I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Size: px
Start display at page:

Download "I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT"

Transcription

1 I ( de Broglie (de Broglie p λ k h Planck ( Js p = h λ = k ( h π : Dirac k B Boltzmann ( J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = kg GaAs( a T = 300 K 3 fg f = 4, g = 5 f = g = 0 f = g = 9 f.g 0 kg = 45 kg 00 m/s ( = 4 b ( (L C R L C R (*, 3? (* Newton? a 3 b II ogawa@eedept.kobe-u.ac.jp (

2 4 7 ( y A C y A ( t 0 y( x,t 0 x B t 0 t W x W 0 : ( x y x A y ω y A (t = a sin(ωt + ϕ ( y A a t t 0 W 0 x t W t t 0 W 0 A C v x = v(t t 0 A C B (t t 0 C x t y(x, t t 0 y A (t 0 y(x, t = y A (t 0 ( x = v(t t 0 t 0 = t x v ( y(x, t = y A t x v (3 (4 t x y(x, t [ ( y(x, t = a sin ω t x ] = a sin(ωt kx (5 v ( k k = ω v = πf v = πf fλ = π λ π ( (5 p.7 (. (6

3 I ( y(x, t = A cos(kx ωt + ϕ ( ( v p (3b kx ωt + ϕ = ( ( v p = dx dt = ω k =? (3 y = A cos(kx ωt, y = A cos [(k + δkx (ω + δωt] (4 k δk, ω δω y = y + y [ ( δk = A cos x δω ] δk t ( [ cos k (x ω k t + ] (δk x δω t ( (5 p.: δk ( x δω δk t = δω v g lim δk 0 δk = dω dk (7 (6 ogawa@eedept.kobe-u.ac.jp,

4 ( W = 4.0 ev nm ( fg f = 4, g = 5 f.g 0 7 m m =450 nm f(x g(x ( u(x, t f(x + vt + g(x vt (8 u(x, t t = v u(x, t x (9 clue cos A + cos B = cos (A + B cos (A B (0

5 Schrödinger ( Ψ ( exp [ i(ωt kx] ( de Broglie Einstein( p = k, E = ω (a E = p m ( (b = Ψ exp [ i(ωt kx] ˆpΨ i t Ψ = ( i x Ψ = kψ = i ( iωψ = ωψ = E = p m ωψ = k m ψ i t ψ = ˆp m ψ = m x ψ ( H = p i q i L T + V = p + V (r ( m Ψ(r, t exp( iωt E = ω i Ψ(r, t = }{{ t Ĥ Ψ(r, t } ( E Schrödinger (3a ( ω Ĥ ( E = m + V (r ( ( (3b ( m Newton dp x dt = mdv x = 0 ( =0 [N] (4 dt 3

6 I (008 5 Schrödinger ( Ψ ( exp [ i(ωt kx] ( de Broglie Einstein( p = k, E = ω (a E = p m ( (b = Ψ exp [ i(ωt kx] ˆpΨ i t Ψ = ( i x Ψ = kψ = i ( iωψ = ωψ = E = p m ωψ = k m ψ i t ψ = ˆp m ψ = m x ψ ( H = p i q i L T + V = p + V (r ( m Ψ(r, t exp( iωt E = ω i Ψ(r, t = }{{ t Ĥ Ψ(r, t } ( E Schrödinger (3a ( ω Ĥ ( E = m + V (r ( ( (3b ( m Newton dp x dt = mdv x = 0 ( =0 [N] (4 dt

7 ( ( t Ψ(r, t i = ĤΨ(r, t (5 t ( Ĥ Ψ(r, t = ψ(r T (t (r (t Ψ(r, t = t t ĤΨ(r, t = (ψ(rt (t = ψ(rdt (t dt (6 Ĥ (ψ(rt (t = T (tĥψ(r Ĥ (7 (5 Ψ(r, t = ψ(r T (t dt (t i ψ(r = T (t dt Ĥψ(r dt (t i dt Ĥψ(r = = = T (t ψ(r = = E ( Ĥψ(r = Eψ(r (4a = dt (t i dt = ET (t (4b Ĥψ(r = Eψ(r (4a (

8 : Ψ(r, t = A exp[ i(ωt k r] ( r 0 P 0 n P r ( k = (k x, k y, k z 0 k n (3 k a λ π/ k = π/k r 0 = λn (,( r 0 n k, r (4 brace A exp[ i(ωt k r] (8 ( r ( = ωt k r = ( = C 0 (9 C 0 = ωt r k (5 (4 (4 π (3 (6 (4 (5 (7 k = (k x, 0, 0 a 4 0 : 3

9 I ( ( ( t Ψ(r, t i = ĤΨ(r, t ( t ( Ĥ Ψ(r, t = ψ(r T (t (r (t Ψ(r, t t = t (ψ(rt (t = ψ(rdt (t dt ( ĤΨ(r, t = Ĥ (ψ(rt (t = T (tĥψ(r Ĥ (3 ( Ψ(r, t = ψ(r T (t = dt (t i ψ(r = T (t dt Ĥψ(r i dt (t dt T (t = Ĥψ(r = ψ(r = = E ( Ĥψ(r = Eψ(r = (4a dt (t i dt = ET (t (4b Ĥψ(r = Eψ(r (4a ( (4b T (t T (t = exp ( i E ( t = exp( iωt ω = E (5 Ψ(r, t = ψ(r exp ( i E t (6 (

10 Born Ψ(x, t Ψ(x, t t x Ψ(x, t dx t x x + dx dx : dx Ψ(x, t = = Ψ(r, t Ψ(r, t dr = Ψ(r, t Ψ(r, tdr = (7 E Ψ(r, t Ψ(r, t = ψ(r exp ( i E t (8 ψ(r ( Schrödinger ρ(r, t = Ψ(r, t = ψ(r t (9 ψ(r dr = (0 ψ(r  < A > < A >= dr ψ (râψ(r ( x < x >= dr ψ (rxψ(r ( p x ˆp x = i < p x >= dr ψ (r i x ψ(r (3 x

11 Schrödinger Schrödinger ( a ( r ( = x, y, z, r = x + y + z ( q [C] r q [C] F q = e ( (3 (,( V (r b (4 (3 H m 0 p (5 (: (4 p ˆp = i x x ˆx = x (5 Ĥ ψ(x Schrödinger ( a, p.30 5 ( (004. b r 3

12 I ( Born Ψ(x, t Ψ(x, t t x Ψ(x, t dx t x x + dx dx : dx Ψ(x, t = = Ψ(r, t Ψ(r, t dr = Ψ(r, t Ψ(r, tdr = ( E Ψ(r, t Ψ(r, t = ψ(r exp ( i E t ( ψ(r ( Schrödinger ρ(r, t = Ψ(r, t = ψ(r t (3 ψ(r dr = (4 Â Âφ(r = a φ(r (5 φ(r A a A ψ(r A a Schrödinger Ĥψ(r = Eψ(r E Ĥ ψ(r ( ψ (r drψ (râψ(r = a ( p.37

13  ψ (Âψ(r (râϕ(rdr = ϕ(rdr (6 [ ] = ψ Âϕ = Âψ ϕ (Dirac (7  ( ( = ψ, ϕ ψ (rϕ(rdr = ψ ϕ = 0 (8 ψ(r  < A > < A >= dr ψ (râψ(r (9 x < x >= dr ψ (rxψ(r (0 p x ˆp x = i < p x >= dr ψ (r i x ψ(r ( x,, (005 p

14 0 x L ( ψ n (x = L sin ( nπ L x ( ( Hamiltonian Ĥ = : d (n =,, 3, d m dx Schrödinger m dx ψ n(x = E n ψ n (x (0 x L ( E n ( n subscript n (3 ( ψ n (x ˆp x ( (4 ( ψ n (x L 0 ψ m(xψ n (xdx = ψ m ψ n = δ mn (3 a a Fourier 3

15 I (008 5 A Au = λu ( λ( u λ A u  Âψ(r = a ψ(r [  ψ = a ψ (Dirac ] ( a  ψ(r  A u = λ u (  ψ(r = a ψ(r (  ψ = a ψ (3 [ ] ψ(x = A exp(ikx ˆpψ(x = i (* ˆp ( = i x [A exp(ikx] = k A exp(ikx = k ψ(x (4 x ( (* ˆp k  ψ (Âψ(r (râϕ(rdr = ϕ(rdr (5 [ ] = ψ Âϕ = Âψ ϕ (Dirac (6  ( (** ( pp ( =

16 ψ, ϕ ψ (rϕ(rdr = ψ ϕ = 0 (7  a n ψ n (r  ψ n (r = a n ψ n (r (8 ψ n ψ n = ( (9 a m ψ m (r (n m (** ψ m ψ n = 0 (0 (9,(0 (m = n ψ m ψ n = δ mn = 0 (m n ( Dirac φ(r, ψ(r drφ Dirac (rψ(r = φ ψ ( bra ket ( dr u m (ru n (r = δ mn Dirac = u m u n = δ mn Φ(r = m ϕ mu m (r  [Â] mn = dr u mâ(ru n(r A Dirac = Φ = m ϕ m u m Dirac = [Â] mn = u m Âu n = u m  u n = m  n A P i A i < A > < A >= P i A i Schrödinger Ĥψ(r = Eψ(r ψ A < A > < A > drψ Âψ = ψ  ψ ( A < A >

17 φ(r, ψ(r, ξ(r : Â(φ + ξ = Âφ + Âξ : Âφ = ϕ, ˆBφ = ξ = ( Â + ˆBφ = ϕ + ξ Âφ = ϕ, ˆBϕ = ξ ˆB (Âφ = ξ = ˆBÂφ = ξ φ Â ˆB ξ ] Â, ˆB [Â, ˆB Â ˆB [Â, ˆB] ˆB Â ] = 0 Â, ˆB, [Â, ˆB 0 Â, ˆB, ψ ( Â, ˆB Â ˆB ( [Â, ˆB] ψ = Â ˆBψ ˆBÂψ 3

18 0 x L ψ n (x = L exp ( i nπ L x ( (n = 0, ±, ±, ψ n (x + L = ψ n (x a ψ n (x L 0 ψ m(xψ n (xdx = ψ m ψ n = δ mn ( 3 ˆp x ( = i d dx b 4 c < p x > 5 Hamiltonian Ĥ = d d m dx E n a p b c ( d Hamiltonian ( (Hamiltonian =Schrödinger 4

19 I ( ( Ψ A (x, t, Ψ B (x, t k ω Ψ A (x, t = exp { i [(ω + ωt (k + kx]} Ψ B (x, t = exp { i [(ω ωt (k kx]} (a (b Ψ A (x, t + Ψ B (x, t = exp { i [(ω + ωt (k + kx]} + exp { i [(ω ωt (k kx]} = exp [ i (ωt kx] {exp [ i ( ω t k x] + exp [i ( ω t k x]} = cos( ω t kx exp [ i (ωt kx] ( ( : ( ( v g dω/dk (p.8 φ(x, t ( /4 ] exp [ π π (k k 0 exp [ i (ω(kt kx] dk (3 =a(k (.8 ω E(k = ω = p m = k m ( ( (.7, (.3 ogawa@eedept.kobe-u.ac.jp, (TA

20 t = 0 (.5 φ(x, t = 0 = exp (π /4 ( x exp(ik 0 x φ(x, t = 0 = φ(x, t = 0 φ(x, t = 0 exp( ik 0 x = (π = (π exp ( x /4 exp ( x / exp ( x (π /4 exp(ik 0 x (4 : (Gauss FWHM= ln.67 (.8 φ(x, t = 0 = a(k = π exp ( x exp(ik (π /4 0 x a, b > 0 e a x +ibx π dx = a(k = φ(x, 0e ikx dx (5 b a e 4a (6 e x ( 4π 3 /4 +i(k0 kx dx = ( π /4 ] exp [ (k k 0 p.44 (* E(k = ω = k (.9 (.8 m φ(x, t = ( /4 ] exp [ (k k0 exp [ i (ω(kt kx] dk π π ( /4 ( ] = dk exp [ 4π 3 (k k 0 + i kx k 0 m (7 (8

21 (6 φ(x, t = ( π ( / [ ] /4 + i m t exp x i k 0 x + (i k0 /mt + (i t/m (9 φ(x, t = ( x k 0 [ exp t ] m (0 π (t (t ( (t = + m 4 t ( t 0 k 0 m t t (t k/m ( Hamiltonian Ĥ d Ĥ = + V (x ( m dx [Ĥ, x ] (3 φ(x [Ĥ, x ] φ(x HP? 3

22 I ( Newton < x >= Ψ x Ψ = dxψ (x, txψ(x, t ( (a < p x >= Ψ ˆp x Ψ = dxψ (x, t d Ψ(x, t ( (b i dx d < x > = dt m < p x > d < p x > =< F (x > dt (a (b [ ] ˆx = x ˆx t = 0 d < x > dt = d dt Ψ ˆx Ψ Ψ = t ˆx Ψ Ψ = t ˆx Ψ + + Ψ ˆx t Ψ + Ψ ˆx Ψ t Ψ ˆx Ψ t (3 Schrödinger Ψ(x, t t = i ĤΨ(x, t (4 d < x > = i ĤΨ dt ˆx Ψ i Ψ ˆx ĤΨ ( = i Ψ Ĥˆx Ψ i Ψ ˆxĤ Ψ = i Ψ Ĥˆx ˆxĤ Ψ Ĥ = i < [Ĥ, x ] > (.6 (5 [Ĥ, x ] = i m ˆpx (6 (5 9 d < x > dt = m < px > (7 ogawa@eedept.kobe-u.ac.jp,

23 ˆp x ˆpx = 0 t d < p x > dt = d dt Ψ ˆp x Ψ Ψ = t ˆpx Ψ + Ψ Ψ ˆpx t = i ĤΨ ˆp x Ψ i Ψ ˆp x ĤΨ = i < [Ĥ, ˆpx ] > (.3 (8 ] [Ĥ, ˆpx ϕ(x = Ĥˆp xϕ(x ˆp x Ĥϕ(x d < p x > dt = [ = m = i ] d m dx + V (x i dϕ dx i d 3 ϕ i dx + V (x dϕ 3 i dx + m d [ d ϕ dx m d 3 ϕ i dx 3 i ] dx + V (xϕ [ dv (x dx dϕ ϕ + V (x dx dv (x ϕ(x (9 dx = i ] [Ĥ, < ˆpx >= < dv (x dx >=< F (x > (.3 (0 ] ( Schrödinger m Ψ(x, t = Ψ(x, t ( i t (5 8 [ Ψ(x, t = A exp i (kx E ] t ( k ( E A Ψ(x, t ( < p > (? ( Ehrenfest? (3 < v > < p > m [clue:( ] (4 ( E (, m, k [clue: ( (.] (3

24 x p x x p x E t ( ( = h π [Js] [ ] A B  ˆB < A > < B > A B A B ( A =< A > < A > = ϕ ( < A > ϕ = ϕ ( < A > ϕ ( B =< B > < B > = ϕ ( ˆB < B > ϕ = ϕ ( ˆB < B > ϕ (4a (4b  ˆB 3 ( A = ( < A >ϕ ( < A >ϕ = ( < A >ϕ (5a ( B = ( ˆB < B >ϕ ( ˆB < B >ϕ = ( ˆB < B >ϕ (5b Schwarz ( ( A ( B = ( < A >ϕ ( ˆB < B >ϕ ( < A >ϕ ( ˆB < B >ϕ = ϕ ( < A >( ˆB < B >ϕ (6   < A >  ˆB < B > ˆB  ˆB = (  ˆB ˆB  + (  ˆB + ˆB  [ ] Â, ˆB [ ] Â, ˆB = [Â, ˆB] + { } Â, ˆB (7 (8 ( η ξ ] ] η [Â, ˆB ξ = [Â, ˆB η ξ (9a { } { } η Â, ˆB ξ = Â, ˆB η ξ (9b { } ( [Â, ˆB] Â, ˆB (7 <  ˆB > = ] [Â, < ˆB > + } < { Â, ˆB > (0 <  ˆB > = ] 4 [Â, < ˆB > + } 4 < { Â, ˆB > ] 4 [Â, < ˆB > ( ( 3

25 (6,(7,( ( A ( B ] 4 [Â, < ˆB > (3 Â = x, ˆB = ˆpx [x, ˆp x ] = i ( x ( p x 4 [x, ˆp x] = 4 i = 4 (4 ( x( p x (5 [Ê, t] = i ( E( t (6 Schwartz ψ ϕ ψ ϕ [ ] ψ 0 0 ψ 0 (A ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ϕ ψ = ψ ϕ ϕ ψ ϕ ϕ ψ ψ ϕ ϕ ψ + ψ ϕ ϕ ψ ( = ψ ϕ ϕ ψ ϕ ϕ ψ ϕ ψ ψ ϕ ψ ψ + ψ ϕ ϕ ψ ψ ψ ψ ψ (7 t ϕ ψ ψ ψ t = ψ ϕ ψ (A = ψ ( ϕ ϕ t ϕ ψ t ψ ϕ + t t ψ ψ = ψ ϕ tψ ϕ tψ = ψ ϕ tψ 0 (8 Ĉ ψ Ĉϕ = Ĉψ ϕ C < C > ϕ Ĉϕ < C > = ϕ Ĉϕ = Ĉϕ ϕ = ϕ Ĉϕ =< C > ( Ĉ ˆD ψ ˆDϕ = ˆDψ ϕ ˆD < D > = ϕ ˆDϕ = ˆDϕ ϕ = ϕ ˆDϕ = < D > 4

26 I (008 6 (6 Schrödinger [ Ψ(x, t = A exp i (k x x E ] t ( A Ψ(x, t = Ψ(x, t Ψ(x, t = dx Ψ(x, t = ( = A dx ( s x [ s x (x, t Re = Ψ (x, t ˆp x Ψ(x, t m ( Ψ (x, t m i ] (Re x Ψ(x, t Ψ(x, t m i x Ψ (x, t (3 a s x (x, t = k x ρ(x, t (4 m ρ(x, t Ψ(x, t (clue: (3 Ψ(x, t = Ψ (x, tψ(x, t < v x > (? s x ρ < v x > 3 n [m 3 ] < v > [ms ] j [Am ] ( q [C] analogy( a x ogawa@eedept.kobe-u.ac.jp,

27 ρ = Ψ(r, t = Ψ (r, tψ(r, t s(r, t Re [Ψ (r, t ˆpm ] Ψ(r, t = ( Ψ (r, t m i Ψ(r, t Ψ(r, t m i Ψ (r, t ρ t = s ( [ ] Ψ(r, t ρ(r, t Ψ(r, t ρ(r, t t = Ψ(r, t t = t [Ψ (r, tψ(r, t] = Ψ (r, t Ψ(r, t + Ψ Ψ(r, t (r, t t t Ψ(r, t Schrödinger (5 ĤΨ(r, t = i Ψ(r, t t (A ρ(r, t t Hamiltonian = [ Ψ ĤΨ i ΨĤΨ ] (7 Ĥ = ˆp + V (r = m m + V (r (8 (A = i [ Ψ Ψ Ψ Ψ ] (9 m (φ ψ = φ ψ + φ ψ ( (A = i m [Ψ Ψ Ψ Ψ ] [ ( = Ψ m i Ψ Ψ ] m i Ψ (6 (0 s(r, t Re [Ψ (r, t ˆpm ] Ψ(r, t = [ Ψ (r, t m i Ψ(r, t Ψ(r, t ] m i Ψ (r, t ( (7 ρ(r, t t = s(r, t ( 3 (r, t t = J(r, t ( : [Cm 3 ] J : [Am ] (3 3 g (f x x = f g x x + f g x 3 W.H. Heit I,II

28 ρ ( (, s ( J ( (4 (7 [] x, y, z e x,e y,e z ψ = ψ x e x + ψ y e y + ψ z e z φ φ ψ = φ ψ x e x + φ ψ y e y + φ ψ z e z divergence (φ ψ = ( φ ψ x x + x ( φ ψ + ( φ ψ y x z = φ ψ x x + φ ψ x + φ ψ y y + φ ψ y + φ z ( ( φ φ φ ψ = ex + ey + x y z ez x = φ ψ + φ ψ ψ z + φ ψ z ψ ψ ex + ey + y z ez ( ψ + φ x + ψ y + ψ z [Gauss ] A(r V S S n A(r n ds = Adr (5 :S :V ( 4 A A (divergence A ( A 0 n= 0 ( x + x, y, z x ( x, y, z z ( x, y, z A ( x, y+ y, z 0 n= 0 y ( x, y+ y, z ( x + x, y+ y, z : Gauss : Gauss A ( x x y y z z A (5 A(x, y, z n x z = A y (x, y, z x z ( y (6 A A(x, y + y, z n x z = A y(x, y + y, z x z ( y 4 Gauss Gauss 3

29 Taylor A y (x, y + y, z A y (x, y, z + A y(x, y, z y y A A y (x, y + y, z x z A y (x, y, z x z + A y(x, y, z x y z (7 y (6 (7 ( =, 3,3 Ay(x, y, z x y z (8 y ( = A x(x, y, z x y z x ( 3 3 = A z(x, y, z x y z z (5 = A(r nds = ( Ax x + A y y + A z x y z = A V z ( (9a (9b (0 (5 4

30 x p x x p x E t ( ( = h π [Js] [ ] A B  ˆB < A > < B > A B A B ( A =< A > < A > = ϕ ( < A > ϕ = ϕ ( < A > ϕ ( B =< B > < B > = ϕ ( ˆB < B > ϕ = ϕ ( ˆB < B > ϕ (a (b  ˆB 3 ( A = ( < A >ϕ ( < A >ϕ = ( < A >ϕ (a ( B = ( ˆB < B >ϕ ( ˆB < B >ϕ = ( ˆB < B >ϕ (b Schwarz ( ( A ( B = ( < A >ϕ ( ˆB < B >ϕ ( < A >ϕ ( ˆB < B >ϕ = ϕ ( < A >( ˆB < B >ϕ (3   < A >  ˆB < B > ˆB  ˆB = (  ˆB ˆB  + (  ˆB + ˆB  [ ] Â, ˆB [ ] Â, ˆB = [Â, ˆB] + { } Â, ˆB (4 (5 ( η ξ ] ] η [Â, ˆB ξ = [Â, ˆB η ξ (6a { } { } η Â, ˆB ξ = Â, ˆB η ξ (6b { } ( [Â, ˆB] Â, ˆB (4 <  ˆB > = ] [Â, < ˆB > + } < { Â, ˆB > (7 <  ˆB > = ] 4 [Â, < ˆB > + } 4 < { Â, ˆB > ] 4 [Â, < ˆB > (8 (9 5

31 (3,(4,(9 ( A ( B ] 4 [Â, < ˆB > (30 Â = x, ˆB = ˆpx [x, ˆp x ] = i ( x ( p x 4 [x, ˆp x] = 4 i = 4 (3 ( x( p x (3 [Ê, t] = i ( E( t (33 Schwartz ψ ϕ ψ ϕ [ ] ψ 0 0 ψ 0 (A ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ϕ ψ = ψ ϕ ϕ ψ ϕ ϕ ψ ψ ϕ ϕ ψ + ψ ϕ ϕ ψ ( = ψ ϕ ϕ ψ ϕ ϕ ψ ϕ ψ ψ ϕ ψ ψ + ψ ϕ ϕ ψ ψ ψ ψ ψ (34 t ϕ ψ ψ ψ t = ψ ϕ ψ (A = ψ ( ϕ ϕ t ϕ ψ t ψ ϕ + t t ψ ψ = ψ ϕ tψ ϕ tψ = ψ ϕ tψ 0 (35 Ĉ ψ Ĉϕ = Ĉψ ϕ C < C > ϕ Ĉϕ < C > = ϕ Ĉϕ = Ĉϕ ϕ = ϕ Ĉϕ =< C > ( Ĉ ˆD ψ ˆDϕ = ˆDψ ϕ ˆD < D > = ϕ ˆDϕ = ˆDϕ ϕ = ϕ ˆDϕ = < D > 6

32 I ( (6 9 (Newton m x(t F Newton t = 0 v 0 x 0 t φ(x = exp (π /4 ( x ( ( p.43 (.5 or 5 9 < x < 3 ( x x ( φ(x ( 4 3 < x > 5 3 < p x > 6 x p x ( x p x ( x < x > < x > ( p x < p x > < p x > (a (b 3 5 ( x ( p x a, b > 0 x n e a x (n!! π dx = n a 4n+ (3 (n!! = 3 (n e a x π +ibx b dx = a e 4a. (4 7 6 x p x : ( ( (Gauss FWHM= ln.67 ogawa@eedept.kobe-u.ac.jp,

33 x p x x p x E t ( ( = h π [Js] [ ] A B  ˆB < A > < B > A B A B ( A =< A > < A > = ϕ ( < A > ϕ = ϕ ( < A > ϕ ( B =< B > < B > = ϕ ( ˆB < B > ϕ = ϕ ( ˆB < B > ϕ (5a (5b  ˆB 3 ( A = ( < A >ϕ ( < A >ϕ = ( < A >ϕ (6a ( B = ( ˆB < B >ϕ ( ˆB < B >ϕ = ( ˆB < B >ϕ (6b Schwarz ( ( A ( B = ( < A >ϕ ( ˆB < B >ϕ ( < A >ϕ ( ˆB < B >ϕ = ϕ ( < A >( ˆB < B >ϕ (7   < A >  ˆB < B > ˆB  ˆB = (  ˆB ˆB  + (  ˆB + ˆB  [ ] Â, ˆB [ ] Â, ˆB = [Â, ˆB] + { } Â, ˆB (8 (9 ( η ξ ] ] η [Â, ˆB ξ = [Â, ˆB η ξ { } { } η Â, ˆB ξ = Â, ˆB η ξ { } ( [Â, ˆB] Â, ˆB (8 <  ˆB > = ] [Â, < ˆB > + } < { Â, ˆB > ( <  ˆB > = ] 4 [Â, < ˆB > + } 4 < { Â, ˆB > ] 4 [Â, < ˆB > (0a (0b ( (3

34 (7,(8,(3 ( A ( B ] 4 [Â, < ˆB > (4 Â = x, ˆB = ˆpx [x, ˆp x ] = i ( x ( p x 4 [x, ˆp x] = 4 i = 4 (5 ( x( p x (6 [Ê, t] = i ( E( t (7 Schwartz ψ ϕ ψ ϕ [ ] ψ 0 0 ψ 0 (A ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ψ ϕ = ψ ϕ ϕ ψ ϕ ϕ ψ = ψ ϕ ϕ ψ ϕ ϕ ψ ψ ϕ ϕ ψ + ψ ϕ ϕ ψ ( = ψ ϕ ϕ ψ ϕ ϕ ψ ϕ ψ ψ ϕ ψ ψ + ψ ϕ ϕ ψ ψ ψ ψ ψ (8 t ϕ ψ ψ ψ t = ψ ϕ ψ (A = ψ ( ϕ ϕ t ϕ ψ t ψ ϕ + t t ψ ψ = ψ ϕ tψ ϕ tψ = ψ ϕ tψ 0 (9 Ĉ ψ Ĉϕ = Ĉψ ϕ C < C > ϕ Ĉϕ < C > = ϕ Ĉϕ = Ĉϕ ϕ = ϕ Ĉϕ =< C > ( Ĉ ˆD ψ ˆDϕ = ˆDψ ϕ ˆD < D > = ϕ ˆDϕ = ˆDϕ ϕ = ϕ ˆDϕ = < D > 3

35 I ( V = 0 Hamiltonian H = p x m Schrödinger d p x ˆp x = i x d = Ĥ = m dx ( ϕ(x = Eϕ(x ( m dx ϕ(x = A e ikx ( ( k = ± me ( (3 ϕ(x = A e ikx (k (4 k E = k m E k Schrödinger Φ(x, t (4 Φ(x, t = ϕ(x exp ( i E t = A exp[i(kx ωt] (ω = E (6 (5 ρ(x = ϕ ϕ(x = A ϕ ˆp x ϕ(x = k ( 3 Hamiltonian Ĥ = m = m ( x + y + z (7 Schrödinger ϕ(x, y, z ( m x + y + z ϕ(x, y, z = Eϕ(x, y, z (8 (5 [ ] X(x, Y (y, Z(z x y z ϕ(x, y, z ϕ(x, y, z = X(xY (yz(z (8 ϕ(x, y, z ( 0 X m X = E + Y m Y + Z m Z (9 ogawa@eedept.kobe-u.ac.jp ( TA

36 x y,z E x y z E y E z (8 m X (x = E xx(x m Y (y = E yy (y m Z (z = E z Z(z E = E x + E y + E z (0a (0b (0c (0d mex mey mez k x = ± k y = ± k z = ± ( 3 ϕ(x, y, z = A e i(kxx+kyy+kzz = A e ik r ( E = E x + E y + E z = ( kx + k y + k z = k m m (3 = ( nm nm x, y, z L x, L y, L z ϕ(x, y, z = ϕ(x + L x, y, z = ϕ(x, y + L y, z = ϕ(x, y, z + L z (4 Schrödinger ( k k x = n xπ L x, k y = n yπ L y, k z = n zπ L z, (n x, n y, n z = 0, ±, ±, (5 = ρ(rdr = A L x L y L z A V (V (6 ϕ(r = V e ik r (7 (3 (5 L x ( x+ Lx φ( x φ = L x :

37 + x < 0 V (x = 0 0 x L + x > L (8 V( x potential 0 L x : (QW:Quantum Well Schrödinger 0 < x < L Ĥψ(x = d ψ(x m dx = Eψ(x ( (9 x < 0, x > L ( ψ(x = 0 (0 (ψ(x x = 0, L ψ(x = 0 ( ψ + me ψ = 0. ψ = e ikx k +me/ = 0. k = ± me. ψ(x = e +ikx, e ikx k ( C,C ψ(x = C e +ikx + C e ikx. ( ψ(0 = 0 C e 0 + C e 0 = C + C = 0 C = C. ψ(x = C e +ikx C e ikx = ic sin kx. ( ψ(l = 0 i sin(kl = 0 kl = nπ (n =,, 3,. ( nπ ψ n (x = C sin L x = C sin(k n x (n =,, 3,. (3 (3 k n = nπ L = men (4 3

38 E n = kn ( m = nπ (n =,, 3, k n m L (5 (4 = L ψ(x dx = L 0 0 C sin (k n xdx = L (6 ψ(x = L sin(k nx. (7 (? 3: (n =,, 3 4

39 I ( ( V 0 x < L V (x = 0 L x L V 0 x > L ( V( x potential V 0 L 0 L x : (finite potential QW Schrödinger d m dx ψ(x + V 0ψ(x = Eψ(x d m dx ψ(x = Eψ(x L x L E (a,(b : x < L, L < x (a (i ψ(x dψ(x dx (ii ( =0 ψ(± = 0 (b ( C,C ψ(x = C e +ikx + C e ikx (3a = A cos(kx + B sin(kx (3b me k = (3c ogawa@eedept.kobe-u.ac.jp (

40 ( V 0 E > 0 (a d m ψ(x = dx (V 0 Eψ(x (4 (4 ψ(x = Ce κx + De κx m(v0 E κ = (κ (6 (5 (ii (x ± ψ(x = Ce κx x > L ψ(x = De κx x < L (7a (7b [ ( ] (i (3b (7a,(7b V (x V ( x = V (x Schrödinger ψ(x ( ψ( x = ψ(x (ψ (8a ψ( x = ψ(x (ψ (8b ( cos x x sin x x (a ψ(x (3b (7a,(7b Ce κx x > L ψ(x = A cos(kx x L Ce κx x < L (9 x = L 3 C exp ( ( κl = A cos kl (ψ κc exp ( ( κl = ka sin kl (0 ( dψ dx ( kl κ = k tan ( ψ(x = Ce κx (C κ = m(v 0 E/ (> 0 e κx e κx. 3 x = L

41 k κ (3c (6 E ( E (transcendental equation (bisection method Newton 4 ( α kl β κl ( (3c (6 E α + β = mv 0L (3 α,β r 0 = mv 0 L / 4 k κ ( ( (3 k κ ( (b ψ(x (3b (7a,(7b Ce κx x > L ψ(x = B sin(kx x L Ce κx x < L x = L 5 C exp ( ( κl = B sin kl (ψ κc exp ( ( κl = kb cos kl (5 ( dψ dx (4 ( kl κ = k cot (6 (a (6 (3 k κ β = α tanα β = α cot α 4 0 π/ π 3π/ α π : ( (3 (6 (3 4 ISBN (006 5 x = L 3

42 (3 6 = ψ(x dx = L/ C e κx dx } {{ } (A L/ + L/ a cos kxdx } {{ } (B + L/ C e κx dx } {{ } (C (7 (A = C [ e κx ] L/ κ = C (B = A L/ L/ (0 κ e κl = (C ((A x x (8 [ x + ] L/ sin kx = (L A + k k sin kl (9 ( + cos kx dx = A κc exp( κl = k A sin kl (0 L/ (7 (9 = A [ L + k ( + k κ ] sin kl ( A = ( ( L + k + k κ sin kl C (0 ( k κl C = sin kl exp A (3 κ B D ψ E ψ E 3: ( ( ( 6 A, B, C ( 4

43 (* x x V ( x = V (x [ ] d m dx + V (x ψ( x = Eψ( x (4 ψ(x ψ( x,ψ( x ψ(x ( (** ψ( x = Cψ(x (5 x x ψ(x = Cψ( x = C ψ(x C = ± C = C = (** ψ (x ψ (x E d m dx ψ (x + V 0 ψ (x = Eψ (x d ψ(x + V0ψ(x = Eψ(x m dx (6b (6a (6a ψ (x (6b ψ (x /m d ψ (x ψ dx (x + d ψ (x ψ dx (x = 0 (6c dw (x dx d dx Wronskian W (x ψ (x dψ (x dx ψ (x = 0, dψ (x dx W (x = dψ (x dx ψ (x + dψ (x dx ψ (x = C ( (7 ψ (± = 0, ψ (± = 0 C = 0 (6d (6e ψ (x ψ (x = ψ (x ψ (x (8 log ψ (x = log ψ (x + Const (9 ψ (x = Cψ (x (30 5

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information