2014 (2014/04/01)

Size: px
Start display at page:

Download "2014 (2014/04/01)"

Transcription

1 2014 (2014/04/01)

2

3 Zorn

4

5 Chapter 1 n V V ( ) n R R R R n R,, [1] 1.1 A (set) a A (element) a A A a a A a A B A 5

6 6 CHAPTER 1. (subset) B A B = A B A B A B A (proper subset) B A (empty set) B A A B = {a A a B} A (finite set) A A A (infinite set) A = A < A. n {a 1, a 2,, a n } {a 1, a 2, } A B, A B (intersection) (union) A i (i = 1, 2,, n) n n A i, i=1 A i (i = 1, 2, ) A i, A i Λ i=1 i=1 A λ (λ Λ) λ Λ A λ, Λ a [ a, a] [ a, a] i=1 λ Λ A i A λ a {b R b>0} a>0[ a, a] a>0 [ a, a] a>0[ a, a] A λ λ λ A λ A λ = λ Λ (disjoint union) A λ A λ < λ Λ λ Λ A λ < A λ = A λ λ Λ λ Λ A B A B (a, b) A B A B (direct product, cartesian product) A B = {(a, b) a A, b B} λ Λ

7 A λ (λ Λ) λ Λ A λ (Λ (Zermelo s axiom of choice) ) 1.2 N : Z : ( ) Q : () R : ( ) C : () N 0 a, b Z l Z b = al b a a b a b a b (divisor) b a (multiple) a λ (λ Λ) λ Λ c a λ c Z a λ (λ Λ) (common divisor) (greatest common divisor) a 1, a 2, (a 1, a 2, ) gcd(a 1, a 2, ) gcd(a, b) = 1 a b p N, p > 1 p (prime number) p 1 p p ab p a p b n N a, b Z n a b a b n (congruent modulo n) a b (mod n) (1) a Z a a (mod n) (2) a b (mod n) b a (mod n) (3) a b (mod n) b c (mod n) a c (mod n) ( n Z )

8 8 CHAPTER A B A B (map) A B f f : A B f a A B f a f(a) f : A B (a f(a)) f : A B A f (domain) B f (range) f : A B g : C D A = C B = D a A f(a) = g(a) f = g f : A B f(a) = Imf = {f(a) a A} f (image) C A f(c) = {f(a) a C} f C f : A B C B f 1 (C) = {a A f(a) C} f C (inverse image) C = {b} f 1 ({b}) f 1 (b) f 1 (b) = {a A f(a) = b} b f(a) f 1 (b) = f 1 (b) f 1 B A f : A B (injection) a a f(a) f(a ) f : A B (surjection) f(a) = B f : A B (bijection) f f : A B (1) f (a a f(a) f(a ) ) (2) f(a) = f(a ) a = a (3) b f(a) f 1 (b) = 1 (4) b B f 1 (b) f : A B (1) f (f(a) = B )

9 (2) b B f(a) = b a A (3) b B f 1 (b) 1 B A ι : B A (b b) B A (inclusion) B = A ι : A A (a a) A (identity map) id A f : A B g : B C A C (a g(f(a))) f g (composite map) g f gf f : A B b B f(a) = b a A f 1 (b) = {a} f 1 (b) a A B A (b f 1 (b)) f (inverse map) f 1 ( ) f 1 f f 1 = id B, f 1 f = id A, (f 1 ) 1 = f f : A B C A C g : C B (c f(c)) f C (restriction) f C ι : C A f : A B f ι f : Z Z (1) f (2) f (3) f f(0) = 1 f(1) = A < f : A A (1) f (2) f (3) f f : A B g : B C (1) g f g (2) g f f f : A B g : B A g f f g f

10 10 CHAPTER f : A B g : B C g f (g f) 1 = f 1 g f : A B C A f C f f f C f : A B a A f(a) B A < a A f(a) A = {1, 2, 3}, B = {a, b} a a b f(1) = a, f(2) = a, f(3) = b f : A B A = m <, B = n < A B 1.4 A R A A R A ( ) (binary relation) (a, b) R arb A (E1) [ ] a A a a (E2) [ ] a b b a (E3) [ ] a b b c a c (equivalence row) (equivalence relation) a b a b ( ) A a A C a = {b A b a} a (equivalence class) A (1) a C a (2) b C a a C b (3) C a C b C a C b =

11 1.5. ZORN 11 {C λ λ Λ} A = λ Λ C λ, (λ µ C λ C µ = ) A C λ a λ a λ C λ {a λ λ Λ} A = λ Λ C λ A A/ a b (mod n) Z n M n (R) A, B M n (R) P B = P 1 AP A B M n (R) A, B M n (R) P B = AP A B M n (R) f : A B A f(a) = f(a ) a a 1.5 Zorn A (O1) [ ] a A a a (O2) [] a b b a a = b (O3) [ ] a b b c a c (order) (A, ) (ordered set) A a b b a a b a b a b a < b B A B A R Q, Z R R (A, ) a, b a b b a (totally order) (A, ) (totally ordered set) ( (partially order) ) A P (A) P (A) A (power set) 2 A P (A) A 2 P (A)

12 12 CHAPTER 1. (A, ) a b b A a b, b A a = b a A (maximal element) b a b A a A (minimal element) b A b a a A (largest element) b A a b a A (smallest element) ( ) ( ) ( ) (0, 1) (0, 1) ( ) ( ) A P (A) S = {X P (A) X A} a A A {a} S S = {X P (A) X } a A {a} S B A a A B b B b a B B A A (Zorn ). A A Zorn (A, ) (well ordered set) A 1.6 A f : A A A A ( ) f (a, b) f(a, b) ab a + b ab ab a + b a + b a, b, c A (ab)c = a(bc) ab = ba a b A a, b, c A a(b + c) = ab + ac, (a + b)c = ac + bc

13 (1) Z Q, R, C (2) Z (3) n 2 R n M n (R) M n (R) A f : A A A (a, b) A A f(a, b) A A < A = {a, b, c} a b c a a b c b c a b c b c a f(b, a) = c A ( ) (ab)c = a(bc) A (semigroup) A n a 1, a 2,, a n (( ((a 1 a 2 )a 3 ) )a n 1 )a n a 1 a 2 a n ( ). A n. n n 3 n 4 n 1 XY X r Y n r r = n 1 X = a 1 a 2 a n 1 XY = a 1 a 2 a n r n 2 X = a 1 a 2 a r, Y = a r+1 a r+2 a n XY = (a 1 a 2 a r )(a r+1 a r+2 a n ) = (a 1 a 2 a r )((a r+1 a r+2 a n 1 )a n ) = ((a 1 a 2 a r )(a r+1 a r+2 a n 1 ))a n = (a 1 a 2 a n 1 )a n = a 1 a 2 a n 1 a n

14 14 CHAPTER 1. A ab = ba A n A e a A ae = ea = a e A (identity element) (monoid) (1) N ( ) 1 (2) N {1} (3) Z ( ) 0 (4) N e, e e e = ee e e = ee e = e A 1 1 A 0 0 A ( 1 1 A 1 ) A a n a 0 = 1 A, a n = a n 1 a a n a n (a to the n-th power) A a A m, n N (1) a m a n = a m+n (2) (a m ) n = a mn (3) ab = ba (ab) m = a m b m X X X X X σ, τ X X στ (στ)(x) = σ(τ(x)) (στ = σ τ ) X X id X A u A uu = u u = 1 u A u A (unit) u u (inverse element)

15 A u. u, u u u = u 1 = u (uu ) = (u u)u = 1u = u u u 1 u 1 (u 1 ) 1 = u A 1 A (1 A ) 1 = 1 A u 1, u 2,, u n u 1 u 2 u n (u 1 u 2 u n ) 1 = u n 1 u 2 1 u 1 1 u A 0 n N u 0 = 1 A, u n = (u 1 ) n m, n Z X X ( ) σ X X σ

16

17 Chapter (group) G (G1) [] a, b, c G a(bc) = (ab)c (G2) [ ] e G a G ea = ae = a ( e 1 G ) (G3) [ ] a G b G ab = ba = e ( b a 1 ) G G (G4) [] a, b G ab = ba G (abelian group) (commutative group) G (1) [] ax = ay x = y xa = ya x = y (2) f : G G (x x 1 ) (3) a G g a : G G (x xa) h a : G G (x ax) k a : G G (x a 1 xa) 17

18 18 CHAPTER 2.. (1) ax = ay a 1 x = y (2) (x 1 ) 1 = x f 2 = id G f (3) g a g a 1 = g a 1 g a = id G g a G x G x 2 = 1 G. x G x 2 = 1 x 1 = x a, b G (ab) 1 = ab (ab) 1 = b 1 a 1 = ba ab = ba Q = Q {0} Q 1 a Q 1/a R = R {0}, C = C {0} (1) Q 0 (2) Z {0} M U M U M. a, b U ab U U M U U 1 U U a U a 1 U U U U(M) M (unit group) (1) Q U(Q) = Q = Q {0} (2) Z U(Z) = { 1, 1} ( ). X X ( 1.7.5) U(X X ) X (symmetric group) S(X) S(X) X X X (permutation) ( ) x S(X) σ = σ(x) X = n X = {1, 2,, n} S(X) S n n S n n S 3 ( ) ( ) ( ) ,,, S 3 = ( ) ( ) ( ) ,,

19 ( ) ( ) = ( ( ) 1 ( ) ( ) = = S n 3 S n στ τσ σ, τ S n G G < G (finite group) G = G (infinite group) G < G G (order) n S n n! ( ). R n M(n, R) M(n, R) R n (general linear group) GL(n, R) M(n, R) GL(n, R) GL(n, R) GL(n, Q), GL(n, C) ( M n (R), GL n (R) ) n 2 GL(n, R) A x, y, z A xz = yz x = y A A ) 2.2 G G (additive group) 0 0 G a a (A1) [] a, b, c G a + (b + c) = (a + b) + c

20 20 CHAPTER 2. (A2) [ ] 0 G a G 0 + a = a + 0 = a (A3) [ ] a G b G a + b = b + a = 0 ( b a ) (A4) [] a, b G a + b = b + a G a + ( b) a b Z, Q, R, C ( ) N n N G a n na a n na 0a = 0 m Z ma a, b G, m, n Z (1) ( m)a = m( a) = (ma) ( 1)a = a (2) (m + n)a = ma + na (3) m(na) = (mn)a (4) m(a + b) = ma + mb (2), (3), (4) 2.3 G H (B1) a, b H ab H (B2) a H a 1 H H G (subgroup) G H (1) H G (2) H G (3) a, b H ab 1 H. (1) = (2) H G (B1) a, b H ab H G H G H H a (B2) a 1 H 1 G = aa 1 H 1 G H (B2)

21 (2) = (3) (3) = (1) H a H 1 = aa 1 H a H 1 H a 1 = 1a 1 H (B2) a, b H (B2) b 1 H ab = a(b 1 ) 1 H (B1) H, K G H K G. a, b H K ab 1 H K a H, b H H ab 1 H K ab 1 K ab 1 H K G A, B AB = {ab a A, b B} A 1 = {a 1 a A} B = {b} A{b} Ab ba Ab = {ab a A}, ba = {ba a A} G A, B, C (1) A(BC) = (AB)C (2) (A 1 ) 1 = A (3) (AB) 1 = B 1 A G H (1) H G (2) HH H H 1 H (3) HH 1 H H G HH = HH 1 = H 1 = H. HH 1 = 1 ( ) G H H < HH H H G

22 22 CHAPTER 2.. h H h 1 H HH H h 2 H n N h n H H h n m, n N, m < n h m = h n h n m = 1 n m = 1 1 = h H h 1 = 1 H n m > 0 n m 1 0 h 1 = h n m 1 H H, K G (1) HK G HK = KH (2) L H G (HK) L = H(K L). (1) HK G (HK) 1 = HK H 1 = H, K 1 = K (HK) 1 = K 1 H 1 = KH HK = KH HK = KH (HK)(HK) 1 = HKK 1 H 1 = HKKH = HHKK = HK HK G (2) x HK L x HK h H k K x = hk x L h H L k = h 1 x L k K L x = hk H(K L) (HK) L H(K L) y H(K L) h H k K L y = hk y = hk HK h H L y = hk L y HK L H(K L) HK L (HK) L = H(K L) G G {1} G {1} G (trivial subgroup) 1 G (proper subgroup) S G a 1 n 1 a 2 n2 a r n r (a i S, n i Z, r N) G S S (subgroup generated by S) S {s 1,, s l } S s 1, s l S = {a} a = {a n n Z} = {, a 2, a 1, 1, a, a 2, } a (cyclic group) a (generater) a a (order) o(a) S a

23 (1) a m = 1 m N a (2) a a m = 1 m N n n = o(a) (i) a m = 1 n m (ii) a = {1, a, a 2,, a n 1 } (3) a, a 2, a 1, 1, a, a 2, a. (1) a m = 1 m N l Z l = nq + r, 0 r < m q, r Z a l = (a m ) q a r = a r a {1, a, a 2,, a m 1 } a 0 < s < t a s = a t a t s = 1, t s N (2) (i) a m = 1 m = nq + r, 0 r < n q, r Z 1 = a m = (a n ) q a r = a r n r = 0 n m n m a m = (a n ) m/n = 1 (i) a = {1, a, a 2,, a n 1 } 0 i < j < n a i = a j a j i = 1, 0 < j i < n n o(a) = a = n (2), a 2, a 1, 1, a, a 2, i < j (i, j Z) a i = a j a j i = 1, 0 < j i a 2.4 H G G ah = bh a b G a G ah = ah a a a b ah = bh bh = ah b a a b b c ah = bh = ch a c H G H a, b G (1) a b ( ah = bh) (2) b ah

24 24 CHAPTER 2. (3) a bh (4) a 1 b H. (1) = (2) b = b1 bh = ah (2) = (3) b ah h H b = ah h 1 H a = bh 1 bh (3) = (4) a bh h H a = bh a 1 b = h 1 H (4) = (1) h H a 1 b = h a = bh 1, b = ah h 1 H ah 1 = bh 1 h 1 bh ah bh h 2 H bh 2 = ahh 2 ah bh ah ah = bh Ha = Hb ah H (left coset) G/H Ha H (right coset) H\G G = i I a i H G = i I a ih G = i I Ha i S 3 S 3 ( ) ( ) ( ) g 1 =, g =, g =, ( ) ( ) ( ) g 4 =, g =, g = H = g 2 = {g 1, g 2 } g 1 H = g 2 H = {g 1, g 2 } g 3 H = g 4 H = {g 3, g 4 } g 5 H = g 6 H = {g 5, g 6 } Hg 1 = Hg 2 = {g 1, g 2 } Hg 3 = Hg 5 = {g 3, g 5 } Hg 4 = Hg 6 = {g 4, g 6 }

25 K = g 4 = {g 1, g 4, g 5 } g 1 K = g 4 K = g 5 K = {g 1, g 4, g 5 } g 2 K = g 3 K = g 6 K = {g 2, g 3, g 6 } Kg 1 = Kg 4 = Kg 5 = {g 1, g 4, g 5 } Kg 2 = Kg 3 = Kg 6 = {g 2, g 3, g 6 } H ah = Ha a G H G (normal subgroup) G (Lagrange). G H a G ah = H G : H G = G : H H. a G f : H ah f(h) = ah ah = H G = i I a ih G = i I a i H = G : H H G : H G H (index) G x G x G G x x G = G N a G an = Na G/N (an)(bn) = (ab)n

26 26 CHAPTER 2. an = a N a G a ( ) an = a N bn = b N (ab)n = (a b )N an = a N bn = b N n 1, n 2 N a = an 1, b = bn 2 bn = Nb n 3 N n 1 b = bn 3 a b = an 1 bn 2 = abn 3 n 2 (ab)n (a b )N = (ab)n (1N)(aN) = (an)(1n) = an, (an)(a 1 N) = (a 1 N)(aN) = 1N G/N 1N an a 1 N G N (factor group) G/N Z n N n n n nz a Z nz a + nz = {a + nl l Z} {0, 1,, n 1} Z/nZ = {0 + nz, 1 + nz,, (n 1) + nz} (3 + 5Z) + (4 + 5Z) = 7 + 5Z = 2 + 5Z

27 Chapter R R (ring) (R1) R (R2) R (R3) [] a, b, c R a(b + c) = ab + ac, (a + b)c = ac + bc (R4) [ ] 1 R ( 0) R (R1), (R2), (R3) (R5) [] a, b R ab = ba R (commutative ring) R 0 0 R R 1 1 R R x 0x = x0 = 0 ( 0 R 0 R 0 Z Z 0 R x 0 Z x ) R R U(R) U(R) R (unit group) R (unit) ( ) R 0 R (skew field, division ring) (field) (commutative field) 27

28 28 CHAPTER ( ). a a + a = a, aa = a ( ). Z (rational integer ring) ( ). Q, R, C (rational number field) (real number field) (complex number field) (). R () R n R n (full matrix ring) M(n, R) M n (R) R M(n, R) R 0 a R R (left zero divisor) 0 b R ab = 0 0 a R R (right zero divisor) 0 b R ba = 0 0 ( ) R ( ) R R ( ). a 0 b R ab = 0 b = 1b = a 1 ab = a 1 0 = 0 b 0 R a a (zero divisor) R (integral domain) R Z A A Z M(n, Z) ax = ay x = y a R 0 a R, x, y R ax = ay x = y. ax = ay a(x y) = 0 a 0 x y = 0 x = y C M(2, C) ax = ay x y

29 n N, n 2 a, b Z l Z a b = nl a b (mod n) ( 1.2.1) a a + nz = {b Z a b (mod n)} = {a + nl l Z} Z/nZ = {0 + nz, 1 + nz,, (n 1) + nz} Z/nZ Z nz (a + nz) + (b + nz) = (a + b) + nz (a + nz)(b + nz) = ab + nz Z/nZ a + nz = a + nz, b + nz = b + nz l, l Z a = a + nl, b = b + nl a b = (a + nl)(b + nl ) = ab + n(al + bl + nll ) ab + nz a b + nz = ab + nz Z/nZ 1 + nz Z/nZ n a + nz Z/nZ ā Z/nZ Z/9Z U(Z/9Z) = { 1, 2, 4, 5, 7, 8} 3, 6

30 30 CHAPTER a, b N gcd(a, b) = d x, y Z ax + by = d. a > b b b = 1 gcd(a, b) = 1 x = 0, y = 1 b > 1 a = bq + r, 0 r < b q, r Z gcd(a, b) = gcd(b, r) d b d a d a bq = r d r d bq + r = a d a, b b, r gcd(a, b) = gcd(b, r) r = 0 gcd(a, b) = gcd(b, 0) = b x = 0, y = 1 d = gcd(a, b) 0 < r b > r b, r x, y Z bx + ry = d d = bx + ry = bx + (a bq)y = ay + b(x qy ) x = y, y = x qy Z/nZ a + nz Z/nZ gcd(a, n) = 1 U(Z/nZ) = {a + nz gcd(a, n) = 1}. gcd(a, n) = x, y Z ax+ny = 1 n ā x = 1 ā ā b Z ā b = 1 l Z ab 1 = nl 1 = ab nl gcd(a, n) 1 gcd(a, n) gcd(a, n) = 1 Z/nZ ā Z/nZ (1) ā (2) ā

31 (3) gcd(a, n) > 1. (2) (3) (1) = (2) (3) = (1) gcd(a, n) = d > 1 n = dl 1 < l < n a = da l 0 ā l = ā n = 0 ā Z/nZ (1) Z/nZ (2) Z/nZ (3) n. (1) (2) (3) = (1) n 1 a < n gcd(a, n) = 1 ā Z/nZ (1) = (3) Z/nZ 1 a < n gcd(a, n) = 1 n x + 405y = 1 (x, y) M 2 (Z/2Z) 3.3 R R S R (subring) a, b S a b S, ab S S R S Z C, R, Q R = M(n, R) S = {(a ij ) R i > j a ij = 0} = a 11 a 12 a 1n a 22 a 2n a nn a ij R S R A = (a ij ), B = (b ij ) S A B S AB S AB = (c ij ) n c ij = a ik b kj k=1 i > j i > k a ik = 0 k > j b kj = 0 i k j a ik b kj 0 i > j k a ik b kj = 0 c ij = 0 AB S

32 32 CHAPTER 3. S R R S Z/6Z S = { 0, 2, 4} S Z/6Z 1 S R = M(2, R) { ( a b S = b a ) } a, b R R 3.4 R R I R (ideal) (I1) i, j I i j I (I2) a R, i I ai I (I3) a R, i I ia I (I1), (I2) I (left ideal) (I1), (I3) I (right ideal) ( ) (two-sided ideal) I R a, b R a b (mod I) a b I R a R a + I = {a + i i I} R/I a + I, b + I R/I (a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = ab + I

33 a + I = a + I, b + I = b + I a = a + i, b = b + j i, j I a b ab = (a + i)(b + j) ab = ib + aj + ij (I3) ib I (I2) aj I (I2) ij I (I1) ab = ib + aj + ij I a b + I = ab + I 0 + I a + I a + I R/I R/I R I (factor ring) R R/I R 1 I R R/I 1 + I n N nz = {nl l Z} Z ( Z/nZ ) R = { ( a b 0 c ) } { ( 0 b a, b, c R, I = 0 0 ) } b R I R R R {0 R } R R (trivial ideal) R I I = R 1 R I R a R ar = {ar r R} R ( ar a (principal ideal) ) R a R {r 1 ar 2 r 1, r 2 R} R a Z ( (principal ideal domain) )

34 34 CHAPTER R R x f(x) = a 0 + a 1 x + + a n x n (a i R) x R (polynomial) f(x) f x (indeterminate) x R R[x] R[x] f(x) = a 0 + a 1 x + + a n x n, g(x) = b 0 + b 1 x + + b m x m l f(x) + g(x) = (a i + b i )x i l = max(n, m) 0 i=0 f(x)g(x) = n+m k=0 c k x k, c k = i+j=k a i b j R[x] x R (polynomial ring) f(x) = a 0 + a 1 x + + a n x n a n 0 n f(x) (degree) deg f(x) deg f f(x) = 0 deg 0 = d d = d, + d = R R f(x), g(x) R[x] deg(f + g) max(deg f, deg g) deg(fg) = deg f + deg g. f(x) 0, g(x) 0 f(x) = m i=0 a ix i (a m 0), g(x) = n j=0 b jx j (b n 0) f(x)g(x) = m+n m k=0 i=0 a ib k i x k x m+n a m b n a m 0 b n 0 R a m b n 0 f(x) = 0 g(x) = 0 n {, 0} N +n = R R[x]

35 R[x] R[x] f(x), g(x) R[x], f(x) 0, g(x) 0 deg(f), deg(g) deg(fg) f(x)g(x) 0 deg f(x) = 0 f(x) f(x) = 0 R R R[x] R deg(fg) < deg f + deg g f(x), g(x) R[x] R f(x), g(x) R[x] g(x) R q(x), r(x) R[x] f(x) = g(x)q(x) + r(x), deg r < deg g. f(x) = a 0 + a 1 x + + a n x n, g(x) = b 0 + b 1 x + + b m x m q(x), r(x) n = deg f g(x) 0 deg g 0 n = n < m q(x) = 0, r(x) = g(x) n m h(x) = f(x) a n b m 1 x n m g(x) deg h < n h(x) = g(x)q 1 (x) + r(x), deg r < deg g q 1 (x), r(x) R[x] f(x) = h(x) + a n b m 1 x n m g(x) = g(x)(q 1 (x) + a n b m 1 x n m ) + r(x) f(x) = g(x)q(x) + r(x) = g(x)q (x) + r (x), deg r, deg r < deg g g(x)(q(x) q (x)) = r (x) r(x) q(x) q (x) deg g deg g q(x) = q (x) r(x) = r (x) R g(x) 1

36 36 CHAPTER 3. 1 (monic) q(x), r(x) f(x) g(x) r(x) = 0 f(x) g(x) g(x) f(x) f(x) = a 0 + a 1 x + + a n x n R[x] α R f(α) = a 0 + a 1 α + + a n α n R f(x) α f(α) = 0 α f(x) (root) R f(x) R[x], α R (1) [] q(x) R[x] f(x) = (x α)q(x) + f(α) (2) [] f(α) = 0 x α f(x). f(x) g(x) = x α q(x), r(x) R[x] f(x) = (x α)q(x) + r(x), deg r < deg(x α) = 1 r(x) = r R α f(α) = r K K[x] ( ) R 0 f(x) R[x], deg f = n f(x) n. n n = 0 f(x) = r 0 0 n 1 f(x) f(x) α f(x) = (x α)g(x) g(x) R[x] deg g = n 1 g(x) n 1 β f(x) 0 = f(β) = (β α)g(β) R β α = 0 g(β) = 0 f(x) α g(x) f(x) n f(x) R[x] f : R R (α f(α))

37 f(x), g(x) R[x] R f(x) = g(x) f = g. f(x) = g(x) f = g f(x) g(x) h(x) = f(x) g(x) h(x) 0 h(x) deg h R h(α) 0 α R 0 h(α) = f (α) g (α) f g p R = Z/pZ R f(x) = x p x α R f(α) = 0 f = 0 f(0) = 0 α 0 α U(Z/pZ) U(Z/pZ) p α p 1 = 1 f(α) = α p α = 0 R[x 1, x 2,, x n ] R[x 1, x 2,, x n ] = R[x 1, x 2,, x n 1 ][x n ] (R[x 1,, x n 1 ] x n ) f(x 1, x 2,, x n ) = a i1 i 2 i n x 1 i 1 x 2 i2 x n i n, (a i1 i 2 i n R) x 1, x 2,, x n R (polynomial) a i1 i 2 i n 0 a i1 i 2 i n x 1 i 1 x 2 i2 x n i n f (term) i 1 + i i n (degree) R R[x 1, x 2,, x n ] R. R R[x 1 ] R[x 1, x 2 ] = R[x 1 ][x 2 ] R[x 1, x 2,, x n ] U(R) = U(R[x]) R[x 1, x 2,, x n ] R f(x) R[x] g(x) R[x] f(x)g(x) = 1 deg f + deg g = 0 deg f = deg g = 0 f(x), g(x) R f(x) R U(R[x]) U(R) U(R) U(R[x]) U(R) = U(R[x]) f(x 1, x 2,, x n ) R[x 1, x 2,, x n ] f : R R R R R f(x 1, x 2,, x n ), g(x 1, x 2,, x n ) R[x 1, x 2,, x n ] f g f g. f = g f = g f g f 0 f 0 n n = 1 f R[x 1,, x n 1 ] x n m i f(x 1,, x n ) = g i (x 1,, x n 1 )x n i=0

38 38 CHAPTER 3. f 0 i g i 0 g i (α 1,, α n 1 ) 0 (α 1,, α n 1 ) R R 0 f(α 1,, α n 1, x n ) R[x n ] α n R f(α 1,, α n 1, α n ) 0 f K 1 K 1, 1 + 1, , 1, 2, 3, 0, 1, 2 = ( 1) + ( 1), F = {, 2, 1, 0, 1, 2, } F K K F F F 1 Z/nZ (n N) Z ( 2.3.9) F = Z/nZ F n ( 3.2.5) K (characteristic) F = Z K 0 p ( 0) p = Q, R, C 0 Z/pZ (p ) p K p ( 0) a, b K (a + b) p = a p + b p. (a + b) p = p i=0 ( ) p a i b p i 0 < i < p i ( ) p = i p! i!(p i)! p p p K F = Z/5Z n N f n : F F f(a) = a n n = 2, 3, 4, 5 f n ( ) p F = Z/pZ a F a p = a

39 ( Q ). Z Q Z = Z {0} ( ) Z Z at = bs (a, s) (b, t) (a, s) a/s (Z Z )/ R R a/s + b/t = (at + bs)/st (a/s)(b/t) = (ab)/(st) R 1/1 0/1 a/s (a 0) s/a R Q (1) (2) (3) Z D D (quotient field) R R R[x] R[x] { } f(x) g(x) g(x) 0 R R(x) R K K(x) = R(x) m Z m = a 2 a Z m Z (square free) m 0, 1 m 1 m m , 15, 6, 105 0, 1, 4, 9, 12 m Q[ m] = {a + b m a, b Q} Q( { a + b } m m) = c + d m a, b, c, d Q, c2 + d 2 0

40 40 CHAPTER Q[ m]. R = Q[ m] C 1 R α, β R α β, αβ R R 0 a+b m (a, b Q) (a+b m)(a b m) = a b b 2 m m 0 a + b m C R 1 a + b m = a b m (a + b m)(a b m) = a a 2 b 2 m R = Q[ m] Q[ m] = Q( m) b m Q[ m] a 2 b 2 m Q[ m] (quadratic field) Q[x] (x 2 m)q[x] Q[x]/(x 2 m)q[x] f(x) Q[x] ( ) Q[x]/f(x)Q[x] (algebraic number field) R f(x) R[x] (irreducible) g(x), h(x) R[x] f(x) = g(x)h(x) g(x) h(x) R[x] ( R ) (reducible) K f(x) K[x] (K ) ( ) f(x), g(x) K[x] f(x) g(x) K f(x) g(x) h(x), l(x) K[x] f(x)h(x) + g(x)l(x) = K f(x) K[x] K[x]/f(x)K[x] (K = Q, deg f(x) = n n ). 0 g(x) K[x]/f(x)K[x] g(x) g(x) 0 g(x) f(x) f(x) f(x) g(x) f(x)h(x) + g(x)l(x) = 1 h(x), l(x) K[x] K[x]/f(x)K[x] g(x) l(x) = 1 g(x) K[x]/f(x)K[x]

41 Q n n f(x) = a 0 + a 1 x + + a n x n Z[x] 1 f(x) Z[x] a g(x) f(x) = ag(x) f(x) = m i=0 a ix i, g(x) = n j=0 b jx j Z[x] f(x)g(x). p f(x) g(x) p a 0, p a 1,, p a i 1, p a i, p b 0, p b 1,, p b j 1, p b j i, j f(x)g(x) x i+j a 0 b i+j + a 1 b i+j a i 1 b j+1 + a i b j + a i+1 b j 1 + a i+j b 0 p f(x)g(x) f(x)g(x) f(x) Z[x] Z[x] Q[x]. f(x) 0 f(x) Z[x] Q[x] f(x) = g (x)h (x), deg g (x) 1, deg h (x) 1 g (x), h (x) Q[x] Q Z af(x) = g(x)h(x) a Z g(x), h(x) Z[x] a a a = 1 f(x) g(x) = αg 0 (x), h(x) = βh 0 (x), α, β Z g 0 (x) h 0 (x) a 1 p a p p af(x) = g(x)h(x) = αβg 0 (x)h 0 (x) g 0 (x)h 0 (x) p αβ p p α p β p α ( ) a α p f(x) = p g 0(x) (βh 0 (x)) Z[x] a

42 42 CHAPTER ( (Eisenstein) ). p f(x) = a 0 + a 1 x + + a n 1 x n 1 + x n Z[x] p a n 1, p a n 2,, p a 1, p a 0, p 2 a 0 f(x) Q[x]. f(x) Z[x] f(x) = g(x)h(x), g(x) = m i=0 b ix i Z[x], h(x) = l j=0 c jx j Z[x] a 0 = b 0 c 0 p b 0 c 0 p b 0, p c 0 p b 0, p b 1,, p b i 1, p b i i 0 i m < n f(x) x i b 0 c i + b 1 c i b i 1 c 1 + b i c 0 p p n 1 x n p n 1 n (1) F p n N F = p n (2) p n N F = p n F F p p n p Z/pZ Z/pZ n f(x) (Z/pZ)[x]/f(x)(Z/pZ)[x] p = 2 f(x) = x 2 + x + 1 (Z/2Z)[x] f(x) 1 Z/2Z f(x) 0, 1 0 f(x) (Z/2Z)[x] F = (Z/2Z)[x]/f(x)(Z/2Z)[x] 4 = 2 2 x α α 2 + α + 1 = 0 α 2 = α + 1 F = {0, 1, α, α + 1} α α α α α + 1 α α α α α + 1 α + 1 α α α α α + 1 α 0 α α α α α

43 [1],, [2],, [3],, 43

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

2011 (2011/02/08) 1 7 1.1.................................... 7 1.2..................................... 8 1.3.................................. 9 1.4.................................. 10 1.5..................................

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2, Steven Roman GTM [8]., [3].,.

2, Steven Roman GTM [8]., [3].,. ( ) : 28 7 22 2, Steven Roman GTM [8]., [3].,. 1 5 1.1........................................................... 5 1.2......................................................... 6 1.3....................................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

B ( ) :

B ( ) : B ( ) : 29 2 6 2 B. 5............................................................ 5......................................................... 5..2..................................................... 5..3........................................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

untitled

untitled 18 18 8 17 18 8 19 3. II 3-8 18 9:00~10:30? 3 30 3 a b a x n nx n-1 x n n+1 x / n+1 log log = logos + arithmos n+1 x / n+1 incompleteness theorem log b = = rosário Euclid Maya-glyph quipe 9 number digits

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information