III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Size: px
Start display at page:

Download "III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F"

Transcription

1 III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ B λ. 4. (X, d). X A X x. x A d(x, A) d(x, A) = inf{d(x, y) y A}. d(x, A) = 0 x A (i) d(x, A) d(x, y) + d(y, a) a A. (ii) d(x, A) d(y, A) d(x, y) d(x, A) x A X ϵ- U(A, ϵ) = {x X d(x, A) < ϵ}. U(A, ϵ). 7. (X, d). Y X y, y Y d Y (y, y ) = d(y, y ). (Y, d Y ). 1

2 ( n ) 1/p 8. p 1. d p (x, y) = x j y j p R n j=1. 9. d(x, y) = x 1 + x y 1 + y R. 10. X. d : X X R d(x, y) = 1(x y), d(x, y) = 0(x = y),. d. 11. (X, d). X D d(x, y) 1, x, y D, D. 12. (i) d(x, y) = 1 x 1 y (0, 1]. (ii) C 1 C 2. d(x, y) C 1 x y, x y C 2 d(x, y) 13. X = (0, 1], d(x, y) = 1 x 1 y. (i) X x n (n = 1, 2, 3, ) d 1 x n. (ii) X x n (n = 1, 2, 3, ) d. 14. X = [1, ), d(x, y) = 1 x 1 y. d. 15. (X, d). ρ(x, y) =. d(x, y) 1 + d(x, y) X d(x, y) 16. (X, d), ρ(x, y) =. (X, d) 1 + d(x, y) (X, ρ). 2

3 d(x, y) 17. (X, d), ρ(x, y) =. X 1 + d(x, y) ad(x, y) ρ(x, y) bd(x, y), x, y X, a, b. 18. x = (x 1, x 2,, ) X. 1 x n y n d(x, y) = 2 n 1 + x n y n X. n=1 19. x = (x 1, x 2,, ) X. 1 d(x, y) = k x k y k x n = y n (n < k) 0 x n = y n n. d X. d(x, z) max{d(x, y), d(y, z)}. 20. A (X, d). A A A. 21. A (X, d). Ā A. 22. A Ā = A. 23. A A = A. 24. R n (a 1, b 1 ) (a n, b n ) R n. [a 1, b 1 ] [a n, b n ] R n. 3

4 III d(x, y) R 2. ρ : R 2 R 2 R. d(0, x) + d(0, y) x 1 y 2 x 2 y 1 ρ(x, y) = d(x, y) x 1 y 2 = x 2 y 1 (a) ρ (b) p = (0, 1) R 2. {x R 2 ; ρ(p, x) < 1}. (c) (R 2, ρ) 26. R 2 X l 1, l 2 X d(l 1, l 2 ) (0 d(l 1, l 2 ) π/2) d X 27. (X, d) {x n } d(x m, x m+1 ) < m=1 {x n } 28. R 2 (a) {(x, y) R 2 ; a < x < b, c y d} (b) {(x; y) R 2 ; x 2 + y 2 < 1} \ {(0, 0)} 29. R 2 (a) {(x, y) R 2 ; x, y Q} (b) A n = {(x, 1/n) R 2 ; 0 x 1} A n. n=1 1

5 30. S 1 = {(x, y) R 2 ; x 2 + y 2 = 1} S 1 p, q d(p, q) p q (a) p = (cos θ p, sin θ q ), q = (cos θ q, sin θ q ) d(p, q) (b) d S 1 R 2 S 1 ( 1 ) R 2 S 1 d S Q R 32. π : R 2 R π((x, y)) = x R 2 U π(u) R 33. U = {U R; x U ϵ > 0 st [x ϵ, x + ϵ] U} R 34. (X, U ). A, B X A \ B B \ A 35. X = {a, b} 36. R n {U(x, r); x Q n, r Q, r > 0} U(x, r) x r 37. R {(a, b); a, b R} 38. U λ, λ Λ, λ U λ U, V U V 1 U S 1 U = S 1 V, V R 2 2

6 39. X = {a, b, c, d, e} {{a}, {a, b, c}, {c, d}} 40. (X, U ) A λ X, λ Λ. ( λ A λ ) λ A λ λ A λ λ A λ 42. U = {R \ } R. 43. R 2 A = {(x, y) R 2 ; xy 0},. 44. S = {[a, b); a < b} R U 3

7 III (X, U ). Y X U Y = {A Y ; A U }. (Y, U Y ). 46. (X, U ), x X. V (x) = {A U ; x A} x. B, B(x) = {A B; x A} x. 47. (X, U ) (X, U ) (X, d). (X, d). 51. X. x X X V (x)( ). (a) A V (x) x A. (b) A, B V (x) W V (x) A B W. (c) A V (x) W V (x) y W A y A, A y V (y). N(x) = {A X; B V (x), B A} x X X U. 1. 1

8 52. R, [a, b) [a, b]. 53. a n, n = 1, 2, 3,..,. R A = {a n ; n = 1, 2,..}. 54. R U = {(, t); t R} U {, R}. 55. R {(, t); t R} {(t, ); t R}. 56. {(a 1, b 1 ) (a n, b n ); a j, b j Q,, j = 1,..., n} R n (base). 57. l n R 2 n. A = R 2 \ ( n=1l n ). A, Ā, A. 58. ϕ : R R, A, A n R. 2 (a) ϕ( A n ) = ϕ(a n ) (b) ϕ( A n ) ϕ(a n ) (c) ϕ 1 ( A n ) = ϕ 1 (A n ) (d) ϕ 1 ( A n ) = ϕ 1 (A n ) (e) ϕ 1 (A c ) = ϕ 1 (A) c 59. f : R 2 R. A = {(x, y) R 2 ; f(x, y) 0}. A {(x, y) R 2 ; f(x, y) > 0} f. 60. θ R \ Q. A = {e 2πnθi C; n N}. C R 2. Ā = {z C; z = 1}. 2 = n=1, = n=1. 2

9 61. X = {(x, y) R 2 ; 0 < x + y < 1} R 2. X,, (a) A = {(x, 0) X; 0 < x < 1} (b) B = {(x, y) X; 0 < x 2 + y 2 1/2} 62. A = {(x, y) R 2 ; 0 x} B = {(x, y) R 2 ; 0 x, x 2 + y 2 < 1} (a) B R 2 (b) A B A 63. (X, d). A X. A. 64. (X, d). A X. Ā.. (a) A Ā. (b) A = U F X U X F. 65. X = C. U = {, A X; #A c < } U X. U 1, U 2 U U 1 U p. n Z p n e 0 n = n p e. v p (n) = 2 e, v p (0) = 0. d : Z Z R d(n, m) = v p (n m), d Z

10 < ϵ < 1 m = [ log 2 ϵ]. [x] x. d(0, n) ϵ n p m. {l Z; d(n, l) < ϵ} = {n + kp m ; k Z}. 68. Z H = {x 0 + ks; k Z}. (a) Z H = H. (b) Z d. p s H = Z. 69. X = R = {(x 1, x 2,...); x j R, j = 1, 2,...}. d : X X R d(x, y) = sup(min{ x n y n, 1}). d n, d (x, y) = n=1 ( 18 ). 1 x n y n 2 n 1+ x n y n 70. (X, U ) A X (a) A, A O X (b) A, A F X 4

11 III (X, U ), (Y, V ). (1), (2). (1) f : X Y. (2) f x X. 72. =. 73. f : R S 1 x (cos 2πx, sin 2πx). f( 2Z) S X. (X, U ), (X, U 0 ). id : (X, U ) (X, U 0 ) idx = x. #X 2 id. 75. S 1 \ {(0, 1)} = R (0, 1) R. R = (0, 1). 77. R M = { ( 1) n (1 1 ); n = 1, 2, 3,..} n. 78. R { ; n, m = 1, 2, 3,..} n m. 79. D = { m 2 ; n N, m {1, 2,, n 2n 1}} R [0, 1]. { } A n = (x, nx ) R2 ; x > 0 A = n N A n 81. (X, U ) A B A B = A B 1.. 1

12 82. (X, U ), Y X X A Y, B X : (a) Int Y A = Int X (A (X \ Y )) Y 2 (b) Y A ( X A) Y 3 (c) Int X B Y Int Y (B Y ) 83. (X, U ), Y X X A Y A Y Y (Ā \ A) = 84. (a) R n (0, 1] n (b) R n M = [0, 1] n M (0, 1] n M 85. U R U 86. Q R. p < q {x Q; p x q} Q 2 Int Y Y 3 Y Y c Y. Y Y. Y Y 2

13 87. (a) U R n, f : U R m, d(x, y). lim x a f(x) = b inf r>0 (. sup d(f(x), b) x U,0<d(x,a)<r ) = 0 (b) f : R 2 R, (x, y) x + y,. 88. U R, a U. d, f(x) = d(a, x). f : U R 89. U R n V R m f : U R m, g : V R l. f(u) V g f : U R l ( 90. f : R 2 \ {(0, 0)} R 2, (x, y) x y R 2 R 2 x 2 +y 2, 91. R 2 R 2 (x, y), y 0 f(x, y) = (x, y), y < 0 x 2 +y 2 ), f(u) U R f : R R, x x U = {f 1 (A); A R } R R 3

14 93. X = C [0, 1] [0, 1] r 4 f r = f (j) (t), U r,ϵ (f) = {g X; f g r < ϵ} j=0 sup 0 t 1. U f = {U r,ϵ (f); r = 0, 1, 2,..., ϵ > 0} (1)-(4). (1) U, (2) U U f U f, (3) U, V U f W U f W U V, (4) U U f W U, W U f, g W V U g V U 94.. X = C [0, 1] U f f X. 95. n f(z 1,..., z n ) O f = {z C n ; f(z) 0}, B = {O f ; f} O f, O g B O f O g B U = {, C n, f O f ; O f B} C n. {, C n } B U base. 4 {0, 1} ( ϵ, 1 + ϵ) 4

15 III R X = [ 1, 1] f(x) = x (X, d), (Y, ρ), (Z, σ) X f Y g f g Z 98. (X, d), (Y, ρ) f : X Y {x n } X {f(x n )} Y 99. R X = (0, ) f(x) = 1/x 100. (X, d) A X f(x) = d(x, A) 1 X 101. R A A R B = [0, 1] B B B M 2 (R) M 2 (R) 4 4. GL 2 (R) M 2 (R) GL 2 (R) = M 2 (R) 103. (X, U ) A X X A X B A A B X 1 d(x, A) = inf y A d(x, y) 1

16 104. (X, U ) f : X R f 1 (, a) U f 1 (a, ) U a R 105. (X, U ) (Y, V ) X = λ Λ A λ, A λ U, f : X Y, λ Λ f Aλ : A λ Y X 106. X = {a, b, c, d} U = {, X, {a}, {b}, {a, b}, {b, c, d}} f : X X f(a) = b, f(b) = d, f(c) = b, f(d) = c f c d 107. (X, U ) (X, V ). i : (X, U ) (X, V ) U V 108. (X, U ) (Y, V ) X f : X Y Y 109. (X, U ), (Y, V ). f : X Y f(a) = f(a), A X. g : X Y intf(a) f(inta), A X f : R R, x x 2, 111. (X, U ), (Y, V ) A U X f : X Y f A : A Y 2

17 112. f : R S 1 = {(x, y) R 2 ; x 2 +y 2 = 1}, x (cos 2πx, sin 2πx) S 1 R (X, U ). f, g : X R. f + g, fg, f/g(, g(x) 0 x X ) (a) f : R R x sin(1/x), x 0 f(x) = 0, x = 0. f. (b) g : R R sin(1/x), x 0 g(x) = 0, x = 0. g (X, d). X A Ā = X. X R. f : R R f [a, b] = [c, d], a < b, c < d, (a, b) = (c, d), a < b, c < d, [0, 1] (0, 1). 2 [a, b], (a, b) R. 3

18 120. (0, 1) [0, 1] R = (a, b), a < b, [a, b) = (c, d], a < b, {(x, y) R 2 ; 0 < x < 1} = R {(x, y) R 2 ; 1 < x 2 + y 2 < 2} = R S {(x, y) R 2 ; x 2 + y 2 < 1} = R (X, U ) A X. f : X R A A X, f A. (a) A, B U X = A B f A B f X. (b) (a) A B X X = A B f X f : R R 2 f(t) = (cos t, sin t). f (0, π/2). f [0, 2π) n S n ( R n+1 ). S n \{(0,..., 0, 1)} = R n

19 III 6, R n, S n = {x R n ; x = 1} R n X, (Y, V ), f : X Y., f 1 (V ) = {f 1 (A); A V } ( f 1 ( ) = ) X , f : (X, f 1 (V )) (Y, V )., f 1 (V ) f X Y, (X, U ), f : X Y., V = {A Y ; f 1 (A) U } ( f 1 ( ) = ) Y , f : (X, U ) (Y, V )., V f Y (X λ, U λ ), λ Λ,. (X, U ) = λ (X λ, U λ ). { λ A λ; A λ U λ λ A λ = X λ } U (R 2, U 2 ) = (R, U 1 ) (R, U 1 ). U n R n R m R n = R m+n p : R 2 R p(x, y) = x 1

20 137. I = [0, 1] x = y, x, y (0, 1) x y {x, y} = {0, 1}, {x, y} = {1, 0}. f : I S 1 x cos(2πx) + i sin(2πx), f : I/ S 1 f([x]) = f(x). (1)-(4). (1) f. (2) f well-defined. (3) f bijective. (4) f [0, 1] 137. S 1 = [0, 1]/ z R n f : R n R n, x x + z, f : R 2 \ {0} S 1, x x/ x 141. (X, U ), (Y, V ) A X, B Y IntA IntB = Int(A B) (X λ, U λ ), λ Λ, Int( λ A λ ) λ IntA λ 143. (X, U ), (Y, V ) A X, B Y (A B) = ( A B) (Ā B) 1 Int(A B) A B (X, U ) (Y, V ).. 2

21 144. (X λ, U λ ), λ Λ, λ (X λ, U λ ) 145. (X λ, U λ ), f λ : X λ Y λ, λ Λ, p λ : X = λ X λ X λ, q λ : Y = λ Y λ Y λ,. f : X Y q λ (f(x)) = f λ (p λ (x)) 2., f f λ, λ Λ,, , f : X Y f λ : X λ Y λ, λ Λ, X R n, R n. f : X R m f S 2 p = (0, 0, 1) S 2 \ {p} f : S 2 \ {p} R 2 x, (x, y, z) ( 1 z, y ), 1 z 149. R 2 \ {(0, 0)} = {(x, y) R 2 x 2 + y 2 > 1} (X n, d n ) (n = 1, 2, 3, ). n, d n (x, y) < 1, x, y X n, X = n X n d d(x, y) = n=1 1 2 n d n(x n, y n ). d X 151. C C + = {z C Imz > 0} f(z) = z i z + i f f(c +) f C + f(c + ) 2 3

22 152. x y x y Z. S 1 = R/ x y x y Q. R/ R X = [0, 1] Y = [0, 1) { } X = S 1 S 1 t : X X t((x, y), (u, v)) = ((x, y), ( u, v)). X P, Q P Q P = Q P = t(q). (a),(b),(c). (a) t t = 1 X. (b). (c) P π[p ]. π[p ] (X, U ), f : X X. n f n = f f f X X f }{{} n. 3 R/ R/Z,. 4 X/. 4

23 III (X, d), F X. D : X R, x d(x, F ) D(x) D(y) d(x, y). D (X, d), F X. d(x, F ) = 0 x F (X, U ), (Y, V ). X, Y X,Y, π X : X X/ X, π Y : Y Y/ Y. π X π Y : X Y X/ X Y/ Y X Y. (x, y) (x, y ) π X π Y (x, y) = π X π Y (x, y ). Q : X Y/ X/ X Y/ Y Q([x, y]) = π X π Y (x, y), [x, y] X Y/,. (a) Q well defined. (b) Q bijective (a) R X = [0, 1] A = (0, 1). A X/A 3. (b) X/A. 1 1

24 161. X = {z C 1 z } A = {z C z = 1}. (a) f(z) = ( z 1)z. f : X \ A C \ {0} bijective. (b) A X/A C f R 2 (x, y) (x, y ) (x, y) = (x, y ) (x, y) = (x, y ). R 2 / = {(x, y) R 2 ) 0 y} R 2 (x, y) (x, y ) (x, y) = (y, x ) (x, y) = (x, y ). R 2 / = {(x, y) R 2 ) x y} R x y x y Q. (a) R R/ π. R/ U W = π 1 (U). x W q Q x + q W. (b) W = R (X, U ). X T 1 x X {x} = {U; U x } T 1 (X, U ), (Y, V ) (X, U ) (Y, V ) T R A = (0, 1) R/A π : R R/A, π(a) 2. 2 R/A T 1. 2

25 168. (X, d) : (T 2 ) T 1 T (X, U ), A X (X, U ). X x X {x} = {Ū; U x } (X, U ), (Y, V ) (X, U ) (Y, V ) (X, U ), (Y, V ), f : X Y. D = {(x, f(x)) X Y ; x X} X Y (X, U ), (Y, V ), f, g : X Y. A = {x X f(x) = g(x)} (X, U ), (Y, V ), f : X Y. X x y f(x) = f(y) X/. 3

26 176. (X, U ), (Y, V ), f : X Y. X X X, Y Y Y. (a) f f : X X Y Y, (x, y) (f(x), f(y)), X f f Y. (b) Y X N, U. (a) U. (b) (N, U ) T 1 T 2. 4

27 III (X, U ) T 1 x X {x} (X, U ) T 3 x X x A A U B U x B B A (X, U ) T 4 F X F A A U B U F B B A (X, U ). F, G X F G =. f : X Y (1), (2) 0 f(x) 1, (3) x F f(x) = 0, (4) x G f(x) = (X, U ) X X. W X X W = {(x, y) X X; (y, x) W } W W 184. (X, U ) (Y, V ). f : X Y,. X Y Hausdorff (X, U ), (Y, V ) Hausdorff. f, g : X Y. X D 2 f = g D f = g X. 1 Urysohn 2 D = X. 1

28 186. (X, U ) T 3. x, y X y {x} x {y} (X, U ) T 3. x, y X {x} = {y} {x} {y} = (X λ, U λ ) ( λ X λ, λ U λ) (X, U ), A X. A X/A π : X X/A. (a) π. (b) X/A Hausdorff (X, U ) T 1 X. U (X, U ), (Y, V ). f : X Y. Y (X, d). X R U(x) = {[x, a); x < a} x R S. (a) (R, S ) T 1. (b) (R, S ) T (X, U ) T 4 T 4. 3 (R, S ) Sorgenfrey. Sorgenfrey. 2

29 195. n n M n (R) A = { a ij }. n n GL(n, R) M n (R). (a) D : M n (R) R (g) = detg. (b) GL + (n, R) = {g GL(n, R); detg > 0} GL + (n, R) GL(n, R). (c) f : GL(n, R) GL(n, R) f(g) = g 1. f. (d) M : GL(n, R) GL(n, R) GL(n, R) M(g 1, g 2 ) = g 1 g 2. M. 3

30 III (X, U ) (Y, d), (X, U ) (X, U ). f : (X, U ) (Y, V ). (Y, V ) (X, d) [0, 1] N. [0, 1] R (X, d) (X, d). d(x, y) = min{1, d(x, y)}. d, d d (X k, d k ), k = 1,..., n,. X = n k X d : X X R d(x, y) = n d k (x k, y k ) 2, d X k=1, (X, d), (X, d ) d(x, y) d (x, y), x, y X, d U d U

31 204. R 2 A n = {1/n} R, n = 1, 2, 3,..., X 2 T 1 Hausdorff R. A R, #A < A = A = R R. R Hausdorff (X, U ) {x n } n x, x U N N n x n U. lim x n = x. X Hausdorff n lim x n = x lim n x n = y x = y. n 207. R U = {(a, ) (a R), R, }. x n = 1 + 1, lim x n n = y y n Q. Q U (x) = {(x 1n, x + 1n } ) Q; n = 1, 2, 3,..., x 0, U (0) = {(( 1n, 1n ) Q) \ { 1m } ; m = 1, 2, 3,...}; n = 1, 2, 3,... U. (Q, U ) Hausdorff (X, U ), A U (A ) 3 (A, U A ) (X, d) A. 2 R 2 x y x = y n st x, y A n. X = R 2 /. 3 U A = {A B; B U } 2

32 211. (X n, U n ), n = 1, 2, 3,..., X = n X n (X, U ) F F [0, 1] n X (X, U ) F 5 f : F S n F. 4 Tietze. 5 S n R n+1 n. 3

33 III R (X, U ), (Y, V ), f : X Y. X (F (X), V F (X) ) R (a, b) (X, U ), A X. A B Ā B R [a, b] R A [a, b], [a, b), (a, b], (a, b) R n S n ( R n+1 ) R (X, U ). X = F G, F G =, F, G F G X = {a, b, c, d} U = {, {a}, {a, b}, {a, b, c}, X}. (X, U ) X = {a, b, c} U = {, {a}, {a, b}, {a, c}, {c}, X}. X. 1 V F (X) V F (X). 2 (X, U ) x X U x V V u. 1

34 R R [0, 1] [0, 1] [0, 1] R \ Q R n \ Q n (n 2) (X, U ). x y, A X x, y A (X, U ). x y, x y (X, U ), {a}. {a} X = X (X, U ). 2 A, B X A B A B A, B (X, U ). 2 A, B X A B A B (X, U ). A λ, λ Λ, λ A λ λ A λ (X, U ). 2 A, B X Ā B A B. 3 ω : [0, 1] X ω(0) = x, ω(1) = y. 2

35 238. (X, U ). A λ, λ Λ,, 2 λ, µ Λ, Λ λ = ν 0, ν 1,, ν n = µ A νk A νk+1, k = 0,..., n 1, λ A λ (X, U ), ( =)A X. A X = {(x, sin 1x } ); x > 0 {(0, y); 1 y 1} R 2. A = { (x, sin 1); x > 0}, x B = {(0, y); 1 y 1}. (a) X = Ā. X. (b) X. (c) X R 2 X = {(0, y); 0 < y 1} {(x, 0); 0 < x 1} {( 1, y); 0 y 1, n N} n GL(2, R) A = max{ a ij }.. GL(2, R). A B C GL(2, R). A = 1 0, B = 1 1, C =

36 244. (X, U ) A B A B. A B (X 1, U 1 ) (X 2, U 2 ) X 1 X (X, U ). f [0, 1] [0, 1] X. X (X, U ). C B A X. C A C B. 4

37 III (X, U ), X x y A st A x, y. X/ π(x) x., π(x) x, (X, U ), f : X R. x, y X f(x) = a < b = f(y) a < c < b f(z) = c c X (X, U ) (Y, V ). (X Y, U V ) (X, U ). A X, N(x) x. x A U A U N(x) (X λ, U λ ), λ Λ,. λ (X λ, U λ ) (X, U ), A Y X,. A X A Y (X, U ), A X. A B = U V (U, V U, U V = ) A U A V (X, U ), X x {x}

38 256. Q R R (X, U ). H(X) = {f : X {0, 1}; }(, {0, 1} ) f, g (f + g)(x) = f(x) + g(x)(mod 2). f + g H(X). X H(X) = (X λ, U λ ), λ Λ,. λ (X λ, U λ ) X = {a, b, c} U = {, {c}, {a, c}, {b, c}, X} (X, U ) R n a, b. X(a, b) = {tb + (1 t)a; t [0, 1]} R n. a b X(a, b) = [0, 1] R n R n [a, b] R. f : [a, b] [a, b] (X, U ) Hausdorff A X. A (X, U ), (Y, V ). (X Y, U V ) (X, U ) U. (X, U ) X. 2

39 268. (X, U ), A Y X,. A X A Y X X ω. U, {ω} X. (a) (X, U ). (b) (X, U ) X = {0, 1}. X. 3

40 III (X, U ), (Y, V ), X = Y., X Y (X, U ), (Y, V ), f : X Y. f(x) (X, U ), (Y, V ), X A, Y B., A B (X Y, U V ) (X, d). A X, B X. A B = d(a, B) > [a, ) R (X, U ). A j X, j = 1,..., n,. A = n j=1a j n O(n) = {T M n (R); t T T = E} R n n GL(n) R n (X, U ) Hausdorff. (X, U ) (X, U ) Hausdorff d(a, B) = inf x A,y B d(x, y) 2 M n (R) R n2. 1

41 281. Hausdorff (X, U ) x n, n = 1, 2, 3,.., x X. Y = {x, x n ; n = 1, 2, 3...} X (X, U ), A X, A,. A X/A (X, U ) Hausdorff. A X, A,. A X/A Hausdorff n S n R n+1 x, y x = y x y = x = y.. (a). (b) S n / Hausdorff. (c) S n / (X, U ), (Y, V ) Hausdorff., f : X Y f. f (X, U ), (Y, V ) Hausdorff., f : X Y f. 3 x y x, y A, X/ X/A. 2

42 287. (X, U ) Hausdorff. A, B X, A B =. A, B. i.e., A U, B V, U, V U, (X, U ) Hausdorff. X {K λ X; λ Λ} λ Λ K λ A = {[a λ, b λ ]; < a λ < b λ < +, λ Λ} R. λ Λ [a λ, b λ ]. A (X, U ) T 1. X 4 X R R 5. 4 X, X. 5 σ. 3

43 292. (X, U ). X = [0, 1], U 6 : U(x) = {U x (1/n) [0, 1]; n N}(x 0) U(0) = {[0, 1/m) \ {1/n; n N}; m N}. I = [0, 1] R.. (a) U(x) x. (b) f : X I, x x. (c) X (X, U ), f : X R. f(x) > 0 x X f(x) r( x X) r > 0. 6 U x (ϵ) = {y; x y < ϵ} 4

44 III R n Q R. Q X = R \ Q R. X (X, U ) U. X (X, U ) X X = X { }. X U = U {X \ K; K X }. ϕ X. (X, U ) (X, U ). 298 (X, U ) (X, U ). (X, U ) (X, U ). (X, U ) Hausdorff (X, U ) (X, U ),. 1 1

45 302. (X, U ) (X, U ) 2 Hausdorff. y X Y = X \ {y} X. Y Y Y = X (X, U ). base B B R R R = S R 2 A = {(r cos θ, r sin θ) R 2 ; 0 r 1, 0 θ < π 2 } C = {z R 2 ; 1 < z 2} D = {z R 2 ; z 1} A = ( 2, 1) (0, 1) (X, U ) f : X R 0, ϵ > 0 A X, f(x) < ϵ x A c. f(x), x X, R n (R n ) (R n ) = S n. 2

46 311. (X, U ), (Y, d), f, g : X Y. sup x X d(f(x), g(x)) = d(f(z), g(z)) z X (X, U ) Hausdorff. A U \ {, X}, A c = X \ A. A c X/A c A A = A { }. A = X/A c. π : X X/A c, f : A X/A c : π(x), x A, f(x) = π(a c ), x = (a) f. (b) f. (c) X/A c Hausdorff. (d) f 1. (e) A = X/A c [0, 1] R. A = [0, 1/3] [1/2, 1] [0, 1]/A S (X, U ) Hausfdorff. U U \ {X} U = R. A = X \ U X/A = S 1.. 3

47 III (X, U ) (Y, V ). Map(X, Y ) k j=1w (K j, A j ) (K j X, A j V ) B. B ( ) 1 Map(X, Y ) (X, U ) Hausdorff (X, U ). C(X) = Map(X, R) d : C(X) C(X) R d(f, g) = max x X f(x) g(x). (C(X), d) C(X) U, d U d. U = U d (C(X), d) (X, U ). X R C b (X). (a) d : C b (X) C b (X) R d(f, g) = sup x X f(x) g(x). d C b (X). (b) (C b (X), d) d ρ X τ = d 2 + ρ 2 X. 1. 1

48 322. (X, d) (Y, ρ). d U d, ρ U ρ. τ = d 2 + ρ 2. (X Y, τ) τ U τ. U d U ρ = U τ (X, d) (Y, ρ) 2., (C([0, 1]), d). 0, 0 [0, 1] (a) f : [0, ) R f(x) = 1, x = 2 0, x [3, ). f n (x) = f(3 n x), x [0, 1],, {f n } C([0, 1]) Cauchy. (b) A = {f C([0, 1]); f([0, 1]) [0, 1]} C([0, 1]) 3. (c) A = {f C([0, 1]); f([0, 1]) [0, 1]} C([0, 1]) (C([0, 1]), d). h n C([0, 1]) h 1 (t) = 0, h n+1 (t) = h n (t) + t h n(t) 2. 2 (a) h n (t). (b) h n (t) t, h n (t) h n+1 (t), lim t h n (t) = t. (c) h n (t) d t (X, d). A X. X A. 2 (X, d). 3 (X, U ), (X, U ). 2

49 327. (X, d). A X d A d A = d 4. : (A, d A ) A 328. a(m) n = n j m, m C,. j=1 (a) Rm > 1 {a(m) n } n Cauchy. (b) m = 1 {a(m) n } n Cauchy R n R n X = R, X X (u, v) d(u, v) = arctan u arctan v. (a) d X. (b) (X, d) 332. (X, d). X A, A (X, d). f : X X 6. f (X, d). f : X X. (a) X. x X x n = f(x n 1 ), x 0 = x {x, x 1, x 2,, x n } x. (b) X f. 4 d A. 5 (X, d). A X ϵ > 0 X ϵ- A. 6 d(x, y) = d(f(x), f(y)). 3

50 III (X, d). (1)-(3). (a) X. (b) X. (c) X (X, d). f : X X 2. f(x) = x x. (a) X x F (x) = d(x, f(x)) R X. (b) F (x), x X, 0. (c) f(x) = x x (X, d). X Cauchy {x n } ˆX. (a) {x n }, {y n } ˆX d(x n, y n ) n. (b) {x n }, {y n } ˆX d(x n, y n ) 0(n ) {x n } {y n }.. (c) x = {x n } ˆX [x],x = ˆX/,. d ([x], [y]) = lim d(x n, y n ) well defined. n 1 (X, d),. 2 0 < C < 1 d(f(x), f(y)) Cd(x, y). 1

51 (d) (X, d ) (X, d). (X, d ) l 2 = {x = {x n };. x 2 n < }. l 2 l 2 n=1 l 2 l 2 (x, y) d 2 (x, y) = (x n y n ) 2 R (a) d 2 l 2. 1, k = n, (b) e k l 2 e k n =. {e k } k Cauchy 0, k n. (c) S = {x l 2 ; d 2 (0, x) = 1} RP 1 = {R 2 } 3. X = R 2 \ {0}. x, y X x y 0 λ R y = λx. (a). (b) RP 1 = X/. (c) S 1 x y y = ±x, n=1 π : S 1 S 1 /. f : S 1 / π (x) π(x) X/ well-defined. (d) S 1 / = S

52 (e) (b) RP 1 X/. RP 1 = S R n (x 1,...x n ) (x 1,..., x n, 0) R n+1 R n R n+1. R n d n. d n (x, y) = x y. R = n=1 Rn. (a) x, y R 2, n x, y R n d (x, y) = d n (x, y). d well-defined R. (b) (R, d ) a n = (1, 1 2,, 1 2 n, 0, ) R. {a n } Cauchy. (c) (R, d ) R N = n=1 R. R. l 2 = {{x n }; x i R, n x2 n < }. R l 2 R N (X n, U n ), n N,. X 1 X 2 X 3. X = n X n. U = {U X; U X n U n n } (X, U ) O(2) 2. A O(2) A : R 2 R 2. S 1 A S 1: S 1 S 1 S 1. S 1 IsomS 1. ρ : O(2) A A S 1 IsomS 1. 4 X {X n }. 3

53 346. GL(n) = {A M(n, R); deta 0}, R n2. (a) det : GL(n) A deta R, det. (b) detgl(n). (c) GL(n) O(n) = {A M(n, R); A ta = t A A = E}. O(n) R n SO(n) = {A O(n); deta = 1} R n2. 4

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

II

II II 2009 1 II Euclid Euclid i 1 1 2 7 3 11 4 18 5 20 6 22 7 26 8 Hausdorff 29 36 1 1 1.1 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y 1 + + x n y n (x, y E n ), x = x, x 1/2 = { (x 1 )

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

(2000 )

(2000 ) (000) < > = = = (BC 67» BC 1) 3.14 10 (= ) 18 ( 00 ) ( ¼"½ '"½ &) ¼ 18 ¼ 0 ¼ =3:141596535897933846 ¼ 1 5cm ` ¼ = ` 5 = ` 10 () ` =10¼ (cm) (1) 3cm () r () () (1) r () r 1 4 (3) r, 60 ± 1 < > µ AB ` µ ±

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information