1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

Size: px
Start display at page:

Download "1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 ="

Transcription

1 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,, で示し { (, ( } { (, ( } { (, ( } ( ( - k Üフェルミ統計を満たす である ( 問題 そのとき フェルミ量子場のエネルギーは ˆ H q ( ( - c c ( ( ( c になり 粒子数は ˆ N q ( ( - c ( ( である 正しくは Norl Prouct が必要 : (. (. (. Hˆ ì ì ï c ( ( N N ï ï, Nˆ ï í あるいは í あるいは ï ï ï c ( : : ï : : ïî ïî ( (.5 である フェルミ型の生成 消滅演算子は Aenix : ディラック方程式の解 の (,,, i i i i, i i u を用いて u u (.6 u で表せる ここに ( i は Aenix : ディラック方程式の解 の (.9 と (.5 の や ( が好まれる

2 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ì 直交条件 u u u u ï í ï ( i 完全性条件 u ( u ( ïî i j ( i ( ( j ( ( ij より ( i u ( の直交条件と完全性条件を満たす ( i u たる つまり 任意の 列ベクトル ( は 固有ベクトル ( i u が ( i ( になる (.6 はこれを表している 新たな演算子 : ( i ( (.7 が (.7 のように 固有ベクトルに当 で展開でき その展開係数, は (. を用と同 様な反交換関係を満たしていて { (, ( } ( ( - ì i i i i ü ì i i j ( j ü í u u ý í u u ( ( ý ( ( (,, î i i þ î i j þ i j ( i ( j ( i ( j u { (, ( } u (.8 より { } ( i ( j ( u i, j u ( - (.9 i j が要請される 従って 任意の係数を X ( として (.7 を考慮すると {, ( } ( - i j ij X (. と類推できる これを (.9 に代入して i j ( i ( j ij ( ( ( - ( ( - u u X Ü - より ( ( i j ( ij i ( i u u X Þ u u ( i j i X (. がわかる X ( を求めるには (.7: ( j ( i ij u u ( i, j,,, を用いる (. より ( i ( ( i u u i X i と (.7 よりの i を比較して ( ( u u Þ 8 X ii u u ( i ( i (. (.

3 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( ( 8 Þ X ( ( X (. である 従って (. は { i, j ( } ( - ij ( i, j,,, (.5 { } { ( } とわかる,, を考慮して 反交換関係として { (, ( } ( ( - ( i ( j { ( j ( } ( ( が導かれる i j ij { },, ( i, j,,, (.6 さて ( i, u より は負のエネルギーを持つことを考慮すると ( 同じ添え字 は和をとる ( i ( i u u ( i i i j ( j ( j ( j ij u u u u u u ( i, j Ü ij i j i i i, j i (.7 ˆ q - c ( ( ( H c i i ( q - c c i であるが 負のエネルギー解の ( i, u c ( を考慮して ( ( ( i i ˆ i i H q - c - ( i ( i - c c q + q - i i (.8 ( ( i ( i c - i i (.9 である 従って ˆ ( i ( i H c - i i (. である ここで Aenix : ディラック方程式の解 に従って (.5 のように

4 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( i (,, u - Þ v ( i ( ある そこで ( i u ( に転換し 正のエネルギーを持つ生成 消滅演算子で読み替える必要が,, ( i Þ u - を考慮して ˆ ( i ( i H c - i i ( は任意の関数, Ü f f - f - ( i ( i c i i とする ここで i (- - i (. (. の項が負のエネルギーを与えるので 常に正のエネルギーを持つ素粒子としては相応しくない そこで ( i ( i+ ( i+ (-, (- (, i (. の読み替えをする このとき 以下で見るように ( i ( i (, が正のエネルギーを持つ反粒子の生成 消滅演算子 になる また (.6 より { } { } ( { } ( { } { } { } i j ij i j i j, -,,, i j ij i j i j, -,,, (. を得る ( 問題 生成 消滅演算子の基本式である 実際には Norl Prouct なので より ( i i i i - + (.5 ( i - i : : : : (.6 に注意して ( ( i i ( i ( i ( ( i ( ˆ H c ( : - : ( i ( ( i ( c ( : + : (.7 を得る すなわち

5 5/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( i ( i ( ( i ( ˆ H c + (.8 になるので ( i ( i は正のエネルギーを与えることがわかる 同様に ( ( i ( i ( ( i ( ˆ ˆ ( + ˆ (- N º N - N - ˆ ( + ( i, ˆ - i i N N ( i i (.9 である ボーズ量子場と同様に ˆ + i i ˆ ( + én, k ù - k, én, k ù k, ë û ë û (i, (. ˆ (- ( i ( i,, ˆ - i i én k ù - k én, ( k ù ë û ë û ( k を導くことができる 例えば ˆ ( + ( i, ( k én ù ë û - ( i k (i, を要請して ˆ ( + ( i é i i ( i N,, ù é ù ë k û ê ( k ë û Ü AB C A B C - A C B ( ( i [, ] {, } {, } ij -k ( j ( j ( i { ( j ( i } { ( j,, } k - k j ij ( j - ( - k ( ( j ij ( j ij ( j ( i - - k - k - k j j (. より énˆ, ù ë k û - k (i, (. ( + ( i が導ける ( 問題 ( i 量子場の導入 フーリエ変換を使用して 座標空間での演算子を量子場 ± ( x とし ( ( A ix A ix x - ( x ex, ex (. のフーリエ変換とする ここに A は運動量に依存する係数 である ボーズ量子場と違い はスピノルの添え字 (,,, をもつ ( x,,, x で

6 6/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり - ( の解の (, u ( を する そのため ( の解 v ( A ix A (,, ( u - に接続 ( i ( i ex x - u ex - i ( ( ( ( ix A ( i ( i ix ( i ( i ex ix u u ex i i ( i ( i i x - ix u ( ex - i A( ( ( A ( i ( i i x - ix + u ( ex - i - ( ( i ( i i x - ix u ( ex - i ( i ( i i ( x - i + u ex - - x i に 第二章ボーズ量子場 : スカラー場 - Aenix : 空間反転と積分 の f f (- ( f は任意の関数 を使って (. (.5 A ( ( A ( ( ( ( ( i ( i i x - ix u ( ex - i ( x ( i ( i + u - (- ex - i x i - x - i ( ( ( i ( i i x - ix u ( ex - i ( i ( i+ i ( x - ix + v (- ex i A ix ix ここで ( i ( i ( i ( i ( i+ u ex v ( ex i i ( i+ (, - i より ( ( A ( i ( i ix ( i ( i ix x u ex - + ( ex i ( (.6 v (.7

7 7/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり である 第二章ボーズ量子場 : スカラー場 の (. 交換関係に対応する反交換関係は ì ( i ( i ix u ex A - ï, í, ï i ( i ( i ix + v ( ex ï î { ( x ( x } A i x ü u ( ( ex ï ý i ( i i x + v ( ex - ï ïþ ( ( ì ( i ( i ix i x ü u ex u ex A A - ï ï, í ý ( ï i ( i ( i ix i ex ( i i x + + ( ex - ï ï v v î ïþ (.8 ( ( A A ì ( i ( i ü ix i x íu (, u ( ( ýex - ex î i i þ ì i i, ( i ü ix i x + ív v ( ýex ex - î i i þ になる 反交換関係は ( { (, ( } ( ( ( i j ij i i i, j i i i i i ( i ( j ( i ( j { (, ( } ì ( i ( i ü íu (, u ( ( ý u u î i i þ i, j i j ij Ü - ( u u - u u - ( + c Ü u u ( u ( i + c Ü u ( u ( i + c ( ( ( - ( ( ( u ( ( + c - ( ( ( + c ( - (.9

8 8/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり を得る そして ì í î v { } ( i ( i ( i ( i ( j ( j, v v ( v ( (, ( i i ( { (, ( } ( ( i, j i j ij Ü - ( i ( j ij ( i ( j ( ( ( ( i, j i ü ý þ v v - v v - ( i ( i ( i - Ü v v v v i i ( (. - なので (.8 より { ( x, ( x } ( ( - ( - ( - ( A A ì ( i ( i ü ix i x u, u ( í ( ýex - ex î i i þ ì i i, ( i ü ix i x + ív v ( ýex ex - î i i þ ix i x ex ex A A + c - - ( ( ix i x + ( - c ( - ex ex - A ( ( ix i x ( + ex - ex ix i x + ( - ex ex - ( ( A i x - x i x - x ( + c ex - + ( - c ex (. なので 両辺に を乗じて { ( x, ( x } A ( ( i x ( + c ex - i ( x x - + ( - c ex を得る ( 問題 5 また 同時刻 ( x x の交換関係を評価すると (.

9 9/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり { ( x, ( x } になる 第 項は ( ( x x A ( i x ( + c ex i ( x - x + ( - c ex - ( - x x ( - c ex - Ü - A i (( ( c ( ( ( ( (- ( A ( ( ( ( なので ( は任意の関数 ( c ( - A i x x - - ex - Ü f f - f (- ( - A i x x ex - - { ( x, ( x } ( c i x + - ex ( ( ( ( A x x - ( A + + (( ( + c (( ( - c ( i x ex i x ex A i x - x A i x - x ( ( ex ex であるが この反交換関係は 要請する { ( x, ( x } c ( - x x (. (. (.5 x x (.6 を満たす ((.95 参照 従って { ( x ( x } A ( ( ( x x i - 要請する i x - x (, ex c ex x x なので A c ( ( ( ( A ( c ( (, A - A Ü - Ü (.7 (.8 を得る 従って { } c i x - x i x - x x, x ( + c ex - + ( - c ex ( ( (.9

10 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり である 更に { } i x x, x c e ( ( c ( c ex ( と整理することができる また c i x i + e ( ( - c ex - ( i x e ( ( - c ( + c ex - ( (.5 (.5 に気がつくと { } x x c e ( ( c ( c がわかる 以上から c e ( i x, - + ex - ( c i + c i + éf ( x, f ( x ùû ë ( j { ( } ij i ( j ( { } i x - ex - { } ij, k - k,, k - k (.5 A ( i ( i ix ( i ( i ix c x u ex - + v ( ex Þ A( i i x x, x c e ( ( c ( c ex ( ( ( { ( x, ( x } c ( x - x c i x i + c e ( ( - c ex - ( c i + éë f ( x, f ( x ùû x x (.5 j j i i u + c ( ( - c u, v v i i ( j ( i ij ( j, ( i ij c u u u u ( ( j ( i ij j i c v v (, v v,, ij ( i j (.5 がわかった

11 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 生成 消滅演算子と量子場 第二章ボーズ量子場 : スカラー場 に習って x を調べると ( i ( i ix u ex ( x A - c ( Ü A i i i ix ( + v ex x A( i ( ( i ( i ix ( i ( i ix -u ex - + ex v i なので ( ( ( ex i ( ( A i i ix ( i ( i ix x u - + v ( ex x A i i ix ( i ( i ix i -u ex - + ex v i (.55 (.56 である ( x がディラック方程式を満たすことを示す ( x c A ( ( c に -iñ + を掛け é c ( i ù ( i ix ê + u ( ex - ë û i ( x - Ñ + i é c i ù i ix ( ( ex + ê - + v ë û を得る また (.7: (, を用いると (.57 は ( (.57,,, u + c u v -c v, é + c ( i ù ( i ix u ex A ê - ë û i é - + c ( i ù ix + ê v ( ( ex ë û A( ( i ( i ix ( i ( i ix x u ex - - ex i v i を得る ( 問題 6 即ち c ( x c -iñ + ( x i Þ -iñ + ( x i c c Þ i + iñ - ( x Þ i - ( x より ディラック方程式 : ( x (.58 (.59

12 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( x c c i - ( x i i - Ñ + ( x (.6 が成り立つ さて 生成 消滅演算子を ( x ( と ( x ( i ( i ix u ( ex - ix ex ( x A i i i ix v ( ex i + x ex - ( i ( i ix u ( ex - ix - ex ( x - i A i i i ix v ( ex ix + ex - ( は任意の関数 なので f f (- f ーリエ変換 より であらわすために (.56 を更に書き換えてゆく (.6 ix より ex - の項に - を施し フ ix ix f ( x f ( ex Þ f ( f x ( x ex - (.6 ( ( ( ( ( i i ix i i ix A u ex - A - v - (- ex i i + ( (- ix x ( x ex - ( ( ( i i ix i i ix A u ex - A - v - (- ex i i - + ( x ix -i ex - ( x (.6 を得る ( 問題 7 これから (.8 より A( A( - なので

13 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ix ix ix + ( x ex - x ( ( i i i i u ex - v - (- ex i i ( ( i i i x i i i x u ex - v - (- ex i i - + ( ( A( ( x i i x ex - - ( A x (.6 として 両辺を引き算すれば i ( i ( i ( ( A( ix ix - ex - u ex x x ( x ix - i ex - - ( A x ( x ix ( x + i ex - ( A x ( i ( i x i x - ix Þ u ( ( x + i ex i ( A x 同様に 両辺を足し算すれば i i v v ( i ( i ( ( A( ix ix ex - - ex x x - ( i ( i ( x ix + i ex - - ( A x ( x ix ( x - i ex - ( A x x ix + ix - - ( x - i ex - ( A x (.65 (.66 である また - にし + c (- に注意すれば ( i ( i v ( ( x i i ( A x を得る 以上から i i ( i ( i x i x - ix - ex - x i x i ( i ( i - x u ( ( x + i ex ( A x v x i x i - x ( x - i ex - ( A x (.67 (.68 である ( j ( ij, j i ij u u v v ( より 両辺に ( j ( j u, v を乗じて

14 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( A( xv x i - ( x ( i ix ( u ( x + i ex ( A x がわかる ( 問題 8 ( x 量子場のエネルギー 量子場のエネルギー : ˆ ( i i i H c - に (.69 を用いると Hˆ ( i ( ( c c ( Ü A ( ix ex - ì ï ï( A( ( A( ï é ( i ( x ix - ix ù í ê u ( x i ex x - ï ê ï ê i ( x ix i ï ê - x u ( x + i ex - ê ï x ë î û ü - ( A( ( A( ï ï é ( i ( x ix ù ê x i ex ï xv + x ý ê ( ï ê i ( x ix ï ê ( x - i ex - ï ê x v ë ( ï ûþ 時間については 制限無いので x x に設定すると Hˆ ( c c ( ( ( é ê ê ê ê ê ê ê ê ê ê- ê ê êë i ( ( x ( ( x ( x i i u u ( xx ( ( x - i ( x i( x - x + i ex x x x ( x ( i v ( v ( xx ( ( x + i ( x i( x - x i - i ex - x x ù û ( k ( k (.69 (.7 (.7 (.7

15 5/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ここで (. の j i u v ( j ( ( i ( u v ( j ( ( i ( + c + c ( ( - c - c ( ( (.7 を用いて ( j Hˆ ( x ( x I ( j u u を考慮して + c ( x i x x - x ( x i ( x - x ( ( x + i ex ( ( - c ( x - ( x + i x x ( x i( x - x ( ( x - i ex - ( ( ( ( ( x ( x xx ( ( x - i + c ( x i ( x - x ( ( x + i ex ( x - xx ( ( x + i - c ( x i( x - x ( x - i ex - ( x xx ( ( x - i + c ( x i ( x - x ( x i ex + x ( x - ( x + i x x - c ( x i( x - x ( ( x - i ex - x x x x x x

16 6/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( ( ( x xx ( ( x - i x - + c ( x i ( x - x ( x + i ex ( x - xx ( ( x + i - - c x i x - x x - i ex - ( を得る 第 項で - Hˆ ( ( にし + c (- に注意すれば x - + c xx ( ( x - i x ( x i ( x - x ( ( x + i ex ( x - (- - c - xx ( ( x + i ( x i (- ( x - x ( ( x - i ex - ( ( ( x xx ex i x x x ( x - + c ( ( x - i ( ( x + i ( x - (- - c ( x - ( ( x + i ( x - i x ( ( ( x xx ex i x ( x - + c ( ( x - i ( x + i x ( x + - c ( x - ( ( x + i ( x - i x x x x x (.7 x x

17 7/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり i x ex ( x x ( ( x - + c + - c - ( ( x ( ( ( x - + c + - c ( x + - ( ( ( x - + c + i c ( ( x ( ( - + c + - c ( x + ( ( x + i ( ( ( ( i x xx ex ( ( ( x - + c x ( x (- + c ( ( x + ( x ( x + i - x + x i x x x x (.75 になる ここで より Hˆ ( ( ( i x xx ex ( ( ( x - + c x ( x (- + c ( x + ( x ( x - i ( x + i ( x x x (.76 なので ( Hˆ - より i x ( xx ex 第 項 第 項 ( x ( + c ( x ( x( + c ( x + x x 第 項第 項 ( x ( x - i ( x + i ( x x x (.77 を得る 更に ( x c ( x c i i Ñ + ( x, - i ( x i Ñ + ( (.78

18 8/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり を用い 第 項 ~ 第 項を書き換える ( ( x ( x ( i x - x + c x 第 項 ex ( x x ( - ( x ( + c -i ( i x x ex ( x x i x xx ex x部分積分 x 部分積分 ( ÑをÑにする ( c -iñ + ( ( x( c - + ( + c ( ( x - x ( + ( ( x i x x i ( x( i Ñ + c ex i i Ñ + c x ( xx xx i x ex ( + c ( ( xx c -iñ + ( + ( c i ( c ( x x ( x (- ( (- i Ñ + c ( x ( x - x i x - + c ( i Ñ + c ex x ( - + c x c ( c ( ( x x x x x x ( + i x - x x - + c ( + c ex x ( x x - xx + x x i ( x - x ( - + c xx ex x c c x ( ( c( c c ( i ( x - x ( ex ( x( c ( x ( x x ( + + Ü i x + ex i x ex ( x( c ( x x x + (.79 x x であるが これは 第 項と同じである 次に 第 項と第 項は x x x x x x ( x x x

19 9/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( x i x 第 項 ex i - ( x ( x x i x ex x x + ( x x ( x ( x x ( x i x - 第 項 ex i ( x ( x x i x ex x x + ( x x になり第 項と同じである ( 問題 9 ( x x x x x x (.8 (.8 以上から Hˆ ( xx ex i x 第 項 第 項 ( x ( c ( x 第 項第 項 + ( x ( x ( x( + c ( x + - i ( x + i ( x ( 第 項 i x ex x + c x ( x x ( i x ex ( x( c ( x x x + (.8 x x x x x x を得る この表式は部分積分と関数の 定義を用いてさらに整理でき Hˆ xx ( ( x - x ( x( -i Ñ + c ( x c x x -i Ñ + x になる ( 問題 従って x x ˆ c H x x -i Ñ + x がわかる 以上から ( ( i ( x i ( x ( i ( ( i ( ˆ H c ( + c x - Ñ + (.8 (.8 (.85 を得る 量子場のラグランジアン

20 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり さて エネルギーがもとまったので そのエネルギー密度を H で表すと ˆ c H x : H ( x : x : ( x -i Ñ + ( x : (.86 とわかる つまり H c ( x ( x -iñ + ( x になる このエネルギー密度は ラグランジアン密度 ( L とする から ( x L ( x (.87 L H ( x + - L ( x (.88 と与えられることが分かっている ( 付録 : ラグランジアン密度とエネルギー密度 ファイル これから L として c L ( x ( x i - ( x ( + Ñ (.89 をとればよいことが分かる つまり ( x L ( x L x x x x ( x i, なので これを代入すれば H ( x が求まり (.9 H x c c ( x ( x i - ( x i + i Ñ - ( x ( x -i Ñ + ( x (.9 を導く 以上から L H c c x + - L x x -i Ñ + x ( x ( x i - ( x ( + Ñ L ( L ( (.9 が量子場のラグランジアン密度とエネルギー密度になる ( 問題 このラグランジアンを用いると 同時刻交換関係 (.6 を導くことができる 一般化された運動 量 ( x (,,, として ( x ( x L L ( x t であるので (.9 より i c ( x ( x ( x ( x を得る ( 問題 同時刻反交換関係は 一般化された座標 ( x と ( x の間で (.9 (.9

21 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり {, }, { } f x x f x x i x - x (.95 s x x x x を要請する これより (.9 を用いて (.6 を得る 反粒子の量子場は ( x の複素共役 ( x 役 " は ( x ( x であり ( x 反粒子の量子場 とは で表されるが 特殊相対性理論に合致した " 複素共 ( x ( x é ù ë û (.96 で結びついている まず 量子場 ( x の満たす方程式は (.6 つまり ( x c c i - ( x i i - Ñ + ( x (.97 であるので ( x ( x に対して - é c ù c c ê i - ( x ( x - i - ( x - i - ë û c c ( x - i - Þ ( x - i - (.98 を得る 従って ( x c - i x -i Ñ + である 以上から を得る ( x (.99 c c ( x - i - - i ( x -i Ñ + (. 反粒子の量子場を C ( x をで表すと この (. を元にして反粒子を作るのであるが 反粒子 は 列ベクトルで表せるので ( x の転置を取る事になる つまり (.96 のように Þ ë û ( x é ( x ù (.

22 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり である この é ( x ù ë û から C ( x 荷電共役 (chre conjution を担う (. を C で表すと é ù C x C x ë û への変換演算子を C と表し (. である 粒子場と同じタイプの方程式 (.97: c i ( x C - を満たす場が 反粒子場と定義される そこで (. と (. を用いて - c C ic C + ( x を得る ( 問題 -A (. と比較して -C - C が要請される 更に (.5 の転置を取ると C ( h hc ± (. (. (.5 (.6 がわかる ( 問題 -B さて h の符号を決めるために 行列の転置に対する対称性を見る 行列には 全部で 6 個の行列があるが それを ( A,,,6 A (.7 と表すと A A ( 個 ( H A A : ( 6個 ( C ì ï対称行列 : í ï î 反対称行列 - (.8 とまとめられる 6 個の行列は I,, 5 で表すことができ ìi sclr:個 ï ï vector:個 ï n n ís é, tensor:6 i ë ù û 個 ï ï 5xilvector:個 ï ïî 5seuosclr:個である 転置に対する対称性を調べるので (.5 より得られる ( C -h ( C を用いる ( 問題 -C そこで (.9 (.

23 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり I sclr:個 ( IC h ( IC vector:個 ( C -h ( C i ë û 個 C s n é, n ù tensor:6 ( n n ( s C -h ( s C 5 seuosclr:個 ( C h ( C 5 5 xilvector:個 ( 5C h ( 5 C 5 と勘定できる ( 問題 -D 従って (.8 の個数に一致するのは h -の場合であり n C, s C が 個の対称行列になる 以上から C C である ( x C é ( x -C -C ù ë û - C (.

24 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり (,,, u ( は Aenix : ディラック方程式の解 ( c u ( for (, - c u ( for - ( ì c u c i ï í ïî, (. を満たす ( 問題 これより - ( の解を ( の解に直すためには -,,, ( - c u - - c u c u (. なので を - にすると ( c u とすると ( c u,, u ( (. Þ Þ + - (, (, (, c u c u c u ( ( i+ ( ( i ( ( i, - v (.5 は (, エネルギーが正の解 : + c v ( ( ( であるとわかる つまり ( ( - c u, (, ( + c, ( for ( あるいは 変形して を得る, v (.6,,, u + c u v -c v, (.7 さて ( i - c u ( ( i,,, を利用して { } i j i - c u u - c u Þ j j i u - c u - c u ( ( j i j i Þ u c u u c u j i j i Þ - u, u u c u Þ j i j i u u cu u ここで 固有ベクトルの条件の一つである 直交性を満たすために (.8

25 5/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( ( u u º j i ij (.9 とすると u c ( u ( j i ij を得る 同様にして ( i+ u ( ( ( i ( ( i, - v に対しては j i j i ij - v v cv v c (. を得るので ( 問題 ì ij c ( j i ij j i ij c ï for i, u u, u u ( í ij c - for i, ï- (. ï î ( j ( i ij ( j ( i ij c v v, v v ( - ( である そこで L ( + ( i ( i i ( i u u u u c i c i L - ( - ( i ( i i ( i u u u u c i c i を考えると (. (, ( j i ij u u (, ( L u u u u ( i ( j i ij u u ( ( i + i j j i c i c u u c ( i L u - u u u - i j j i c i c - u u - c ( i (. なので i i i i + - L u u i,, L u u i, (. を得る ここで ( i ( i u i,, u ( i, L L ( は明らかである ( 問題 -A 従って ( ( j + ( j + c L u u ( i c i c ( for,

26 6/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり ( ( j - ( j + c L - u u ( ( for i, c - i c (.6 - とすればよい ( 問題 -B ( L を (.5 を用いて ( i v ( ( i, で表すと ( ( i ( v ( ( i v - c L,- - v - for ( i ( i ( i - c i c - L,- v, (.7 を得る ( 問題 -C 以上から + ( j + c L u ( u c i c ( j - ( j + c L u ( u c - i ( j + i i - i i L u u i,, L u u i, ( i ( i u i,, u ( ( i, L L + - (.8 ( 或いは L ( L (, - と見なすと ( ( j + + c L ( u u c i c ( ( i v ( j - - c L ( - v - c i c ( i + i i - i i L u u, L v v i, ( i ( i, ( (, + - L v L u i である ( 問題 -D (. より ( ( L + L + - (. (. (. を満たすことがわかる また ( i ( i + - u u ( L ( + L ( i c c - c c c + c ( L - L - - ( c c - c ( ( c c c - ( c c c (.

27 7/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり より ( i i u ( u i ( (. を得る 或いは ( i ( ( i u u (.5 である これは 完全性を表している (.5 と (.9 より j ( ij, i i u u u u (.6 を満たすので 正規完全直交系 ( i ( (.7 ij j i, i i I for i u i をなしていることになる ( 問題 5

28 8/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり Aenix : ディラックの γ 行列 s (,,, (, s I s Þ, s I -s (,,, (,- s (, s (,,,, (, s (,,, (, s (,,,, (, s (,,, s s s s s s s s s s s s s s s s s s s s s s s s -i s, s, s, s i - { }, n n I -I i n r s 5 i - e nrs 5 e e - I! ( I; ; { A, B } AB I ith AB i. (, -, -, -, ( A, B,,,,5 (.8

29 9/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第 章問題 (. において フェルミ統計を満たす ことを証明せよ Aenix : ディラック方程式の解の (. で (,, つまり (,,, きに ( i - c u を (.8 を用いて解き ± ± + c とを示し それぞれの固有ベクトルを求めよ そのとき (, ( は ( ( + 固有ベクトルu c 固有ベクトルu (, ( は - ( のと の値を持つこ とする ここに である Aenix : ディラック方程式の解の (. を導け (.6 を元にして (. を用いて (, ( と (, ( { (, ( } ( ( - i j i ( j { ( } i j ij (i,j,,, ( { } を示せ エラー! 参照元が見つかりません に倣って を導け ˆ + i én ( k ù ( k A ë, ( ˆ - i ( i én ( k ù - ( k B ë, ˆ - i én ( k ù ( k C ë, û û û (i, 5A(. から (. を導け B(.9 に ( - é ë 6(.58 を示せ 7(.6 から (.6 を用いて (.6 を導出せよ 8(.68 から (.69 を導出せよ 9(.8 と (.8 を示せ (.8 を示せ (.9 の L ( x から H ( x を求めよ (.9 の L ( x から (.9 を求めよ - C A(.: ic C ( x の満たす反交換関係 : ( ( c + を導け ù û を用いて (.5 を導け

30 / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり B(.6: C hc ( h ± を導け C(.: ( C h ( C n n D ( s C h ( s C - を導け - ( C h ( C A(.5 を確認せよ B(.6 が (. を満たすことを示せ C(.7 を導け D(. の L ( - ( 5 c c - - 5(.7 を用いて (.6 を説明せよ 5 ( 5C h ( 5 C を導け を導け

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は /7 平成 9 年 月 5 日 ( 土 ) 午前 時 7 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は 素粒子を質量 とすると ì x : ( ct, x, y, z) :,,, ì c ct ç + y (, t) ç å

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n /5 平成 9 年 月 4 日午前 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( t ) 換で結びつく (5.) の ( ) ニュートリノ質量行列 種混合 と質量固有状態のニュートリノ ( ) と ( ) の場合の は ユニタリー変 æ æ cosq siq æ ø -siq cosq ø ø (8.) 以外に æ æ cosq siq æ -siq cosq t ø

More information

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ /7 第 章電子とディラック方程式 第 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ粒子は 電子と同じ仲間で 質量のみ異な る素粒子であり ディラック (Dirac 方程式 ( ディラック :Paul

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B

1/20 平成 29 年 3 月 25 日午前 11 時 7 分第 1 章 :U(N) 群 SU(N) 群 ( 学部 4 年次向 ) 第 1 章 :U(N) 群 SU(N) 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B / 平成 9 年 3 月 5 日午前 時 7 分第 章 :U() 群 SU() 群 ( 学部 4 年次向 ) 第 章 :U() 群 SU() 群 Ⅰ. 標準模型の素粒子 素粒子の分類図 3 世代 素粒子の標準理論に含まれる素粒子は 素粒子の分類図 から R, G, B R, G, B R, G, B u : 5 c :, 6 t :75,e 3 クォーク( quark ) : R, G, B R,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( )

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( ) 第 6 章超ゲージ対称性 00 年 / 第 6 章超ゲージ対称性 o-el ゲージ群 第 章場の変換性と演算子 - 変数 X が同じとき より T を geetos にもつ o-el 群の下で に注意して カイラル超場 F が = W = W = ( ) ( gk T ) ˆ j ( gk T ) ( gk t ) ˆ j j U ˆ j U ˆ wth U ep T & ep t Ü ep - ep

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

固体物理2018-1NKN.key

固体物理2018-1NKN.key , `, m`, m s ` ` apple m` apple ` m` m s m s ± E H m x () () () A si x A si x () () () () H m x () aaac6ichve9bxqxejciriboeglooqufipmfcakpagacop8cemkbhy+yhv7vxvafhbldsrfeqefge+bk/agk/asumkgfmzuruq+bmxqpw+e58m7sivwlhcjjz/uwxkfhrumjq/fmkpowzsv8zmsjtprgraxqvgmfvbyjvrzgkesre9z/++obrixg5tvhxtrhiwahfqlv9ea8k5tjopqtyfsqygtfyyztithg6gq9bp5qo89ctuamhkjq7roxw+ykzxbsfocupwtuwztmfygqv6zatapsggiyaoqrkwqqhxbcgxjgicyociwicvqmphtqgaeuuswcgeylimgftmytjbkwhsxo8svrjuhzthfq9rwym58o8iifkk/lmvpff6lihr5epuj9bu9urp/+ritfbepvh9c+zxtgutgrwtgslpwub6wevk9xhkpuvlajh+9+sifmetqmeprdmv/yhfdg/hvfbgsjyaguwf+ut8igyqzmyr7v+yeswygibpfamvtvejc/9/6evz9k9bscwvomp/x5bvrq

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

<4D F736F F D20837D834E B95FB92F68EAE>

<4D F736F F D20837D834E B95FB92F68EAE> マクスウエルの方程式 Akio Arimoto, Monday, November, 7. イントロ長野 []p.4 に証明抜きで以下のような解説がある 次節以下これを証明していきたいと思う grad f «df d dx =,, rot «( i i), [ ] div «d ( dx dx + dx dx + dx dx ) æ f f f æ f f f rot grad f = rot( df

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

Microsoft Word - Chap11

Microsoft Word - Chap11 第 章 次元回転群とそのリー代数. SO のリー代数. 節でリー代数を定義したが 以下にその定義を再録する なお 多くの教科書に従って本章以降は ep t A の代わりに ep t と書くこととする 定義.. G を 次の線型リー群とすると 任意の実数 t に対して ep t G となる gl C の全体をGのリー代数 またはリー環 という 例えば ep t が 次の特殊直交群 SO の元であれば

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63> 1/10 平成 23 年 6 月 1 日午後 4 時 33 分 07 ストークスの定理 : 線積分と面積分 07 ストークスの定理 : 線積分と面積分 ストークスの定理はガウスの定理とともに 非常に重要な定理であり 線積分と面積分の関係を表します つまり ガウスの定理 : 面積分と体積分 ( 体積を囲む閉じた面 = 表面 ) の関係 ストークスの定理 : 線積分と面積分 ( 面積を囲む外周の線 )

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

ベクトルの基礎.rtf

ベクトルの基礎.rtf 章ベクトルの表現方法 ベクトルは大きさと方向を持つ量である. 図.に示すように始点 Pから終点 Qに向かう有向線分として で表現する. 大きさは矢印の長さに対応している. Q P 図. ベクトルの表現方法 文字を使ったベクトルの表記方法として, あるいは の表記が用いられるが, このテキストでは太字表示 を採用する. 専門書では太字で書く の表記が一般的であり, 矢印を付ける表記は用いない. なお,

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

Microsoft Word - 付録1誘導機の2軸理論.doc

Microsoft Word - 付録1誘導機の2軸理論.doc NAOSIE: Nagaaki Univity' Ac itl パワーエレクトロニクスと電動機制御入門 Autho( 辻, 峰男 Citation パワーエレクトロニクスと電動機制御入門 ; 15 Iu Dat 15 U http://hl.hanl.nt/169/55 ight hi ocumnt i ownloa http://naoit.lb.nagaaki-u.ac.jp 付録 1 誘導機の

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2015年度 岡山大・理系数学

2015年度 岡山大・理系数学 5 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ を 以上の自然数とし, から までの自然数 k に対して, 番号 k をつけたカードをそれぞれ k 枚用意する これらすべてを箱に入れ, 箱の中から 枚のカードを同時に引くとき, 次の問いに答えよ () 用意したカードは全部で何枚か答えよ () 引いたカード 枚の番号が両方とも k である確率を と k の式で表せ () 引いたカード 枚の番号が一致する確率を

More information

景気指標の新しい動向

景気指標の新しい動向 内閣府経済社会総合研究所 経済分析 22 年第 166 号 4 時系列因子分析モデル 4.1 時系列因子分析モデル (Stock-Watson モデル の理論的解説 4.1.1 景気循環の状態空間表現 Stock and Watson (1989,1991 は観測される景気指標を状態空間表現と呼ば れるモデルで表し, 景気の状態を示す指標を開発した. 状態空間表現とは, わ れわれの目に見える実際に観測される変数は,

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最 //7 第 3 章 ükel 法 Shrödnger 方程式が提案された 96 年から 年を経た 936 年に ükel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である ükel 法は最も単純な分子軌道法だが それによって生まれた考え方は化学者の概念となって現在に生き続けている ükel 近似の前提 ükel 近似の前提となっている主要な近似を列挙する

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点 09 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F K, L) = AK α L β 5) と定義します. ) F KK, F KL, F LK, F LL を求めましょう. ) 第 象限のすべての点 K, L) R ++ に対して F KK K, L) < 0, かつ dethf )K, L) > 0 6) を満たす α,

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

2017年度 京都大・文系数学

2017年度 京都大・文系数学 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 曲線 y= x - 4x+ を C とする 直線 l は C の接線であり, 点 P(, 0) を通るもの とする また, l の傾きは負であるとする このとき, C と l で囲まれた部分の面積 S を求めよ -- 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 次の問いに答えよ ただし, 0.00 < log0

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

微分方程式補足.moc

微分方程式補足.moc Bernoulli( ベルヌーイ ) の微分方程式 ' + P( ) = Q() n ( n 0,) 微分方程式の形の補足 ( 階 ) 注意 : n =0 のときは 階線形微分方程式 n = のときは変数分離形となる 解法 : z = -n とおいて関数 z の微分方程式を解く z' =( - n) -n ' よりこれを元の微分方程 式に代入する - n z' + P() = Q() n 両辺を n

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information