I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Size: px
Start display at page:

Download "I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google"

Transcription

1 I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google pdf e etc n etc etc F6 69 C7 79 B8 89 A9 S

2 I4 - A4 A4 Cfe Dvid Cfe Dvid : 3:3 () C: () R: (3) Q: (4) Z: (5) N: (6) : () α: () β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: () κ: () λ, Λ: () µ: (3) ν: (4) ξ, Ξ: (5) o: (6) π, Π: (7) ρ: (8) σ, Σ: (9) τ: () υ, Υ: () ϕ, Φ: () χ: (3) ψ, Ψ: (4) ω, Ω: () x X x X x X () X {x X x } N = {n Z n > } (3) X Y X Y ( (4) A := B A B e := lim + n. n n) (5) : ( ) { n } : M n n M

3 I4 - : April, Version : r > r n (n ) (Hint. n + n > ( + n) n e (n )

4 I4 - : April 8, Version :. (4/) f(x) () x f(x) () f(x) = (3) b f(x) dx π () f(x) = sin x f(47 ) = sin 47 =? () f(x) = x 5 x 3 + = x =? (3) π = 4 x dx π 5,6 x = π

5 I4 - x = ± x = i = N 3 N = {,, 3, 4, 5,...} N Z Z = {, ±, ±, ±3, ±4, ±5,...}. 4 Z Q { } p Q = p, q q. q 5 Q R Peno, ) 4 Z 5 Q R (Méry835 9) (Dedekind 83 96) 87

6 I4-3 R x = X, Y x X : x X X Y : X Y X Y : X Y X Y 4 N, RN R N Z Q R,, 3,... n n,, 3,... { n } n n { n } n= { n } n { n } n N 7 n n, 4, 8, 6,... { n } : 7 n =,,,......,,,,,,... { n } n= { n} n=

7 I4-4 { n } n { n } α n n α lim n = α n α (n ) n α { n } (limit) { n } α { n } α n α n α 8 { n } α n α n α ϵ ϵ-n [].4 [] B n n 9 lim n = n (n ) n { n } lim n ( n) = lim n = n (n ) n - { n }{b n } lim n n = α lim n b n = β () lim n ( n ± b n ) = α ± β () lim n nb n = αβ n (3) β lim = α n b n β 8 9 M n n > M

8 I4-5 n b n 3 n b n 3 = 6 () n n b n n b n 6 ϵ () ± + ( n +b n ) (α+β) n α + b n β (n ) lim n ( n+b n ) = α+β () n b n αβ = n b n αb n +αb n αβ n α b n + α b n β b n β n b n β b n β b n β + n n b n αβ n α ( β +)+ α b n β (n ) (3)() lim (/b n) /β b n β n b n β n β / > n b n β β / b n β β / = β /(> ) b n β = b n β b n β (n ) b n β ( β /) β { n } : n n n+ { n } : n n n+ n N, n n+ n n < n+ n > n+ { n } : M n n M { n } : M n n M { n } (bounded) M, n, 3 n M x, y x + y x + y. for ll 3 there exists

9 I4-6 : M 5 -. () =, n+ = n + () =, n+ = 3 n + 4 n α > lim n α /n = α = α () α > n := α /n n () () n β β > () lim n n = β = α < /α >

10 I4 3- : My, 4 Version :. e (4/8) { ( n = + ) n } n , , , , n =,,,, , , , , e e { n } : n n n+ n n+ { n } : M n n M n M A x = M { n } : n = n

11 I4 3- =.9999 =.9, =.99, 3 =.999,... n n < A α = lim n n n = n α = n = (n ). n = =, n+ = n + = 3 > k+ > k k+ k+ = k+ + k + = ( k+ k ) k+ + + k + >. n n+ > n x = x + (> ) α = + ) α > = α > k α k+ = α + (α k ) k + = α + + k + <. n α > n { n } A β = lim n n β = β + β = α = + -e n = ( + n) n e ( e := lim + n (= ) n n) ) α α = lim n α = lim n+ = n n n + = α + y = x + lim n

12 I { n } n = nc k ( + n) n = ( n k= n nc k n k k= ) k = k! n n n n n = ( k! ) ( n ( ) k = + n n n k + n ) n n nc k k= ( k n < ( k! ) ( ) n + n + = k! n + n + n n + n n + n k + n = n+ C k ( n + ) k ) ( ) k n ( k n + n ( ) k n+ ( ) k n < + n+c k < + n+c k n + n + { n } k= n+ = n+c k (n+) k = k= ( + ) n+ = n+. n + ( ) k n + n n < 3 ( ) k nc k = ( n k! ) ( ) ( k ) n n n k! n ( ) k n = + nc k + n k= k! = 3 k = k n k= k < = 3 ) { n } A { n } = < n < 3 < e 3

13 I > n () lim n /n = () lim n n/n = (3) lim n n! = () () n /n = + h n h n > ) n = ( + h n ) n = n nc k n k h k n = + nh n + k= n h n. (3) N < < h n < n. n(n ) h n + + h n n < N N n > N n n! = N N! N + N + n < N N! = N N! n(n ) h n. ( ) n N (n ) R () f : R R, f(x) = π + x () f : R R, f(x) = sin + x 3-. [] () f : [, 7] R y = f(x) = [x] f(x) f () g : [ 7, ] R y = g(x) = [/x] g(x) g (3) h : [ 7, ] R h(x) := g(x) h(x) h {,,, π } {x R x } ) x > x /n > h n >

14 I4 4- : My 9, 4 Version :. (5/) b (, b) := {x R < x < b} (, ) := {x R < x} [, b] := {x R x b} [, ) := {x R x} (, b] := {x R < x b} (, b) := {x R x < b} [, b) := {x R x < b} (, b] := {x R x b} (, ) := R + : (, ), [, ], (, ], [3, ) y = f(x) x f(x) ) (function) ) I I x f(x) I f f : I R, I f R, f : x f(x), x f f(x) I f(x) = x I ( 5, 5) f : ( 5, 5) R, f : 3 9, f. f : I R I f f(i) = {f(x) R x I} f I f ) y = f(x) x x y y = f(x) ) function

15 I4 4- : f : I J I f f(i) f(i) J f : I J 3) f(x) = x I = ( 5, 5) f(i) = [, 5). x f : I R f : ( 5, 5) [, ) f : ( 5, 5) [, 5) [y] y k y < k + k f(x) = [x] f : R Z f : [ 5, 5] {, ±, ±, ±3, ±4, ±5} f x x f(x) A x f(x) A x f(x) A lim f(x) = A f(x) A (x ) x x = f() x x sin x lim x x = x = sin / = / 3)

16 I4 4-3 ϵ-δ ϵ lim f(x) = A lim f(x) = A x x A = A = ± lim x + x = = lim x x. x f(x) lim f(x) = f(x) (x ) x f(x) lim f(x) = f(x) (x ) x ± ± lim ( x x = lim x ) x = x x < f(x) A lim f(x) = A f(x) A (x ) x x f(x) A x x > f(x) A lim f(x) = A f(x) A (x + ) x + x f(x) A 3- lim x f(x) = Alim x g(x) = B () lim x {f(x) + g(x)} = A + B () lim x f(x)g(x) = AB (3) B lim x f(x) g(x) = A B

17 I4 4-4 f : I R I x f(x) f() lim f(x) = f(). x f I f I f I f(x) = cg(x) = x h(x) = (, ) (, ) f(x) = g(x) = x x 3-(3) 3-f(x)g(x) x = f(x) ± g(x) f(x)g(x) x = g() f(x)/g(x) 3-3f : I Jg : J R h = g f : I R, h(x) := g(f(x)) cos x x + R x xx cos x cos x 3- x xx x x = x x x x cos(x) x + 3- x cos x x +. f : [, ] [, ] f() := x f(x) := [ ] x [y] y f /x x =. g : R [, ] g() := x g(x) := sin x g x x = h(x) := xg(x) = x sin(/x) x =

18 I4 5- / : My 6, 4 Version :. (5/9) I R I f : I R x, x I x x f(x ) f(x ). x x f(x ) f(x ) f(x ) = f(x ) x = x f(x) = x f : [, ] [, ] f : [, ] [, ] f : [, ) [, ) x < x x < x x < x x x f(x ) f(x ) f : I R x, x I x < x f(x ) < f(x ) x < x f(x ) > f(x ) f : I R ) f f(x) = x f : (, ] R f : [, ) R ) ) y = f(x) )

19 I4 5- f : I f(i) = J x f y = f(x) y x f f : J I f : [, ) [, ), f(x) = x X = f(x) f : [, ) [, ) 3) f (X) = X f (X) = X n f(x) = x n [, ) x n X = f(x) = x n [, ) n X X n X n x > p q ( ) x p q := x p q x p/q p p := / p P Q P/Q = p/q x P/Q = x p/q ( x P/Q) qq = ( x /Q ) P qq = x P q ( x p/q) qq = ( x /q ) pqq = x pq P q = pq x P/Q x p/q x P q = x pq qq x r s x r x s = x r+s, (x r ) s = x rs 3) [, ) f

20 I x α {r n } () n r n Q. (b) n r n < r n+. (c) lim r n = α n lim n xr n x α x α {r n } α ()(b)(c) {r n } α > n α = = e {r n } = {.4,.4,.44,.44,.44, } e := lim n er n 4-. x > < x < x = r s r < s x r < x s y = x s r x s x r = x r (x s r ) > x r ( s r ) = {x r n } α < m n r n < m x r n < x m {x r n } lim n xr n r n {s n } ()(b)(c) r n s n = (α s n ) (α r n ) (n ) x r n x s n = x s n {x r n s n } {q n = r n s n } q n (n ) x q n q n < /m m m n m n (n ) -() x qn < x /mn q n < x qn = /x qn lim n xq n = x e x exp : R (, )exp x = e x > x x x = x = 4- > () x, y x y = x+y () > x x (3) < x x

21 I4 5-4 () r n rs n s r n + s n r + s lim n r n+s n = lim n r n s n ()x < y y x = x ( y x ) > x ( y x ) = x y x y y x < /n n y x n -() < y x < /n y x + < y x = x ( y x ) y x < x y y x y x x x (3) () 4-() exp : R (, ), x e x log : (, ) Rx log x > 4- () (3) x e x log : (, ) Rx log x log e x = log x log x ln x 4) >, () x, y log x + log y = log xy () > x log x (3) < x log x xy x + y = (, ) θ P(θ) (cos θ, sin θ) cos θ θ (m + /)π (m ) OP(θ) tn θ tn θ := sin θ cos θ sin x xcos x xtn x x (S) sin : [ π/, π/] [, ] (C) cos : [, π] [, ] (T) tn : ( π/, π/) (, ) = R 4) exponentil function logrithmic function. ln logrithmus nturlis nturl logrithm

22 I4 5-5 (S)(C)(T) (S ) Sin : [, ] [ π/ π/], x Sin x (C ) Cos : [, ] [, π], x Cos x (T ) Tn : (, ) ( π/ π/), x Tn x Sin x xcos x xtn x x Sin xcos xtn x Arcsin xarccos xarctn x x x x Sin = Sin = π 4 Sin = π 4 x [, ] Sin x + Cos x = π x [, ] ) sinh x := ex e x, cosh x := ex + e x, tnh x := sinh x cosh x () cosh x sinh x = cosh x = (cosh x), sinh x = (sinh x) () sinh(x ± y) = sinh x cosh y ± cosh x sinh y (3) cosh(x ± y) = cosh x cosh y ± sinh x sinh y 5-. x 5 3x 4 + = (, ), (, ), (, 3) 5) x x x

23 I4 5-6 Π Π 4 Π Π 4 Π 4 Π Π 4 Π : sin x Sin x Π 3 3Π 4 3 Π Π 4 Π 3Π 4 Π Π 4 Π Π 4 Π 4 Π 3 3 : cos x Cos xtn x Π Π Π 4 Π 3: Tn x

24 I4 6- : June, 4 Version :. (5/6) f(x) = y = f(x) f(x) = α () f( ) <, f(b ) >, b f(x) f(x) < b () n < b n (n ) f( n+bn ) < ( n+, b n+ ) := ( n+bn, b n ). f( n+b n ) > ( n+, b n+ ) := ( n, n+b n ). f( n+b n ) = α := n+b n () { n } n < b {b n } < b n α = lim n b n n = b / n b n = (b n n ) + n + α = α (n ). f f(α) = lim f( n ) f(α) = lim f(b n ) f(α) = n n b n α mx { n α, b n α } b n n = b n. f(x) = x, (, b ) = (.,.) n, b n / n n n b n n n b n n n b n

25 I4 6- ( n, b n ). 5- f : [, b] R f() f(b) f() f(b) l f(c) = l c [, b] g(x) = f(x) l g(c) = c [, b] 5- f : [, b] R [, b] n n =,,,... X n n = X = {, (3 + b)/4, ( + b)/, ( + 3b)/4, b} X n X n+ M n = mx{f(x) x X n } f(x n ) = M n x n [, b] {x n } [, b] { x n(k) }k x = lim k x n(k) [, b] {M n } M n(k) = f(x n(k) ) (k ) f(x n(k) ) f(x) < {M n } M = lim n M n M = f(x) f(y) > M y n X n f(y ) > M y f(y ) M n M 5-3I R f : I f(i) = J J f : J I > f : (, ) (, ), f(x) = x f : (, ) (, ), f (x) = log x

26 I4 6-3 J x < x f(x ) < f(x ) y < y f (y ) < f (y ) f ϵ []p75 y = f(x) y = f(x) x = A = lim x f(x) f() x ( ) A f () y = f(x) I f I I f(x) y = f(x) I x I f (x) f : I R f f (x), y, df dx (x), d dx f(x), dy dx, Df(x) ( ) x = x, y = f(x) f() ( ) f(x) f() y A = lim = lim x x x x

27 I4 6-4 x y A y A x x f(x) f() x x f () = A f(x) f() r (x) := A (x ) x r () = (x = ) x r (x) f(x) f(x) f() = A(x ) + r (x)(x ) x g(x) x g(x) o(x ) f(x) f() = A(x ) + o(x ) f(x) = f() + A(x ) + o(x ). f(x) x = () {tn x} = cos x (3) { Cos x } = x 6-. > () { x } = x log (4) { Tn x } = + x () cos () π = =

28 I4 7- : June 9, 4 Version :. (6/) y = f(x) x = ( ) A = lim x f(x) f() x A f () y = f(x) x f y ( ) x = x, y = f(x) f() ( ) f(x) f() y A = lim = lim x x x x x y A y A x x ) x ) ( ) f(x) f() A(x ) f(x) f() + A(x ) : ) X Y X Y X Y X Y ) f(x) = f() + A(x ) + o(x ) x r (x) f(x) = f() + A(x ) + r (x)(x )

29 I4 7- sin = 45 + = π/4 + π/9 ( ) f(x) = sin x = π/4 f(x) f(π/4) + f (π/4)(x π/4) = sin(π/4) + cos(π/4)(x π/4). x = 47 = π/4 + π/9 ( π sin 47 = f 4 9) + π + π =.4435 π = % m 6mm = 5 + = ( ) f(x) = x = f(x) f() + f ()(x ) = + (x ). { x} = x 3) x = + /5 + 5 ( = f + ) = / = 5. (5.) = % 6- f(x), g(x) () {f(x) + g(x)} = f (x) + g (x) () {f(x)g(x)} = f (x)g(x) + f(x)g (x) { } f(x) (3) g(x) = f (x)g(x) f(x)g (x) g(x) {g(x)} (4) {g(f(x))} = g (f(x)) f (x) y = f(x)z = g(y) dz dx = dz dy dy dx. 3) y = x x = f f () = /

30 I4 7-3 f g f() g(f()) f f () g g (f()). x = f(x)g(x) x f(x) = f() + f ()(x ) + o(x ), g(x) = g() + g ()(x ) + o(x ) 4) x f(x) + g(x) = f() + g() + {f () + g ()}(x ) + o(x ). {f(x) + g(x)} {f() + g()} x = {f () + g ()} + o(x ) x f () + g (). f(x) + g(x) x = f () + g () () f(x)g(x) = {f() + f ()(x ) + o(x )}{g() + g ()(x ) + o(x )} = f(α)g(α) + {f (α)g(α) + f(α)g (α)}(x α) + o(x α) 5) f(x)g(x) x = f (α)g(α) + f(α)g (α) () (3) f(x) = {/g(x)} = g (x)/g(x) () g(x) g() g(x) = = g ()(x ) + o(x ) = g () (x ) + o(x ). g() g(x)g() g(x)g() g(x)g() x /g(x) /g() x = g () o(x ) + g(x)g() x g () g(). (4) f() = b y = b g f(x) = f() + f ()(x ) + r(x)(x ) g(y) = g(b) + g (b)(y b) + R(y)(y b) lim x r(x) = lim y b R(x) = g(f(x)) g(f()) = g(y) g(b) = g (b)(y b) + R(y)(y b) = g (f()){f ()(x ) + r(x)(x )} + R(y){f ()(x ) + r(x)(x )}. 4) o(x ) ± o(x ) o(x ) 5) g(α) o(x )(x ) o(x ) o(x )

31 I4 7-4 g(f(x)) g(f()) = g (f()) f () + g (f())r(x) + R(y){f () + r(x)} x x y = f(x) b = f() g(f(x)) x = g (f())f () 6- f : I f(i) = J I f (x) () f : J I J () y = f(x), x = f (y) dx dy = dy dx d dy f (y) =. d dx f(x). () 5-3 x = y = f(x) b = f() x = x y = f(x) f() = y b x = f (y) f (b) f x y 5-3 f y x dx dy = lim x y y = =. y dy lim x x dx f () = y = f(x) = x 3 x = g(y) = y /3 g () d dx Sin x = x ( x < ) y = Sin x ( x < ) x = sin y ( y < π/) 6- = dx = cos y (> ) dy dy dx = cos y = sin y =. x 6-3y = f(x) d dx {log f(x) } = f (x) f(x) = y y.

32 I4 7-5 z = log y dz = /y 6-(4) dy dz dx = dz dy dy dx = y y. y = x x (x > ) log y = x log x 6-3 x y y = log x + x = log x +. x y = y(log x + ) = x x (log x + ) 6-4 α {x α } = αx α {e x } = e x {log x } = x {sin x} = cos x {cos x} = sin x {tn x} = cos x = tn x + { Sin x } { = Cos x } { = Tn x } = x x + x Sin x Cos x x < { x } = x log = e log x = e x log { x } = e x log log = x log () (sin x) cos x x + () 3 (x ) (3) x x + Sin x (4) f(x)g(x)h(x) 7-. () sinh x sinh : R R, y = sinh x = ex e x () R Hint. (3) x = sinh y y Hint. cosh x sinh x =.

33 I4 8- : June 6, 4 Version :. (6/9) 5- f : [, b] R f() = f(b) (, b) 7- f : [, b] R (, b) f() = f(b) f (c) = c (, b) f f f : [, b] R M m 5- m < M m f() = f(b) < M f(c) = M c (, b) x c x c + f(x ) f(c) f(c) f(x ) f f(x ) f(c) (c) = lim f f(x ) f(c) (c) = lim x c x c x c x c f (c) = m < f() = f(b) M f(c) = m c (, b) f (c) = x = c x c f(x) < f(c) f(x) x = c f(c) x = c x c f(x) > f(c) f(x) x = c f(c)

34 I4 8- f(x) x = c f (c) = x = c x = c x c f(x) < f(c) f (c) f (c) f (c) = f(x) f (c) = f(x) = x 3 x = 7- f : [, b] R (, b) ( ) f (c) = f(b) f() b c (, b) (, f()) (b, f(b)) (c, f(c)) ( ) ) ( ) f(b) f() = f (c)(b ) (, f()) (b, f(b)) l A = f(b) f() F : [, b] R b F (x) := f(x) {A(x ) + f()} l F (x) F (c) = c (, b) F (x) = f (x) A f (c) = A. 7-3 f(x) [, b] (, b) (, b) () f (x) > = f(x) () f (x) < = f(x) (3) f (x) = = f(x) )

35 I4 8-3 x < x b x x f : [x, x ] R c (x, x ) ( ) f(x ) f(x ) = f (c)(x x ) x x > f (c) (, b) f (x) = f (c) = f(x ) = f(x ) x x x > x > log( + x) f(x) = x log(+x) f x > x > f (x) = /(+x) > f f(x) > f() = x > log( + x) lim f(x) = lim g(x) = lim f(x) x x x g(x) sin x (sin x) lim =, lim x x x x sin x =, lim x ± x = ±, ) 7-4 f(x) g(x) x = () lim x f(x) = lim x g(x) = (b) lim x f (x) g (x) lim x f(x) g(x) f(x) lim x g(x) = lim f (x) x g (x) lim x e x cos x x = f(x) = e x cos xg(x) = x x f(x) g(x) f (x) g (x) = ex + sin x f(x) ()(b) lim x g(x) = lim f (x) x g (x) = ) (Johnn Bernoulli, ) Guillume de l Hôpitl, 66-74

36 I4 8-4 () lim f(x) = ± lim g(x) = ± x x lim x lim x lim, x lim x + lim x lim x + x x = y = x x log y = x log x = log x. f(x) = log xg(x) = /x x + /x f(x) g(x) + x + f (x) g (x) = /x /x = x () (b) lim log y = x + f(x) lim x + g(x) = lim f (x) x + g (x) = y = xx (x +) f(x) f(x) = x + sin x, g(x) = x lim x f (x) lim x g (x) = lim x ( f(x) lim x g(x) = lim + sin x ) = x x + cos x g(x) f(x) f(x) = cos x, g(x) = + x lim x g(x) f (x) lim x g (x) = lim sin x = x f(x) lim x g(x) = lim cos x x + x = lim f (x) x g (x). ( ) X x = Y ( ) g(x) C () x = C f(x)

37 I4 8-5 ( ) ( ) d X g (x) = dx Y f (b) (x) ( ) x = ( ) C g(x) g (x) f(x) f x (x) X Y 7-6 f(x) g(x) [, b] (, b) g() g(b) (, b) g (x) f(b) f() g(b) g() = f (c) g (c) c (, b) (g(), f()) (g(b), f(b)) (g(c), f(c)) f(b) f() B = F (x) := {f(x) f()} g(b) g() B{g(x) g()} F (c) = c (, b) F (x) = f (x) Bg (x) = f (c) Bg (c)g (c) (, b) g (x) g g() g(b) f g ( ) c f() = g() = f g x = f (x) g(x) lim x g x = (x) g(x) x

38 I4 8-6 f(x) g(x) f(x) f() = g(x) g() = f (c) g (c) c x x c () sin x < x < tn x ( < x < π/) () + x < e x < ( < x < ) x 8-. sin x x sin x () lim () lim x x x x 3 ( x + b x ) /x (3) lim x x/x (4) lim x Hint

39 I4 9- : June 3, 4 Version :. (6/6) n y = f(x) f () (x) := f(x), f (n+) (x) := { } f (n) (x) f (n) (x) (n =,,, ) f(x) n n y (n), d n y dx n, ( ) d n f(x), dx d n dx n f(x), Dn f(x) f () (x) = f (x), f (3) (x) = f (x) f (n) (x) f (n) (x) f(x) n f (n) (x) f(x) n f(x) C n ) n f(x) f C y = x k y = e x sin xlog x C y = x 3/ C x = {fg} (n) = n nc k f (n) g (n k) k= =.44 = ) n n n

40 I4 9- f(x) = x 3 x 3 = + 3(x ) + 3(x ) + (x ) 3 x =. = + / x =. (.) 3 = =.33 (.) 3 = (.) + (.) 3 = = I I f : I R n x I f(x) = f() + f ()(x ) + f () (x ) + + f (n ) ()! (n )! (x )n () c x + f (n) (c) (x ) n () n! f(x) x = n = n () (n ) () () c = x c = x < c < x x < c < c x < θ < θ c = ( θ) + θx c = + θ(x ) n = 7-x = b f() = f(b) + f (c)(b ) f() f(b) = f (c)(b ). f(x) = x 3 I = (, ) = R = 4 f (x) = 3x, f (x) = 6x, f (x) = 6, f (4) (x) =

41 I4 9-3 c x f(x) = x 3 = f() + f ()(x ) + f ()! (x ) + f () 3! = + 3(x ) + 6! (x ) + 6 3! (x )3 + (x )3 4! = + 3(x ) + 3(x ) + (x ) 3. ) (x ) 3 + f (4) (c) (x ) 4 4! f(x) = e x I = (, ) = R = n f (n) (x) = e x c x e x = e + e (x ) + e! (x ) + + e x = + x + x! + + xn (n )! + ec n! xn e (n )! (x )n + ec (x )n n! = c, c x sin x = x x3 3! + x5 5! x7 7! + + ( )m (m )! xm + ( )m sin c (m)! cos x = x! + x4 4! x6 6! + + ( )m (m)! xm + ( )m+ sin c (m + )! x m x m+ x < c < x e c n! xn - e x x n (n ) n! e x = + x + x! + + xn n! + x = ( e = lim + ) n = + + n n! + 3! + + n! + e ( n = + ) n b n = + + n! + 3! + + n! ) f(x) = nx k (x ) k k = f (k) ()/k! k= x =

42 I4 9-4 n n n e b n b n e sin c m sin x = x x3 3! + x5 5! x7 7! + + ( )m (m )! xm + cos x = x! + x4 4! x6 6! + + ( )m (m)! xm + sin x x = π 3) 8. = π π3 3! + π5 5! π7 7! + π 3 3! + π7 7! + π! + = π + π5 5! + π9 9! + 7- n = 3 x = x x b b n f (k) () f(b) (b ) k k! k= (b ) n = f (k) (c) n! c b A I F (x) { } n f (k) (x) F (x) := f(b) f(x) + (b x) k + A(b x) n k! k= f(x) n F (x) F () = F (b) = b F : [, b] R F : [b, ] R 3)

43 I4 9-5 c (, b) (b, ) F (c) = F { n ( f F (x) = f (k+) (x) (x) + (b x) k f (k) ) } (x) (b x)k + na(b x) n k! (k )! k= = f (n) (x) (n )! (b x)n na(b x) n x = c A = f (n) (c)/n! x n n x () () x x (3) sin x (4) xe x Hint. () () 9-. x = n () ( x < ) () sin x (3) cos x (4) xex x

44 I4 - : June 3, 4 Version :. (6/3) 8- I I f : I R n x I f(x) = f() + f ()(x ) + f () (x ) + + f (n ) ()! (n )! (x )n () c x + f (n) (c) (x ) n () n! f(x) x = n () (n ) () x = sin x e e e x x = e x = + x + x! + + xn (n )! + ec n! xn c x x =, n = 6 e = + +! + 3! + 4! + 5! () + ec 6! () ( < c < ) () e () () = = () < c < < e c < e 3 ) ) e = lim n ( + /n) n e 3 < ec 6! 3 7 = 4 =.4666

45 I4 - () < e () + / < e < () e.6% ( + /n) n n = 6.56 x k k lim x e x =. k = x > 4 e x = + x + x! + x3 3! + ec 4! x4 ( < c < x) k 3 e x > + x + x! + x3 3!. x e x < x + x + x! + x3 3! (x ). log x x > c x c log( + x) = x x + x3 3 + ( )n x n + ( )n n nc n x n. < x n x = log( + x) = x x + x3 3 x4 4 + log = ( + x) n = + nx + n (n ) x n (n ) + + (n ) n xn (n N)

46 I4-3 α R x < ( + x) α α(α ) = + αx + x + + ( ) α n α(α ) (α n + ) n! ( ) α n α(α ) (α n + ) x n + n! α n α α C n ( ) (+x) α α n (+c) α n x n n α = / + x = + x x 8 + x x = / = = = = = n x f(x) f(x) (x ) (x ) n f(x) = o((x ) n ) (x ) ) f(x) (x ) n x f(x) f(x) = o() n = x () 4x + x 3 = o(x) () sin x = o() (3) x sin x = o(x ) () 4x + x 3 = 4x + x (x ). x () n = sin x (x ). x sin x cos x sin x (3) lim x x = lim = lim =. x x x ) (x )

47 I4-4 f(x) = o(x ), g(x) = o(x 3 ) (x ) () x f(x) = o(x 4 ) () f(x) + g(x) = o(x ) (3) f(x)g(x) = o(x 5 ) () x f(x) f(x) + g(x) () x = f(x) x + x g(x) x 3 (x ). (3) f(x)g(x) x 5 = f(x) x x 4 = f(x) x (x ). g(x) x 3 (x ). f(x) = o(x)g(x) = o(x) f(x) g(x) = f(x) g(x) = o(x) o(x) = o(x) 9-f(x) x = C n f (n) f(x) = f() + f ()(x ) + + f (n) () (x ) n + o((x ) n ) (x ). n! x n f(x) = n k= f (k) () k! c x f(x) n k= f (k) () k! (x ) k = f (n) (c) n! (x ) k + f (n) (c) (x ) n. n! (x ) n f (n) () (x ) n. n! x c f (n) (c) f (n) () [] (x ) n (x ). C x e x = + x + + xn n! + o(xn ) = + x + x! + o(x ) = + x + o(x) = + o(). e x sin x = x + x + o(x ) sin x = x x 3 /3! + o(x 3 ) ) e x sin x = ( + x + o(x)) (x x3 3! + o(x3 ) = x x3 3! + o(x3 ) + x x4 3! + o(x4 ) + o(x ) + o(x 4 ) + o(x 4 ) = x + x + o(x ). o(x ) sin x = x + o(x) x 3 = o(x ) sin x 3

48 I4-5 e x sin x x () lim x x () lim x log( + x) x x () ex sin x x x = x + x + o(x ) x x = + o(x ) x = (x ). log( + x) x () x = x x / + o(x ) x x = + o(x ) x = (x ). cos x = x + o(x ) (x ) + t = + t/ + o(t) t = x + x = + x / + o(x ). cos x = x + o(x ) cos x + x = o(x ) o(x ) = o(x ) o O x = f(x), g(x) f(x) lim = f(x) = o(g(x)) x g(x) (x ) M > x f(x) M g(x) f(x) = O(g(x)) (x ) o O sin x = x x 3 /6+o(x 3 ) (x ) sin x = x+o(x 3 ) sin x x = x 3 /6 + o() o() (x ) x /6 + o() sin x x = x 3 sin x x = O(x 3 ). y = f(x) f(α) = α f(x) =. () y = f(x) x () α x (3) n (x n, f(x n )) x (x n+, )

49 I x n (n =,,...) x n+ = x n f(x n) f (x n ) f(x) = α δ = δ(f, α) > x x α δ x n α () [].3.3(p43)[]..6 p5 f(x) = x = x = x n+ = x n x n x n = x n + x n x 6 x n x n α x n+ α = O( x n α ) C e x log t α lim t t α = () lim x cos x x sin x () lim x tn x sin x x 3 cos x + x (3) lim x x 4

50 I4 - : July 7, 4 Version :. (6/3) f : [, b] R ( < b) : Step [, b] {x k } N k= = x < x < x < < x N < x N = b Step N [] N k= f(x k )(x k+ x k ) f(x k )(x k+ x k ) k k < N {x k } N k= Step 3. {x k } N k= N mx x k+ x k k<n I ) I = b f(x) [, b] f(x) dx ) I []3.4 p 73 []3 (p 8)

51 I4 - f Step 3 I Step Step N /N f(x), g(x) α, β > b b f(x) dx := f(x) dx b. - b b b () {αf(x) + βg(x)} dx = α f(x) dx + β g(x) dx b b () x b f(x) g(x) f(x) dx g(x) dx c b c (3) f(x) dx = α f(x) dx + β f(x) dx. b I f : I R I x I F (x) := f(x) ) x f(t) dt -f F (x) = F (x) = f(x) d dx x f(t) dt = f(x) x f(t) dt x > [x, x + x] f(x) m x ( x)m x ( x) m x ( x) f(t) M x ( x) (x t x + x) -() x+ x x m x ( x) dt x+ x x f(t) dt x+ x = m x ( x) x F (x + x) F (x) M x ( x) x = m x ( x) F (x + x) F (x) x ) x M x ( x) M x ( x) dt

52 I4-3 f(x) x + m x ( x)m x ( x) f(x) x < lim x F (x + x) F (x) x F (x + x) F (x) lim = f(x) x + x = f(x) f(x) F (x) = f(x) F (x) f(x) -3F (x) G(x) f(x) F (x) G(x) {F (x) G(x)} = f(x) f(x) = F (x) G(x) -4 f(x) G(x) = x F (x) = f(t) dt + C (, C) x f(t) dt f(x) -3-4 f(x) f(x) dx x dx = x3 + C (C) C 3-5 f(x) F (x) b f(x) dx = -4 F (x) = x ( ) b F (b) F () = f(t) dt + C [ ] b F (x) = F (b) F (). f(t) dt + C ( ) f(t) dt + C = / dx x b f(t) dt.

53 I4-4 (Sin x) = x / [ ] / dx = Sin x = π x 6 = π 6. -6x = x(t) α t β = x(α), b = x(β) b f(x) dx = β α f(x(t)) dx dt dt. x dx = (Sin x + x ) x + C (C : ) x = sin t ( t π/) dx = cos t dt x dx = sin t cos t dt = cos t dt + cos t = dt = ( ) sin t t + + C = (t + sin t cos t) + C = (Sin x + x ) x + C. -7f(x), g(x) C b f (x)g(x) dx = [ ] b f(x)g(x) b f(x)g (x) dx. I n = cos n x dx (n =,,, ) I n = n cosn x sin x + n n I n (n ).

54 I4-5 I n = cos n x cos x dx = cos n x sin x = cos n x sin x cos n x sin x dt (n ) cos n x( sin x) sin x dt = cos n x sin x + (n ) cos n x( cos x) dt = cos n x sin x + (n )(I n I n ). I = dx = x + CI = cos x dx = sin x + C J n = π/ I = cos x sin x x + C I 3 = 3 cos x sin x 3 sin x + C cos n x dx (n =,,, ) J = π/, J = n J n = n n J n (n )(n 3) 3 π/ cos n x dx = n (n ) 4 (n )(n 3) 4 n (n ) 3 π (n) (n) > () x dx () Sin x dx (3) + x dx (4) + x dx Hint. () Sin x (3) t = x + + x (4) + x ) -. () (3) π/ e cos 3 x dx () x log x dx x e x dx

55 I4 - : July 4, 4 Version :. (7/7) f(x) = mx m + + x + b n x n + + b x + b x ) - () () (3) (m N) (x + b) m x + b (x + cx + d) n (n N, c 4d < ) x + x x + = (x + ) = x + x + () +. x + () x + x x + C x dx = + x + log x + + C. 5x 4 x + x 6 = +. x 3 () x + () x 3 + b x + 5x 4 x + x 6 dx = log x 3 + log x +. () () (3) (3) u = x + c/ x + b (x + c/) c/ + b (x = + cx + d) n ((x + c/) c /4 + d) n = u + b (u + c ) n = u (u + c ) n + b (u + c ) n. )

56 I4 - b = c + b, c = c > c > 4d c 4 u (u du + c) n u (u + c) n du = (u + c) (u + c) n du = >. (u du + c) n log(u + c) (n = ) ( n + )(u + c) n (n ) t = c u (u + c) n du = c c n (t + ) n dt I n I n+ = t n(t + ) n + n n I n (n ) n = t = tn θ I = t + dt = + tn θ dθ cos θ = dθ = θ = Tn t. n -. I = x + x dx t = x t + = x t dt = dx t I = t + + t dt.. x + dx t = x + x + (t x) = x + x = ( t ) t x + = t x = t t + dx = t + t dt x + dx = t t + t + t dt = dt = log t = t log(x + x + ).

57 I4-3 u = tn x/ sin x = u u u, cos x =, tn x = + u + u u dx = du + u + sin x I = dx + cos x + I = + u = u +u +u ( + u + u du + u + u = + u du + u )du = u + log( + u ) = tn x ( + log + tn x ). t ( ) C : x(t) p (t) = y(t) (A t B) x x(t), y y(t) A < t < B C ) C [, b] (A, B) x (t) := dx dt (t), y (t) := dy (t) dt C C = C[, b] ( ) C C[, b] : x(t) p (t) = ( t b) y(t) -3 C l(c) b {x (t)} + {y (t)} dt 3) t {t k } N k= = t < t < < t N < t N = b ) 3)

58 I4-4 p k := ( ) x(tk ) p (t k ) = C = C[, b] { p (t y(t k ) k )} N k= N k= p k+ p k p k+ p k = {x(t k+ ) x(t k )} + {y(t k+ ) y(t k )} c k, d k (t k+, t k ) x(t k+ ) x(t k ) = x (c k )(t k+ t k ), y(t k+ ) y(t k ) = y (d k )(t k+ t k ) p k+ p k = {x (c k )} + {y (d k )} (t k+ t k ). N mx k<n t k+ t k [] = N k= b C {x (c k )} + {y (d k )} (t k+ t k ) {x (t)} + {y (t)} dt y = x x C p (t) = ( ) t t ( t ) -3 u = t l(c) = l(c) = + (t) dt. + u du = u( + u [ ) log(u + ] + u ) = { 5 + log( + } 5).

59 I y = f(x) [, b] b + {f (x)} dx. f (x) r C r r π r x + y = r y = ± r x y = x x r/ y = r x 8-4 l(c r ) = 8 r/ u = rx r r/ + (y ) dx = 8 + x r x dx = 8 / l(c r ) = 8r du. u [C r ] [C r ] = l(c / r) = 4 r du u r/ r r x dx sin x, cos x (, ) x sin x, cos x x dt t Sin x sin x cos x sin(π/ x) -3 C C[, b] : x(t) p (t) = y(t) ( t b) z(t) b {x (t)} + {y (t)} + {z (t)} dt

60 I4 3- : July 4, 4 Version :. 7/4 y = /x [, + ) x β > [, β] β [ x dx = x ] β = β + β β lim dx = lim ( β ) β x + =. β dx = x f : [, b) R b = + b f(x) dx := β lim f(x) dx β b f(x) [, b) b f(x) dx. f : (, b] R (, b] f(x) = /x [, + ) [ x dx = ] = + = x lim f(x) = /x (, ] dx := lim x α + α dx = lim x α + ( + α ) = +.

61 I > () () x p dx p <. x p dx p >. () () p < < p < p =, p n n n := n + n dx (n ). x x dx < + x dx - n = n (, b) ( < b + ) c (, b) b f(x) dx := c f(x) dx + b c f(x) dx = c lim α + α f(x) dx + lim β b β c f(x) dx

62 I4 3-3 dx = π x = + [ ] ( dx = Sin x = π ) = π x [ ] dx = Sin x = π x = π b g(x) f(x) f(x) g(x); b g(x) dx f(x) dx. -f(x) g(x) b b b f(x) dx f(x) dx f(x) f(x) -4 f(x) dx () dx () + x3/ b f(x) dx sin x x dx () = + dx + x3/ x > + x 3/ - dx x3/ x3/ - dx x3/ + x3/

63 I4 3-4 () sin x sin x x t = x dx = x x t ( dt) = dt. - - t x sin x x dx s Γ(s) := e x x s dx s Γ : (, ) R Γ γ n! -3s > Γ(s) := e x x s dx f(x) = e x x s s > c (i) [c, ) g(x) = x f(x) (ii) (, c] h(x) = x s f(x) f(x) (i): g(x) = e x x s x = xs+ e x - lim f(x) g(x). - c f(x) dx s + < N N x xs+ e x xn e x. x N f(x) = c x c x e x c g(x) x dx g(x) = x f(x) (ii): x > e x < f(x) = e x x s < x s s > - h(x) = x s f(x) (iii) Γ(s) = f(x) dx = c c f(x) dx f(x) dx + c c f(x) dx x s dx -4s > Γ(s + ) = sγ(s) s = n =,,,... n! = Γ(n + ). Γ(s + ) = Γ() = s [ ] e x x s dx = e x x s + e x sx s dx = + sγ(s). e x dx = Γ(n + ) = nγ(n) n! = Γ(n + ) Γ(s + ) = sγ(s) s

64 I4 3-5 p >, q > B(p, q) := x p ( x) q dx B β () B(p, q) = B(q, p). () B(p +, q) = p q B(p, q), B(p, q + ) = B(p, q) p + q p + q (3) B(, ) =, B (, ) = π (4) B(p, q) = π/ (cos x) p (sin x) q dx (5) B(p, q) = Γ(p)Γ(q) Γ(p + q). π/ (cos x) 9 (sin x) 7 dx = B(5, 4) = Γ(5)Γ(4) Γ(9) = 4! 3! 8! = 56. ()(4)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo I 22 7 9 2 2 5 3 7 4 8 5 2 6 26 7 37 8 4 A 49 B 53 big O f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information