A

Size: px
Start display at page:

Download "A"

Transcription

1 A

2

3 x a c = a x a 2 1 c = a x 2 c R = e x = a x x c R f(x) =e x f n (x) c(x) f(x) =1+ x 1! + x2 2! + x3 +, <x< 3! f n (x) =1+ x 1! + x2 2! + x3 xn + + 3! n! c(x) f n (x) f(x) = xn+1 (n +1)! xn+2 (n +2)! f(x) x a f(x) f(a) 3

4 2.2 a = ,b = x, y a b =.35 = a, b /1.234 < a b e R e R = (x y) (a b) a b (x a) (y b) a b 1 5 = a,b a = ,b = ,c = a + b = a + c = = a a b c n +1 x,x 1,,x n f(x) f(x ),f(x 1 ),,f(x n ) n g(x) g(x j )=f j = f(x j ) (j =, 1,,n) (3.1) g(x) f(x) g(x) g(x i )=c + c 1 x i + c 2 x i + + c n x n i = f(x i ), g(x i ) x j (j =, 1,,n) x f(x) g(x) f(x) g(x) 4

5 1 n L n,k (x),k =, 1,,n g(x) L n,k (x) L n,k (x) = g(x) = n c k L n,k (x) (3.2) k= {, x = xj,j k 1, x = x k (3.3) g(x i )=c i i =, 1,,n c i = f(x i ),i=, 1,,n g(x) L i,k (x) = n i=,i k x x i x k k i (3.4) (3.3) (3.2) x = x k 1 d y f(x k 1 ) x k 1 h x k, (h = x k x k 1 ) f(x k )=f(x k 1 )+(x k x k 1 )f (x k 1 )+ (x k x k 1 ) 2 f (x k x k 1 )+ (3.5) 2 (3.5) 3 f(x k )=f(x k 1 )+(x k x k 1 )f (x k 1 ) (3.6) f(x) = x 3.6 x k (3.6) f(x k )= x k = x k 1 f(x k 1) f (x k 1 ) (3.7) x k x k 1 x f(x) [a, b] b a f(x)dx (3.8) 5

6 [a, b] f(x) a b n x i (i =, 1, 2,,n) f(x i ) h (3.9) b a f(x)dx h(f(x 1 )+f(x 2 )+ + f(x n )), h(f(x )+f(x 1 )+ + f(x n 1 )), (h =(b a)/n) (3.9) [a, b] m x j [x j 1,x j ] (3.1) (3.1) b a b a f(x)dx = m j=1 xj x j 1 f(x)dx m j=1 h 2 (f j 1 + f j ) (3.1) f(x)dx h 2 (f + f m )+h(f 1 + f f m 1 ), (h =(b a)/m) (3.11) (3.12) dy dx = f(x, y), y(x )=y (3.12) y(x) =y y(x) Y j y(x) y(x j )=y(x j 1 )+hφ(x j 1,y(x j 1 ); h) (3.13) φ F (3.13) Y j = Y j 1 + hf (x j 1,Y j 1 ; h) (3.14) Y j (3.14) Y j F (x, y(x); h) f(x, y) φ y = f(x, y) y(x) h y(x + h) = y(x)+hy (x)+ h2 2! y (x)+ + hp p! y(p) (x)+ hp+1 (p +1)! y(p+1) (x + θh) = y(x)+hf(x, y(x)) + h2 d hp d p 1 f(x, y(x)) + + f(x, y(x)) 2! dx (p)! dxp 1 + hp+1 d p f(x + θh, y(x + θh)), <θ<1 (3.15) (p +1)! dxp 6

7 (3.15) φ(x, y(x); h) = f(x, y(x)) + h d 2! dx F + hp d p F (x, y(x); h) = f(x, y(x)) + h d 2! dx (3.16) (3.17) f(x, y(x)) + + hp 1 p! d p 1 f(x, y(x)) dxp 1 f(x + θh, y(x + θh)) (3.16) (p +1)! dxp f(x, y(x)) + + hp 1 p! d p 1 f(x, y(x)) (3.17) dxp 1 F (x, y(x); h) φ(x, y(x); h) = O(h p ) (3.18) (3.18) (3.14) p p =1 (3.14) p =1 (3.17) F (x, y(x); h) =f(x, y(x)) (3.19) (3.14) (3.19) Y = y Y j = Y j 1 + hf(x j 1,Y j 1 ) x j = x j 1 + h (j =1, 2,,n) 3.5 p (3.14) p =2 p =2 (3.19) F (x, y(x); h) =f(x, y(x)) + h d f(x, y(x)) (3.2) 2! dx y(x) (3.12) f(x, y(x)) x = f x (x, y(x)) + f y (x, y(x))y (x) = f x (x, y(x)) + f(x, y(x))f y (x, y(x)) (3.21) f x (x, y(x)) = f x f y (x, y(x)) = f 7

8 (3.2) (3.21) F (x, y(x); h) =f(x, y(x)) + h(f x(x, y(x)) + f(x, y(x))f y (x, y(x))) 2 (3.23) (3.22) F (x, y(x); h) =αf(x, y(x)) + βf(x + γh,y + γhf(x, y(x))) (3.23) (3.22) 2 (3.24) f(x + γh,y + γhf(x, y(x))) = f(x, y(x)) + γhf x (x, y(x)) + γhf(x, y(x))f y (x, y(x)) + O(h 2 ) (3.24) (3.23) F (x, y(x); h) = αf(x, y(x)) + β{f(x, y(x)) + γhf x (x, y(x)) + γhf(x, y(x))f y (x, y(x)) + O(h 2 )} = (α + β)f(x, y(x)) + βγh{f x (x, y(x)) + f(x, y(x))f y (x, y(x))} + O(h 2 ) (3.25) F = F (x, y(x); h), f = f(x, y(x)), f x = f x (x, y(x)), f y = f y (x, y(x)) (3.22) (3.25) F = f + h(f x + ff y )/2 (3.26) F = (α + β)f + βγh(f x + ff y )+O(h 2 ) (3.27) α + β =1,βγ =1/2 β λ (3.23) F (x, y(x); h) =(1 λ)f(x, y(x)) + λf(x + h 2λ,y+ h f(x, y(x))) (3.28) 2λ (3.17) (3.18) (3.19) (3.27) (3.28) F (x, y(x); h) φ(x, y(x); h) = O(h 2 ) (3.28) F (3.14) Y j = Y j 1 + hf (x j 1,Y j 1 ; h) 2 λ =1/2 (3.29) F (x, y(x); h) = 1 (f(x, y(x)) + f(x + h, y + hf(x, y(x))) (3.29) 2 Y j = y(x j ) (3.14) (3.25) Y j = Y j 1 + h(f(x j 1,Y j 1 )+f(x j 1 + h, Y j 1 + hf(x j 1,Y j 1 ))/2 (3.3) y j (j =1, 2,,n) Y = y k 1 = hf(x j 1,Y j 1 ) k 2 = hf(x j 1 + h, Y j 1 + k 1 ) Y j = Y j (k 1 + k 2 ) x j = x j 1 + h 8

9 3.6 p p =4 k 1 = f(x, Y ) (3.31) k 2 = f(x + αh, Y + βk 1 ) (3.32) k 3 = f(x + α 1 h, Y +(β 1 k 1 + γ 1 k 2 )h) (3.33) k 4 = f(x + α 2 h, Y +(β 2 k 1 + γ 2 k 2 + δ 2 k 3 )h) (3.34) (3.35) (3.15) y = f(x, y(x)) y,y y = df dx = ( y = d2 f dx 2 = x + f ( x + f ) f = f x + ff y (3.36) ) (f x + ff y )=f xx + f x f y + ff xy + ff yx + ff 2 y + f 2 f yy (3.37) D = x + f f = f(x,y ) [ ] x = x,y = y y,y,y y = f y = [f x + ff y ] =[Df] y = [f xx +2ff xy + f 2 f yy + f y (f x + ff y )] =[D 2 f + f y Df] (3.16) x = x φ(x,y(x ); h) = [f + h h2 Df + 2! 3! (D2 + f y D)f ] + h3 4! (D3 + f y D 2 + fy 2 D +3D2 f y )f +O(h 5 ) (3.38) D l = l k= ( ) l k f l k l x k l k (3.16) p =4 f(x + u, y + v) = l= ( 1 u l! x + v ) l f(x, y) D l 1 = ( ) l l α k (βf ) l k l k x k l k k= 9

10 D 1 = α x + βf hd 1 = αh x + βhf D 11 k 1 = f(x,y )=f (3.39) k 2 = f(x + αh, y + βf h) [ = f + D 11 f + D2 11 f + D3 11 f + D4 11 f ] + 2! 3! 4! [ ] = f + hd 1 f + h2 2! D2 1 f + h3 3! D3 1 f + h4 4! D4 1 f + (3.4) D l 2 = ( ) l l α k k 1{(β 1 + γ 1 )f } l k l x k l k k= D 2 = α 1 x +(β 1 + γ 1 )f hd 2 = α 1 h x +(β 1 + γ 1 )hf α 1 h x +(β 1k 1 + γ 1 k 2 )h = hd 2 +(β 1 k 1 + γ 1 k 2 β 1 k 1 γ 1 k 1 )h = hd 2 +(k 2 f )γ 1 h [ = hd 2 + γ 1 h 2 D 1 f + h ] 2! D2 1 f + h2 3! D3 1 f + D 21 k 3 = = = f[x + α 1 h, y +(β 1 k 1 + γ 1 k 2 )h] [ f + D 21 f + D2 21 f + D3 21 f + D4 21 f ] + 2! 3! 4! [ [ ] f + {hd 2 + γ 1 h 2 D 1 f + h2 2! D2 1f + h2 3! D3 1f [ {h 2 D 22 +2hD 2 γ 1 h 2 D 1 f + h ] 2! 2! D2 1f + } f 1

11 = + γ1h [D f + h ] 2 2 } 2! D2 1f {h 3 D 32 3! +3h2 D 22 γ 1h [D 2 1 f + h2 ] 2! D2 1 f + [f + hd 2 f + h2 2! D2 2f + h3 3! D3 2f + + γ 1 h 2 + { f y D 1 f + h 2! f yd1f 2 + hd 1 fd 2 f y + h2 3! f yd1 3 f + h2 2! D2 1 fd 2f y + h2 2! γ 1f yy (D 1 f) 2 }] + h2 2! D 1fD2 2 f y + } ] f + (3.41) D l 3 = ( ) l l α k k 2{(β 2 + γ 2 + δ 2 )f } l k l x k l k k= D 3 = α 2 x +(β 2 + γ 2 + δ 2 )f hd 3 = α 2 h x +(β 2 + γ 2 + δ 2 )hf α 2 h x +(β 2k 1 + γ 2 k 2 + δ 2 k 3 )h = hd 3 +(β 2 k 1 + γ 2 k 2 + δ 2 k 3 β 2 f γ 2 f δ 2 f )h = hd 3 +[γ 2 (k 2 f )+δ 2 (k 3 f )]h [ { = hd 3 + h 2 γ 2 D 1 f + h } 2! D2 1f + h2 3! D3 1f + +2δ 2 γ 1 hf y D 1 f)+ h2 3! D3 1 f + h2 2! γ 1f y D 2 1 f + h2 γ 1 D 1 fd 2 f y + }] D 31 k 4 = = [ f + D 31 f + D2 31 f + D3 31 f + D4 31 f ] + 2! 3! 4! [f + hd 3 f + h 2 f y {γ 2 (D 1 f + h ) 2 D21f + h2 3! D3 1f + ( + δ 2 D 2 f + hγ 1 f y D 1 f + h 2 D2 2 f + h2 )} 3! D3 2 ff y + 2 γ 1f y D1 2 f + h2 γ 1 D1 2 fd 2f y + h2 + 1 ) {h 2 D 23 2! f h2 +2h3 h2 D 3 f y (γ 2 (D 1 f + D21 f + 3! D3 2 f + ( + δ 2 D 2 f + hγ 1 f y D 1 f + h 2 D2 2 f + ))+h 4 f yy (γ2 2 (D 1f) 2 +2γ 2 δ 2 D 1 fd 2 f 11

12 = } + δ2(d 2 2 f) 2 + ) + 1 3! {h3 D3f 3 +3h 4 D3f 2 y (γ 2 D 1 f + δ 2 D 2 f + )+ } + 1 4! {h4 D3 4 f + }+ ] [f + hd 3 f + h2 2! D2 3f + h3 3! D3 3f + + h 2 (γ 2 D 2 f)f y + h 3 (γ 2 D 1 f + δ 2 D 2 f y )D 3 f y + h3 2 (γ 2D 2 1 f + δ 2D 2 2 f +2γ 1δ 2 f y D 1 f)f y ] (3.42) (3.14) 1 Y j = Y j 1 + hf (x j 1,Y j 1 ; h) = Y j 1 + h(c 1 k 1 + c 2 k 2 + c 3 k 3 + c 4 k 4 ) (3.43) (3.39) (3.4) (3.41) (3.42) (3.38) hf : c 1 + c 2 + c 3 + c 4 =1 h 2 Df : c 2 D 1 f + C 3 D 2 f + c 4 D 3 f = Df 2! h 3 D 2 f : c 2 D1 2 f + c 3D2 2 f + c 4D3 2 f = 2! 3! D2 f h 3 f y Df : c 3 γ 1 D 1 f + c 4 (γ 2 D 1 f + δ 2 D 2 f)= 1 3! Df h 4 D 3 f : (3.44) c 2 D1 3 f + c 3D2 3 f + c 4D3 3 f = 3! 4! D3 f h 4 f y D 2 f : c 3 γ 1 D1 2 f + c 4(γ 2 D1 2 f + δ 2D2 2 f)= 2 4! D2 f h 4 DfDf y : c 3 γ 1 D 1 fd 2 f y + c 4 (γ 2 D 1 f + δ 2 D 2 f)d 3 f y = 3 4! DfDf y h 4 fy 2 Df : c 4 γ 1 δ 2 D 1 f = 1 4! Df D, D s (s =1, 2, 3) f D s/d l l f(s, l =1, 2, 3) D 1 f = α f f +β x D 1f = f x +f f D 2 f Df D 3 f Df α = β (3.45) { α1 = β 1 + γ 1 α 2 = β 2 + γ 2 + δ 2 (3.46) 12

13 D 1 f = αdf D 2 f = α 1 Df D 3 f = α 2 Df (3.47) (3.47) (3.44) 1 8 c 1 + c 2 + c 3 + c 4 = 1 (a) c 2 α + c 3 α 1 + c 4 α 2 = 1/2 (b) c 2 α 2 + c 3 α c 4 α 2 2 = 1/3 (c) c 2 α 3 + c 3 α c 4 α 3 2 = 1/4 (d) c 3 αγ 1 + c 4 (αγ 2 +(α 1 δ 2 ) = 1/6 (e) c 3 α 2 γ 1 + c 4 (α 2 γ 2 +(α 2 1 δ 2) = 1/12 (f) c 3 αα 1 γ 1 + c 4 (αγ 2 +(α 1 δ 2 )α 2 = 1/8 (g) c 4 αγ 1 δ 2 = 1/24 (h) (e) (f) c 3 (h) c 4 C 4 (α 1 α)α 1 δ 2 = 1 12 α 6 (α 1 α)α 1 δ 2 224αγ 1 δ 2 = 1 12 α 6 2αγ 1(2α 1) = α 1 (α α 1 ) (i) (3.48) (e) (f) c 4 (i) γ c 3 αγ 1 (α 2 α 1 )= α c 3 (α 2 α 1 ) α 1(α α 1 ) 2(α 1) = α ( α2 c 3 α 1 (α 2 α 1 )(α α 1 )=(2α 1) 3 1 ) 4 (b) αα 2 (α + α 1 ) (c)+(d) c 3 α 1 (α 2 α 1 )(α α 1 )= 1 2 αα (α + α 2)+ 1 4 (j) (k) (j) (k) (h) α ( α2 (2α 1) 3 1 ) = αα (α + α 2)+ 1 4 α(α 2 1) =, α 2 = 13

14 (a) (b) (c) c 1,c 2,c 3,c 4 c 1 = 6αα 1 2(α + α 1 )+1 12αα 2α 1 1 c 2 = 12α(α 1 α)(1 α) 1 2α c 3 = 12α 1 (α 1 α)(1 α 1 ) c 4 = 6αα 1 4(α + α 1 )+3 12(1 α)(1 α 1 ) (a) (b) (c) (d) γ 1 γ 2 δ 1 α, α 1 (3.45) (3.46) β = α, β 1 = α 1 γ 1 (α, α 1 )β 2 = α 2 γ 2 (α, α 1 ) δ 2 (α, α 1 ) α = α 1 = 1 (a) (b) (c) 2 (d) /2 1/2 1 1/2 1/4 1/4 1 1/3 1/8 1/8 1 1/4 c 1,c 2,c 4 c 3 1 1/ /3 1 1/6 C 1 = 1 6 C 2 = 2 3 C 3 C 3 = 1 6 (3.49) (3.45) (3.46) (3.49) (e) (f) (g) γ 1 = 1 6c 3 γ 2 =1 3c 3 δ 2 =3c 3 β = α = 1 2 β 1 = α 1 γ 1 = c 3 β 2 = α 2 γ 2 γ 2 = (3.5) c 3 =1/3 c 1 =1/6,c 2 =1/3,c 3 =1/3,c 4 =1/6,γ 1 =1/2,γ 2 =,δ 2 =1,β 1 =,β 2 = Y = y j (j =1, 2,,n) k 1 = hf(x j 1,Y j 1 ) k 2 = hf(x j 1 + h/2,y j 1 + k 1 /2) 14

15 k 3 = hf(x j 1 + h/2,y j 1 + k 2 /2) k 4 = hf(x j 1 + h, Y j 1 + k 3 ) Y j = Y j (k 1 +2k 2 +2k 3 + k 4 ) x j = x j 1 + h m y 1 (x),...,y m (x) y = dy j dx = f j(x, y 1,...,y m ), y j (x )=y j, (j =1, 2,,m) y 1. y m, y = y 1. y m f 1 (x, y 1,,y m ), f(x, y) =. f m (x, y 1,,y m ) dy dx = f(x, y) y(x )=y (3.51) 2 j(j =1, 2,,n) dy dx = f 1(x, y, z) (3.52) dz dx = f 2(x, y, z) (3.53) y(x )=y, z(x )=z Y = y,z = z, k 1 = hf 1 (x j 1,Y j 1,Z j 1 ) m 1 = hf 2 (x j 1,Y j 1,Z j 1 ) k 2 = hf 1 (x j 1 + h/2,y j 1 + k 1 /2,Z j 1 + m 1 /2) m 2 = hf 2 (x j 1 + h/2,y j 1 + k 1 /2,Z j 1 + m 1 /2) k 3 = hf 1 (x j 1 + h/2,y j 1 + k 2 /2,Z j 1 + m 2 /2) 15

16 m 3 = hf 2 (x j 1 + h/2,y j 1 + k 2 /2,Z j 1 + m 2 /2) k 4 = hf 1 (x j 1 + h, Y j 1 + k 3,Z j 1 + m 3 ) m 4 = hf 2 (x j 1 + h, Y j 1 + k 3,Z j 1 + m 3 ) Y j = Y j (k 1 +2k 2 +2k 3 + k 4 ) Z j = Z j (m 1 +2m 2 +2m 3 + m 4 ) x j = x j 1 + h x 1,x 2,,x n u u 1 F (x 1,x 2,,x n,u, u,, 2 u 2 u,, )= x 1 x 1 x x, y u(x, y) x 2 1 a(x, y) 2 u x 2 +2b(x, y) 2 u x + c(x, u y) 2 + d(x, y) u 2 x + e(x, y) u + f(x, y)u = g(x, y) a, b, c, d, e, f, g b 2 ac > b 2 ac < b 2 ac = x x i 1 <x i <x i+1 (x i+1 x i = x i x i 1 = x) y = y(x) 3 (x i 1,y i 1 ), (x i,y i ), (x i+1,y i+1 ) (x i,y i ) tan θ x θ tan θ = dy dx = lim y x x = lim y i+1 y i x x x tan θ =(y i+1 y i )/ x dy/dx dy dx = y i+1 y i x 16

17 dy dx = y i y i 1 x tan θ =(y i+1 y i 1 )/(2 x) dy dx = y i+1 y i 1 2 x u = u(x, y) x a, y b x i = m y j = n (x, y) (i, j) u u(x, y) u ij u i 1,j,u i,j 1 x i, y j u/ x, u/ u x = u i+1,j u i,j x i (4.1) u = u i,j+1 u i,j y j (4.2) u x = u i,j u i 1,j x i 1 (4.3) u = u i,j u i,j 1 y j 1 (4.4) u x = u i+1,j u i 1,j x i 1 + x i (4.5) u = u i,j+1 u i,j 1 y i 1 + y j (4.6) 2 2 u/ x 2 u x = x ( ) u = ( u/) i+1,j ( u/) i 1,j x i 1 + x i ( u/) i+1,j i +1 u ( u/) i 1,j i 1 ( ) u = u i 1,j+1 u i 1,j 1 i 1,j y j 1 + y j ( ) u = u i+1,j+1 u i+1,j 1 i+1,j y j 1 + y j 17

18 2 u x = u i+1,j+1 u i+1,j 1 u i 1,j+1 + u i 1,j 1 ( x i 1 + x i )( y i 1 + y i ) (4.7) 2 u/ x 2 u x = u i+1,j+1 u i+1,j 1 u i 1,j+1 + u i 1,j 1 ( x i 1 + x i )( y i 1 + y i ) (4.8) 2 u x = 2 u x (4.9) 2 u/ x 2 2 u/ 2 u/ x u/ 2 u x 2 = x ( ) u = ( u/ x) i+1,j ( u/ x) i,j x x i ( u/ x) i+1,j ( u/ x) i,j ( ) u = u ( ) i+1,j u i,j u, = u i,j u i 1,j x i+1,j x i x i,j x i 1 2 ( u x 2 = ui+1,j u i,j x i u )/ i,j u i 1,j x i (4.1) x i 1 y 2 u 2 = ( ui,j+1 u i,j y j u i,j u i,j 1 y j 1 ) / y j (4.11) x i 1 = x i = h y j 1 = j i = k h k 2 u x = 1 2h (u i+1,j u i 1,j ) (4.12) u = 1 2k (u i,j+1 u i,j 1 ) (4.13) 2 u x = 1 4hk (u i+1,j+1 u i+1,j 1 u i 1,j+1 + u i 1,j 1 ) (4.14) 2 u x 2 = 1 h 2 (u i+1,j 2u i,j u i 1,j ) (4.15) 2 u 2 = 1 k 2 (u i,j+1 2u i,j u i,j 1 ) (4.16) 18

19 2 u(x + h, y) u(x h, y) (4.17) ( u/ x) u(x + h, y) = u(x, y)+h u x + h2 2 u 2! u(x h, y) = u(x, y) h u x + h2 2! u u(x + h, y) u(x, y) = x h u(x + h, y) =u i+1,j,u(x, y) =u i,j u x = u i+1,j u i,j h x 2 + h3 3 u + 3! x3 (4.17) 2 u x 2 h3 3 u + 3! x3 (4.18) h 2 u 2! x 2 h2 3 u 3! x 3 + h (4.18) u x = u i,j u i 1,j h O(h) (4.19) O(h) (4.2) O(h) (4.17) (4.18) ( u/ x) u x u(x + h, y) u(x h, y) = 2h = u i+1,j u i 1,j 2h h2 3 u 3! x 3 O(h 2 ) (4.21) h 2 (4.17) (4.18) ( u/ x) 2 u x 2 = u(x + h, y) 2u(x, y)+u(x h, y) h 2 h2 4 u 12 x 4 = u i+1,j 2u i,j + u i 1,j h 2 O(h 2 ) (4.22) 2 u/ x 2 h u t = c2 2 u x 2 (4.23) u(x, ) = f(x), x L u(,t)=p(t),u(l, t) =q(t), t 19

20 c (4.23) (4.13) (4.15) u(x, t + k) u(x, t) k 2 u(x + h, t) 2u(x, t)+u(x h, t) = c h 2 λ = kc 2 /h 2 u(x, t + k) =λu(x + h, t)+(1 2λ)u(x, t)+λu(x h, t) (4.24) u(x + h, t),u(x, t),u(x h, t) 3 u(x, t + k) (4.13) (4.15) {u t (x, t) c 2 u xx (x, t)} {c 2 /(λh 2 )}{u(x, t + k) λu(x + h, t) (1 2λ)u(x, t) λu(x h, t)} = O(h 2 ) u (4.23) k = λh 2 /c 2 u(x, t + k) =λu(x + h, t)+(1 2λ)u(x, t)+λu(x h, t)+o(h 4 ) O(h 4 ) [,L] N h = L/N, k = λh 2 /c 2 x m = mh (m =, 1,,N),t n = nk (n =, 1, ) { x L, t } (x m,t n ) u(x m,t n ) U m,n (4.23) (4.24) U m,n+1 = λu m 1,n +(1 2λ)U m,n + λu m+1,n (n =, 1, ; m =1, 2,,N 1) (4.25) { Um, = u(x m, ) = f(x m ) (m =, 1,,N) U,n = u(,t n )=p(t n ), U n,m = u(l, t n )=q(t n ) (n =, 1, ) (4.26) U m, = f(x m ) (m =, 1,,N) U,n = p(t n ),U N,n = q(t n ) (n =, 1, ) n (n =, 1, 2, ) U m,n+1 = λu m 1,n +(1 2λ)U m,n + λu m+1,n (m =1, 2,,N 1) λ λ λ 4.1 λ = kc 2 /h 2 λ 1/2 U m,n h u(x m,t n ) x 6 2

21 u x u =; x a, y b (4.27) 2 u(, y)=p(y) u(x, ) = v(x), u(a, y) =q(y),u(x, b) =w(x) (4.28) p, q, v, w x a, y b h, k i =, 1,,m, j =, 1,,n f(x, y) =f i,j (4.15) (4.16) (4.27) u i,j 1 h 2 (u i+1,j 2u i,j + u i 1,j )+ 1 k 2 (u i,j+1 2u i,j + u i,j 1 )= u i,j = 1 2(h 2 + k 2 ) {k2 (u i+1,j + u i 1,j )+h 2 (u i,j+1 + u i,j 1 )} (4.29) u p(y) q(y) v(x) w(x) u i,j i =1, 2,,m 1; j =1, 2,,n 1 u i,j = (4.29) u u (1) i,j u(1) i,j (4.29) u(2) i,j k k +1 ε (u i,j (k+1) u (k) (k+1) i,j )/u i,j ε; (4.3) i =1, 2,,m 1; j =1, 2,,n 1 u (k+1) i,j u i,j m 1 i=1 n 1 j=1 u i,j (k+1) (k) u i,j / m 1 n 1 i=1 j=1 u i,j (k+1) ε (4.31) (4.31) (4.29) u (4.29) { } (k+1) 1 u i,j = 2(h 2 + k 2 k 2 (u (k) i+1,j + u (k+1) i 1,j )+h 2 (u (k) i,j+1 + u (k+1) i,j 1 ) (4.32) ) (4.32) - (4.32) u (k) i,j u (k) i,j [ { } ] u (k+1) i,j = u (k) 1 i,j + 2(h 2 + k 2 k 2 (u (k) i+1,j + u (k+1) i 1,j )+h 2 (u (k) i,j+1 + u (k+1) (k) i,j 1 ) u i,j (4.33) ) (4.33) [ ] u i,j (k) 1 u i,j (k+1) u i,j (k) u i,j (k+1) u i,j (k) =[ ] [ ] u i,j (k+1) u i,j (k) 21

22 [ ] [ ] ω [ u (k+1) i,j = u (k) i,j + ω 1 2(h 2 + k 2 ) { } ] k 2 (u (k) i+1,j + u (k+1) i 1,j )+h 2 (u (k) i,j+1 + u (k+1) (k) i,j 1 ) u i,j (4.34) ω (4.34) SOR ω ω i =, 1, 2,,m; j =, 1, 2,,n h = k ω = 2, µ =cos π 1+ 1 (µ/2) 2 m +cosπ n (4.35) 7 22

23

24 [1] 21 [2] 1998 [3] 1999 [4] 21 [5] 1993 [6] PAD,PASCAL,C 1999 [7] [8] 1997 [9] 1999 [1] C 1989 [11] Samuel P.Harbison,Guy L.Steele Jr., C 1992 [12] C 1993 [13] W.H.Press,B.P.Flannery,S.A.Teukolsky,W.T.Vetterling Numerical Recipes in C[ ] 1993 [14] 1997 [15] 1993 [16] - C 1992 [17] C 1998 [18] 199 [19] - C/C

25 7 =1= =2= =3= =4= =5= - =6= =7=

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information