Microsoft PowerPoint slide2forWeb.ppt [互換モード]
|
|
- しょうり おおばま
- 3 years ago
- Views:
Transcription
1 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均 分散 度数 人数 平均の計算式 : [ +65cm 3 人 +66cm 4 人 + ]/ 一般に書けば cm きざみの b 身長 分散も同様に
2 正規分布 ガウス分布 3 確率密度関数 ep π この分布の平均と分散は, mea varace 証明略 正規分布は平均 と分散 によって完全に記述される 確率変数の範囲と確率 よく用いられる値 % % % % N, と表記する N は ormal dstrbuto の N 特に, 平均, 分散 の正規分布 N, を標準正規分布と呼ぶ. 正規分布 ガウス分布 ep π 4 特に, 平均, 分散 の正規分布 N, を標準正規分布と呼ぶ. 標準正規分布 N, 95% % の確率で存在する範囲が統計ではしばしば使われる. 標準正規分布では-.96から.96の範囲となる. 平均が同じで分散が異なる正規分布 3 つの関数を模式的に図示しなさい? 分散が同じで平均が異なる正規分布 3 つの関数を模式的に図示しなさい? N, N, N,3 3 N, N, N3, 3
3 中心極限定理 cetral lmt theorem 5 分布がどのようなものであっても, 平均値, 分散 をもつ母集団からとられた 個のサンプルの平均値の分布は,が大きくなるとき, 正規分布 N, / に近づく. 母集団 例 母集団の分布が一様分布の場合 個集めて平均 5 集める個数 が多いほど分散 / は小さい.? 3 中心極限定理 : 多くの観測値を正規分布で近似する裏付けとなっている サンプルから母集団統計量を推定する 6 命題 : 得られたサンプルからら, その発生母体である母集団の統計量を推定したい. 例 全国の 歳男子の身長の平均と分散を4 人のサンプルから推定したい. 母集団, パラメータ推定 ˆ, ˆ サンプル サンプルの自体の平均と分散 母集団の平均と分散 平均 次の統計量 分散 次の統計量 s どんな関係? 平均 次の統計量 { p p は の生起確率 分散 次の統計量 どんな関係? { p 通常 p は未知であり, 得られたサンプルから統計量を推定するしかない.
4 不偏推定量 ubased estmator - 平均の不偏推定量 - 7 不偏推定量とは, サンプルから求めた母集団統計量の期待値が, 真の母集団統計量に一致するものをいう., 母集団推定統計量 ˆ, ˆ ˆ, ˆ サンプル { ˆ? { ˆ? サンプル平均を母集団平均の推定値とした場合, サンプル平均の期待値は { { p { となり, 母集団平均に一致する. よって, サンプル平均は, 母集団平均に対する不偏推定量といえる. 成り立てば不偏推定量と言える 分散の不偏推定量 8 サンプルの分散の期待値を計算してみる s { { [ ] { { + { 上式右辺の第 項は { { - で割れば母集団分散に一致することを確認しなさい. 第 3 項は { { 無相関の仮定により, つの異なるサンプルの積の和は になる { 第 項も同様に計算できる. 結局, { s + となり, 母集団分散には一致しないことがわかる
5 分散の不偏推定量 つづき 直感的解釈 9 なぜ分散の推定を, で割らずに ˆ で与えるか? 直感的解釈仮に母集団の平均 が既知であれば, 個のデータからの分散の推定は ˆ で与えればよい. これに対し, 母集団平均 が未知のために, かわりにサンプル平均を用いた場合の分散を s とすると, s この場合, かならず s が成り立つ. すなわち,s は真の母集団分散を過小に推定する傾向がある. そこで, で割らずに- で割ることでこの過小推定を防ぐ. 真の母集団平均 3 度数母集団分布 サンプルから求めた平均 サンプル の分布 3 正規分布 ガウス分布 ep π 標準正規分布 N, 平均が同じで分散が異なる正規分布 : 小 95% : 大 分散が同じで平均が異なる正規分布 95% の確率で存在する範囲が統計ではしばしば使われる. 標準正規分布では -.96 から.96 の範囲となる. 3 < <
6 { { あるサンプルの平均 y y y m m m y 期待値 第 項の導出 { { { { { { { +, { { { + { ゆえに { { { 参考 : 第 3 項
7 二項分布 bomal dstrbuto 3 例 3 回サイコロを投げて, 回,の目が出る確率を考える. 回 回 回 3 回 P p 3C 一般に, 確率 p をもつ事象が, 回の観察で 回起こる確率 P は! P Cp p p p!! P 二項分布の形 この式で表される確率分布を二項分布と呼ぶ. 平均 : p 整数 分散 : p p が大きくなると, 二項分布は正規分布に近づく ポアソン分布 Posso dstrbuto 4 二項分布において, 実験回数 が十分大きい場合, 二項分布はポアソン分布で近似できる. P Cp p e P! 近似 ただし p 平均 が大きければ, ポアソン分布は正規分布に近似できる. 例 千葉市の 日あたりの交通事故件数の分布 日を十分細かくきざんで考える 例えば 分単位. すると, このきざみのなかでは, 事故が起こるか起こらないかの, どちらかの事象のみ起こるとみなせる. つのきざみ内で事故が起こる確率を p とすれば, 日に 件事故が起こる確率は, 二項分布で表せる. 時刻 日平均 5 回, 事故が起こるとする. 二項分布で考えると, 分あたりに事故が起こる確率は p 5/ 4 6 ある 日に, 回起こる確率は, 4 6 P Cp p 4 6 ポアソン分布で考えると 5 e P! 5 事故数二項分布ポアソン分布 回
8 ポアソン分布の性質とフォトンノイズの例 5 ポアソン分布は, 平均と分散が等しい. me P! m において平均 分散 m p m m [ 暗い ] [ 明るい ] CCD 画素平均をmとする 標準偏差は CCD 画素 平均を m とする 標準偏差は m 例 明るい条件と暗い条件で, 単位時間あたりにCCDの画素に到達するフォトン数を考える. フォトンの到来 CCD の画素に到達するフォトン数はポアソン分布に従う. 時刻 フォトン数 のちらばりを ±の範囲で考えると 8 < < 98 < < カメラのゲインコントロールによって明るさを合わせられることを考えて, それぞれの平均が になるように正規化すると 8 < < 98 < < 以上より, 暗い状態ではノイズが増えることがわかる フォトンノイズという
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Microsoft PowerPoint - statistics pptx
統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
Microsoft Word - Time Series Basic - Modeling.doc
時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
第7章
5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
Microsoft PowerPoint - statistics pptx
統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>
第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp
平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上
平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を
母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,
. 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る
確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.
数値計算法
数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差
禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな
第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな
RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
情報工学概論
確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa
Microsoft Word - Stattext07.doc
7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
統計学の基礎から学ぶ実験計画法ー1
第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3
<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>
高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
Microsoft PowerPoint - 03ModelBased.ppt
本日の目的 知的情報処理 3. 原因があって結果がある ( か?) 櫻井彰人慶應義塾大学理工学部 データを生成する法則が存在すると仮定し それを推定することを考える その場合 推定できるのか? 推定する方法はあるのか? 推定しなくてもよいということはないのか? という問いを背景に モデル という概念 モデル を推定するということ モデル を推定しないということを知る なお 事例ベース学習は 丸暗記
Microsoft PowerPoint - statistics pptx
統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:
untitled
分析の信頼性を支えるもの データ評価のための統計的方法 確率分布と平均値の推定 検定 田中秀幸 1 はじめに前回は, 統計的手法を適用するために意味のあるデータをどのように取得するのかについて, 母集団と標本について, 期待値 分散 標準偏差について解説した 今回は, 統計的推定 検定の基礎となる確率分布とその確率分布を用いた推定 検定について解説する 2 確率分布 測定データを取得したとき, そのデータのばらつきを視覚的に表すために,
統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の
統計学 Ⅱ8-9 章 章確率と確率分布. 確率変数と離散的確率分布 確率変数 確率分布. 確率変数の平均と分散 確率変数 の平均と期待値 確率変数 の分散 期待値の性質 期待値の一般的な定義 基準化確率変数 歪度 尖度. 同時確率 周辺確率 条件付確率 項確率モデル 同時確率と同時確率分布 周辺確率 一般的な場合の同時確率 周辺確率 条件付確率 ベイズの定理. つの確率変数の平均 分散 共分散 変数の関数の期待値
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
Microsoft Word - reg.doc
回帰分析 単回帰 麻生良文. 回帰分析の前提 次のようなモデルを考える 単回帰モデル : mple regreo moel : 被説明変数 eple vrble 従属変数 epeet vrble regre : 説明変数 epltor vrble 独立変数 epeet vrble regreor : 誤差項 error term 撹乱項 trbe term emple Kee 型消費関数 C YD
経済統計分析1 イントロダクション
1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,
Microsoft PowerPoint - sc7.ppt [互換モード]
/ 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,
(1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )
スライド 1
計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)
統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団
統計学 Ⅱ(16 11-1 章 11 章母集団パラメータの推定 1. 信頼区間 (1 点推定と区間推定 ( 区間推定のシミュレーション (3 母平均 μの信頼区間 (4 母比率 pの信頼区間 (5 母比率 pのより厳密な信頼区間. 点推定量の特性 (1 標本平均 X の持つ望ましい性質 ( 不偏性 (3 推定量の分散と有効性 (4 平均 乗誤差 MEと最小分散性 (5 一致性 (6 チェビシェフの不等式
統計Ⅰ 第1回 序説~確率
授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 あらためて注意しておきたいこと ( 前期のはじめに注意したこと +α) 後期の授業は今日を含め ( たった )6 回 成績評価は前期試験 + 後期試験で 後期の方が比重が大きいですが前期の出来が悪かった人はハンデがあると思ってください 後期試験の出題範囲には前期授業の内容も含まれます 復習も怠りなく 欠席した場合は次回までに要点の確認を 次回の授業までに授業スライドを
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
Microsoft PowerPoint - ch04j
Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,
CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研
CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育
_KyoukaNaiyou_No.4
理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布
統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0
統計学 Ⅱ(06) 0 章 0 章 0 章標本抽出と標本分布. 母集団と標本 () 視聴率調査 () 有限母集団と無限母集団 (3) データと母集団. 標本抽出法 () 全数調査と標本調査 () 無作為抽出と有意抽出 (3) 単純無作為抽出法 (4) 層別抽出法 (5) 多段抽出法 (6) 系統抽出法 (7) その他の抽出法 3. 標本平均 の標本分布 () 標本平均の標本分布の例 () 標本平均
Hara-statistics
全学共通授業科目 物理学実験平成 3 年度前期測定値の扱い方と誤差論 講義 神戸大学大学院理学研究科物理学専攻原俊雄 測定値を他人に提示するとき なぜ 誤差を考えなければならないのか? なぜ 誤差を測定値に付けなければならないのか? そもそも 誤差とは何か? 人間は 測定により真の値を知ることができるか? 人間は 真の値を知ることはできない 人間は 工夫することによって 限りなく真の値に近づくことができる
数値計算法
数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして
Microsoft PowerPoint - Lecture 10.ppt [互換モード]
講義予定 環境プラニング演習 II 第 0 回 009. 6. 7 千葉大学工学部都市環境システム学科 山崎文雄 http://ares.tu.cha-u.jp/ tu ujp/ ( 009 年 4 月 8 日 ( 土 :50 ー 4:0 演習の説明, 微分 積分と数値計算 ( 009 年 4 月 5 日 ( 土 :50 ー 4:0 微分 積分と数値計算 (3 009 年 5 月 9 日 ( 土 :50
Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (
http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
Microsoft PowerPoint - statistics08_03.ppt [互換モード]
授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 前回 ( 第 2 回 ) の授業の概要 : 第 1 回 ( 教科書第 9 章 順列 組合せと確率 ほぼ全部 ) の復習 教科書第 10 章 記述統計 S. TOKUNAGA 2 1 Overview 確率 (9 章 ) 記述統計 (10 章 ) 情報の要約 表やグラフで表す 代表値 ( 平均など ) や散布度 ( 分散など ) を求める 確率モデル
Microsoft PowerPoint 確率レジュメA
確率統計レジュメ集 ( 前半 ) 202.04.0 版 立命館大学 電子情報デザイン学科 この講義の目標 進め方 この講義は指定教科書の内容をしっかりと理解することを目的とする. 配布するレジュメは その理解を助けるための資料である. 必ず 教科書に書かれた基礎的な内容をひとつひとつ理解するように努めること. レジュメの空欄の箇所は 教科書からそのヒントを見つけることができる. 予習時に教科書を読み
最小二乗フィット、カイ二乗フィット、gnuplot
数値計算法 009 5/7 林田清 ( 大阪大学大学院理学研究科 ) 最尤法 (Maxmum Lkelhood Method) 回の ( 独立な ) 測定 xで, x,..., x 1 母集団が平均値 μgauss) 標準偏差 の正規 ( 分布の場合 1 回の測定で xから( xの間の値を観測する確率は + dx) dq = Pdx 1 1 x µ P exp π µ は不可知 推定値をとする µ
Microsoft PowerPoint - LectureB1handout.ppt [互換モード]
本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす
RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>
第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
0415
今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析
講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成
講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
9. 統計学I
9 年 7 月 8 日更新 Exercises i Computer-Aided Problem Solvig 9. 統計学 I 東北大学大学院工学研究科嶋田慶太 shimada@tohoku.ac.jp 目次 平均 分散 期待値 二項分布 ポアソン分布 統計学の役割 サンプリングした集団の性質について調べる サンプリングをもとに母集団の性質を推定する 記述統計学 推測統計学 何をしたいのか意識しないと辛い学問かも
( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π()
伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 数研通信 70 号を読んで チェビシェフの定理の精密化 と.5 の間に素数がある 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 さい才 の 野 せ瀬 いちろう 一郎 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 0. はじめに このたび,
DVIOUT
最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.
基礎数理 ()Aさんは確定拠出年金の加入者となった 投資商品は収益率がそれぞれ独立な正規分布 N(7, σ ), N(, σ y ) に従う,Y から選択することとした の過去 8 年間の収益率の実績は {8,,,5,,-,6,}(%) Y の過去 6 年間の収益率の実績は {,,,4,,}(%)
平成 年 月 日 基礎数理 基礎数理 ( 問題 ) 問題. 次の () から (9) までの各問について それぞれの選択肢の中から正しい答えを選んで 指定 の解答用紙の所定欄にその記号を記入せよ ( 点 ) ()5 個のサイコロを転がすとき 得られたの目の数を の目の数をY とする この同時密度関数を f (, y) としたとき f (,) である ( ア ) 6 ( イ ) 7 5 ( ウ ) 7
(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ
区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.
Microsoft Word - reg2.doc
回帰分析 重回帰 麻生良文. 前提 個の説明変数からなるモデルを考える 重回帰モデル : multple regresso model α β β β u : 被説明変数 epled vrle, 従属変数 depedet vrle, regressd :,,.., 説明変数 epltor vrle, 独立変数 depedet vrle, regressor u: 誤差項 error term, 撹乱項
MT2-Slides-13.pptx
計測工学 II 第 13 回 Excel による有意差の検定 今日の内容 第 13 回 Excel による有意差の検定 危険率や統計検定 を学習します 有意差とは? 計測して データを取りました データ処理して 特性を調べました それで 何がわかるの? ある治療法だと 病気の治癒率が高い! なぜ そう言い切ることができるの? 有意差があることを示す 意味の有る差 (Significant Difference)
景気指標の新しい動向
内閣府経済社会総合研究所 経済分析 22 年第 166 号 4 時系列因子分析モデル 4.1 時系列因子分析モデル (Stock-Watson モデル の理論的解説 4.1.1 景気循環の状態空間表現 Stock and Watson (1989,1991 は観測される景気指標を状態空間表現と呼ば れるモデルで表し, 景気の状態を示す指標を開発した. 状態空間表現とは, わ れわれの目に見える実際に観測される変数は,
統計学的画像再構成法である
OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
Microsoft PowerPoint - LectureB1_17woAN.pptx
本講義の範囲 都市防災工学 後半第 回 : 導入 確率過程の基礎 千葉大学大学院工学研究院都市環境システムコース岡野創 http://oko-lb.tu.chib-u.c.jp/oshibousi/. ランダム振動論 地震動を不規則波形 ( 確率過程 ) と捉えて, 構造物の地震応答を評価する理論. 震源モデルによる地震動評価 断層の動きを仮定して, 断層から発せられる地震動を評価する方法 ( 運動学的モデル
1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =
/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
1 日目の内容 午前 記述統計 1. データの表現 図表によるデータの可視化 2. データ分布の特徴づけ 代表値 : 平均, 中央値, 最頻値 散布度 : 分散, 標準偏差, 四分位偏差 3. データの比較 標準化 基準化 2 変数の関係 : 散布図, 共分散, 相関係数, クロス表 2
記述統計と確率変数 確率分布 統計数理研究所 坂田綾香 モデリング研究系 1 1 日目の内容 午前 記述統計 1. データの表現 図表によるデータの可視化 2. データ分布の特徴づけ 代表値 : 平均, 中央値, 最頻値 散布度 : 分散, 標準偏差, 四分位偏差 3. データの比較 標準化 基準化 2 変数の関係 : 散布図, 共分散, 相関係数, クロス表 2 1 日目の内容 午後 確率と統計
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
13章 回帰分析
3 章回帰分析の基礎 つ以上の変数についての関係を見る. つの変数を結果, その他の変数を原因として, 因果関係を説明しようとするもの. 厳密な意味での因果関係ではない 例 因果 相関関係等 勤務年数が長ければ, 年間給与は上がる. 景気が良くなれば, 株価は上がる 父親の身長が高ければ, 子供の身長も高い. 価格が低下すれば需要が増える. 自身の兄弟数が多いと, 育てる子供の数も多い. サッカー人気が上がると,
Chap2.key
. f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π
データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2
春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>
1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です