.3... 21 3.4... 22 3.5... 23 3.6... 24 3.7... 25 3.8 Daubechies... 26 4

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u( 3 8. (.8.)............................................................................................3.............................................4 Nermark β..........................................

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

数学演習:微分方程式

数学演習:微分方程式 ( ) 1 / 21 1 2 3 4 ( ) 2 / 21 x(t)? ẋ + 5x = 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 x(t) = sin 5t? ẋ

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

0A_SeibutsuJyoho-RF.ppt

0A_SeibutsuJyoho-RF.ppt A ON-Center OFF-Center DeAngelis, Ohzawa, Freeman 1995 Nobel Prize 1981: Physiology and Medicine D.H. Hubel and T.N. Wiesel T.N. Wiesel D.H. Hubel V1/V2: (spikes) Display? Amplifiers and Filters V1 - simple

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

KENZOU

KENZOU KENZOU 2008 8 9 5 1 2 3 4 2 5 6 2 6.1......................................... 2 6.2......................................... 2 6.3......................................... 4 7 5 8 6 8.1.................................................

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t= --... 3..... 3...... 3...... 3..3....3 3..4....4 3..5....5 3.....6 3......6 3......7 3..3....0 3..4. Matlab... 3.3....3 3.3.....3 3.3.....4 3.3.3....4 3.3.4....5 3.3.5....5 3.4. MEM...8 3.4.. MEM...8 3.4..

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information