,2,4

Size: px
Start display at page:

Download ",2,4"

Transcription

1 ,2,4

2

3 iii 1 Hilbert Hilbert

4

5 (Hilbert) = /() 1 (a 1, b 1 ) 1.1 (a 2, b 2 ) (a 3, b 3 ) md 2 x/dt 2 = F (a 1 a 2 ) 2 + (b 1 b 2 ) 2, (a 1 a 2 )(a 1 a 3 ) + (b 1 b 2 )(b 1 b 3 ) (1.1) xy ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 (1.2) (a + c) 2 : ac b 2 (1.3) ɛ (a + c) 2 ac b 2 = 2 + (1 ɛ2 ) ɛ 2 0 < 1 1 > 1 (a+c) 2 ac b 2 4 > D := det a b b c d e d e f D 2 : (ac b 2 ) π 4 D 2 /(ac b 2 ) a+c, ac b 2 D

6 cos θ sin θ r g = sin θ cos θ s a b d b c e d e f t g a b d b c e d e f g (1.4) D ( a10 + a 11 x + a 12 y (x, y) a 00 + a 01 x + a 02 y, a ) 20 + a 21 x + a 22 y a 00 + a 01 x + a 02 y det(a ij ) = D 4.3 a + c, ac b 2 D 2 {1, 2,..., n} n! S n x 1,..., x n f(x 1,..., x n ) f(σ(x 1 ),..., σ(x n )) = f(x 1,..., x n ) σ S n σ(x i ) x σ(i) x 3 + y 3 + z 3 xyz 3 x, y, z 1. 3 x, y, z 4 *1 4 a, b, c, d a(x 4 +y 4 +z 4 )+b(x 3 y+xy 3 +x 3 z +xz 3 +y 3 z +yz 3 ) +c(x 2 y 2 + x 2 z 2 + y 2 z 2 ) + d(x 2 yz + xy 2 z + xyz 2 ) n (t + x i ) = (t + x 1 )(t + x 2 ) (t + x n ) i=1 t s 1 = x 1 + x x n s 2 = i<j x ix j s 3 = i<j<k x ix j x k s n = x 1 x 2 x n s r x 1, x 2,..., x n r r 2 ( ). x 1, x 2,..., x n s 1, s 2,..., s n f = x 3 y + x 3 z + xy 3 + xz 3 + y 3 z + yz 3 f xxxy = x 3 y s a 1s b 2s c 3 x a (xy) b (xyz) c = x a+b+c y b+c z c x 3 y s 2 1s 2 f s 2 1s 2 = x 2 yz xy 2 z xyz 2 2(xy + xz + yz) 2 xxyy 2 2s 2 2 f s 2 1s 2 + 2s 2 2 = x 2 yz xy 2 z xyz 2 f = s 2 1s 2 2s 2 2 s 1 s 3 *1 x p y q z r p + q + r

7 4 3 3 f(x 1,..., x n ) 1 i < j n 5. f(x 1,..., x n ) f(σ(x 1 ),..., σ(x n )) = f(x 1,..., x n ) (1.6) f(x 1,..., x i,..., x j,..., x n ) = f(x 1,..., i ˇx j,..., jˇx i,..., x n ) (1.5) σ A n x 2 1 x 2 2 x 1, x 2 (x 1, x 2,..., x n ) := (x i x j ) 1 i<j n = (x 1 x 2 )(x 1 x 3 )(x 1 x 4 ) (x 1 x n ) (x 2 x 3 )(x 2 x 4 ) (x 2 x n ) (x 3 x 4 ) (x 3 x n ) (x n 1 x n ) x 1, x 2,..., x n 3. (x) 1.5 x i = x j f(x 1,..., x n ) f(x) x i x j (x) f(x)/ (x) 4. x 3 (y z) + y 3 (z x) + z 3 (x y) x, y, z (x y)(x z)(y z)(x + y + z) (x) 2 4 σ S n (σ(x 1 ),..., σ(x n )) = ± (x 1, x 2,..., x n ) 6. f = f(x 1,..., x n ) x 1 x 2 f 1 f 1 (f + f 1 )/2 (f f 1 )/2 3 f(x), g(x) f(x) + (x)g(x) 2 7. s 1, s 2,..., s n (x) S S n 8. f(x 1,..., x n ) 1.6 S σ S S S n A n 9. S (12)(34), (14)(23) *2 S f(x 1, x 2, x 3, x 4 ) = f(x 2, x 1, x 4, x 3 ) = f(x 4, x 3, x 2, x 1 ) f s 1, s 3 x 1 x 2 + x 3 x 4, x 1 x 4 + x 2 x 3, x 1 x 3 + x 2 x 4 + σ A n *2 (13)(24) Klein 4

8 S n n GL(n) A = (a ij ) 1 i,j n x i x i A := n a ji x j, j=1 f(x 1,..., x n ) 1 i n f(x 1 A,..., x n A) = f(x 1,..., x n ) A S GL(n) S ( ) f(x, y) A = 0 1 f(x, y) = f(x, y) y A x y 2 ( ) f(x, y) A = 0 1 f(x, y) = f( x, y) A x 2, xy y S 1 1 1, S f(x, y, z) x 2, y 2, z 2 xyz f(x 1, x 2, x 3, x 4 ) = f(x 2, x 1, x 4, x 3 ) = f(x 4, x 3, x 2, x 1 ) y 1 = x 1 + x 2 + x 3 + x 4 y 2 = x 1 + x 2 x 3 x 4 y 3 = x 1 x 2 + x 3 x 4 y 4 = x 1 x 2 x 3 + x 4 (12)(34), (14)(23) y 1 y 2, y 3, y 4 12 y 1 y 2 2, y 2 3, y 2 4 y 2y 3 y Q R C *3 k k f(x 1,..., x n ) k[x 1,..., x n ] *4 k n S GL(n, k) S k[x 1,..., x n ] S S S k[x 1,..., x n ] S k[x 1,..., x n ] 14. S f(x) f 1 (x),..., f N (x) k[x 1,..., x n ] S N k f(x) = F (f 1 (x),..., f N (x)) k[x 1,..., x n ] S k f 1 (x),..., f N (x) k R k[x 1,..., x n ] *3 Z/pZ *4 Z = {0, ±1, ±2,...}

9 S k[x 1,..., x n ] S R k[x 1,..., x n ] 15. y = 0 2 a + yg(x, y) a k R R k[x, y] x n y, n 0 n S G(S) S G = G(S) G GL(n, k) G S G(S) G(S) G GL(n, k) G k[x 1,..., x n ] G * 5 m R x m y n 16. k[x, y] n 3m x m y n R S k[x 1,..., x n ] S A B AB A 1 S GL(n, k) S G(S) G(S) GL(n, k) G(S) GL(n, k) 1. (x 1 + x 2 x 3 x 4 )(x 1 x 2 + x 3 x 4 )(x 1 x 2 x 3 + x 4 ) x 1, x 2, x 3, x (1234) k[x 1, x 2, x 3, x 4 ] (1234) 4. l (2 + 3) l = n l + m l 3 (ml, n l ) 10 R x m l y n l l 0 *5 G Noether

10

11 7 2 ax 2 +2bx+c = 0 ( a x + b ) 2 ac b2 + = 0 (2.1) a a ax 3 +3bx 2 +3cx+d = 0 x y = x+b/a ay 3 + 3(ac b2 ) y + a2 d 3abc + 2b 3 a a 2 = 0 (2.2) (1) (2) ac b 2 a 2 d 3abc + 2b 3 n ( ) ( ) n n F n (x) = ax n +nbx n 1 + cx n 2 + dx n x = b/a a n 1 a n 1 F n ( b/a) n = 2, 3 1 E.T. Men of Mathematics (Sylvester, ) (Cayley, ) Boole, ) (Lagrange, ) (Gauss, ) 2 ac b 2, a 2 d 3abc + 2b 3, F n (x) = 0 x q F n (x + q) = 0 ax 2 + 2bx + c = 0 a(x + q) 2 + 2b(x + q) + c = 0 ax 2 + 2(aq + b)x + (aq 2 + 2bq + c) = 0 a(aq 2 + 2bq + c) (aq + b) 2 = ac b 2 ac b 2 4 a, ac b 2 k[a, b, c] H(2) := 1 q q q q k GL(3, k) (2.3)

12 8 2 k C n F n (x) = 0 a, af 2 ( b/a) = ac b 2,, a n 1 F n ( b/a) (2.4) F n (x) F n (x + q) 1. F n (x) = 0 f(a, b, c,...) f(a, b, c, ) = f(a, aq + b, aq 2 + 2bq + c, ) q k F n (x) = 0 * 1 (n + 1) 1 q... q n nq n 1 H(n) := q k (2.4) k[a, b, c,...] H(n) a ac b 2 k[a, b, c] H(2) n 3 k[a, b, c,...] H(n) a 2b c a 2b c b 2c d = 4(ac b2 ) 3 + (a 2 d 3abc + 2b 3 ) 2 a 2 b 2c d (2.4) * 2 (covariant) *1 semi-invariant (relative invariant) *2 k(a, b, c,...) H(n) 3 x + q ax 2 + 2bx + c = 0 x (px + q)/(rx + s) := y a(px + q) 2 + 2b(px + q)(rx + s) + c(rx + s) 2 = 0 Ax 2 + 2Bx + C = 0 A, B, C a, b, c A = ap 2 + 2bpr + cr 2 B = apq + b(ps + qr) + crs C = aq 2 + 2bqs + cs 2 1/4 b 2 ac B 2 AC = (ps qr) 2 (b 2 ac) (ps qr) 2 p, q, r, s b 2 ac 0 x 2 y

13 3 9 4 n F n (x) = 0 α 1,..., α n (α 1,..., α n ) := (α i α j ) (2.5) 1 i<j n (α) 2 b/a, c/a, d/a,... a 2n 2 a, b, c,... D(a, b, c,...) a 2n 2 (α) 2 2 (). x 1, x 2,..., x n x i e s 1, s 2,..., s n e a 3b 3c d a 2b c a 3b 3c d 3 3 a 2b c b 2c d, 4 4 a 3b 3c d b 3c 3d e b 2c d b 3c 3d e b 3c 3d e 4 a, b, c, d, e ps qr x (px + q)/(rx + s) ps qr = 1 3. F n (x) = 0 f(a, b, c,...) ( ) px + q F n (x) (rx + s) n F n rx + s (2.6) F n (x) = a, b, c f(a, b, c) k[a, b, c] p, q, r, s k ps qr = 1 f(ap 2 +2bpr+cr 2, apq+b(ps+qr)+crs, aq 2 +2bqs+cs 2 ) f(a, b, c) 3 G(2) := p2 pq q 2 2pr ps + qr 2qs ps qr = 1 r 2 rs s GL(3, k) n G(n) GL(n + 1, k) D(a, b, c,...) = a 2n 2 (α) 2 k[a, b, c] G(2) k[a, b, c, d] G(3) k[a, b, c, d, e] G(4) (P. Gordan, ) 4 (). n f(a, b, c,...) a, b, c,... e (1 U n+1 )(1 U n+2 ) (1 U n+e ) (1 U 2 ) (1 U e ) U U ne/2 ne/2 5. k[a, b, c,...] G(n)

14 F n (x) = a n i=1 (x α i) D(a, b, c,...) = a 2n 2 1 i<j n (α i α j ) 2 (2.7) F n (x) 1 (2.6) n n a (x α i ) a {px + q α i (rx + s)} i=1 i=1 a n i=1 ( rα i + p) (sα i q)/(rα i p) =: α i 1 i n a 2n 2 i ( rα i + p) 2n 2 i<j (α i α j) 2 α i α j = (ps qr)(α i α j ) (rα i p)(rα j p) (2.8) F n (x) = i<j n (α i α j ) mij, m ij Z 0 (2.9) α i e α 1,..., α n ne/2 m ij e = 2n Φ(α 1,..., α n ) Φ(α) b/a, c/a, d/a,... 2 f(a, b, c,...) = a e Φ(α) (2.10) f f *3 a e i ( rα i + p) e i<j(α i α j) mij 2.8 a e i<j (α i α j ) mij F 4 (x) = 0 A = (α 1 α 2 )(α 3 α 4 ) B = (α 1 α 3 )(α 4 α 2 ) C = (α 1 α 4 )(α 2 α 3 ) = A B (2.11) S 4 S 3 A 2, B 2, C 2 A B, B C, C A A 2 + B 2 + C 2 (A B)(A C)(B C) α 1, α 2, α 3, α 4 e = 2, 3 a 2 (A 2 + B 2 + C 2 ) = ae 4bd + 3c 2 =: g 2 a 3 (A B)(A C)(B C) = a b c b c d c d e =: g 3 D(a) = a 6 A 2 B 2 C 2 g g 2 3 α i i (2.9) i j m ij n e A, B, C *3

15 F n (x) = 0 2 n ( ) n F n (x, y) = ax n + nbx n 1 y + cx n 2 y n = 6 15(= 6! (2!) 3 3! ) e=1 15 (α 1 α 2 )(α 3 α 4 )(α 5 α 6 ) 2.11 A + B + C = 0 1 *4 2.2 (Kempe) 6. (2.9) Φ(α) (2.10) g 2, g 3 2 *4 n = ,, 14, x, y F n (x, y) F n (px + qy, rx + sy), ps qr = 1 a, b, c,... m n F n (x 1,..., x m ) F n ( a 1i x i,..., a mi x i ) i i m n (a ij ) 1 i,j m 1890 m n 14 S n S k[x 1,..., x n ] S L. Maurer

16 F n (x) = 0 a b c b c d c d e catalecticant

17 13 3 ( 3) f(x) f ev (x) = {f(x) + f( x)}/2 x x, k C 1 n f(x 1,..., x n ) f((x 1,..., x n )A) n A n G GL(n, C) A G G G A, B G AB 1 G G G GL(n, C) G C[x 1,..., x n ] G n F n (x) = 0 ( ) ( ) n n F n (x) = ax n +nbx n 1 + cx n 2 + dx n (n + 1) f(a, b, c, d,...) ( ) px + q F n (x) (rx + s) n F n, (3.1) rx + s p, q, r, s C, ps qr = 1 (3.2) a, b, c, d,... G(n) n = 2 p 2 pq q 2 G(2) = 2pr ps + qr 2qs ps qr = 1 r 2 rs s 2 ( ) p q (2) r s SL(2, C) (1) ρ : SL(2, C) GL(n + 1, C) (3.3) G(n) 2. 5 C[a, b, c, d,...] G(n) 2 G = {A 1, A 2,..., A m } A G

18 14 3 A 1 A, A 2 A,..., A m A A 1, A 2,..., A m G n f(x) G f av (x) := {f(xa 1 ) + f(xa 2 ) + + f(xa m )}/m f(xa) = f(x) A G 1. f av (x) G 2. f(x) G f av (x) = f(x) 3. (f + h) av = f av + h av 4. G f G (fg) av = fg av av C[x 1,..., x n ] f(x) (x) f f av C[x 1,..., x n ] G C[x 1,..., x n ] G 3. G m = n! av f(x 1,..., x n ) f av (x) = 1 f(σ(x 1 ),..., σ(x n )) n! σ S f(σ(x σ: 1),..., σ(x n )) 2 n! 3 {U i } i=1 m {U i } m i=1 U i m j=1 U j 4. R n S n 1 n t (α 1,..., α n ) C n 5. a 1, a 2, a 3,... C n m a i a 1,,..., a m n 0 n = 0 n 1 a 1, a 2, a 3,... n α 1n, α 2n, α 3n, a 1, a 2, a 3,... C n 1 OK l α ln C n 1 b1 := a l+1 α l+1,n a l, α b 2 := a l+2 α l+2,n a l,... ln α ln b i b 1,,..., b m m a i a 1,,..., a l,,..., a m+l C n a 1, a 2, a 3,... n α 11 α 21 α 31 α 12 α 22 α α 1n α 2n α 3n l r(l) 0 r(1) r(2) r(3) n m r(l) Z = {0, ±1, ±2, ±3,...}

19 n 1, n 2, n 3,... m n i n 1,,..., n m l n 1, n 2,..., n l gcd(l) n 1 = gcd(1) gcd(2) gcd(3) 1 m gcd(l) n n n 1, n 2,..., n m n i n 7. n f 1 (x), f 2 (x), f 3 (x),... m f i (x) f 1 (x),..., f m (x) m i=1 f i(x)g i (x) 4 1 n x k1 1 xkn n k 1+ +k n f(x 1,..., x n ) d 8. f(x 1,..., x n ) d d f f d + f d f 1 + f 0 f i i f f G f i G d d d G d G d 1 2 f f av G d d = 1, 2, 3,... f 1, f 2, f 3,... 7 *1 f i f 1,..., f m m G C[x 1,..., x n ] G f 1,..., f m G h f 1,..., f m h 0 h f 1, f 2, f 3,... h f 1,..., f m m i=1 h if i h f 1,..., f m h 1,..., h m h = m i=1 h if i 2 h = h av = m f i f i h av i i=1 hav i h f 1,..., f m h 5 1 S 1 = {e iθ θ R mod 2π} 4 SL(2, C) {( ) } e iθ 0 K := 0 e iθ θ R (3.3) ρ(k) GL(n + 1, C) ρ(k) (n + 1) (isobaric) *1 d = 0

20 16 3 f = f(a, b, c, d,...) K f av := 1 2π 2π 0 ( ) e iθ 0 f((a, b, c, d,...)ρ 0 e iθ )dθ C[a, b, c, d,...] ρ(k) SL(2, C) ( ) p q q p p 2 + q 2 3 {(p, q) p 2 + q 2 = 1} C 2 = R 4 SL(2, C) 2 SU(2) SU(2) f av := 1 ( ) p q 2π 2 f((a, b, c, d,...)ρ )ds S q p 3 *2 SU(2) = S 3 S 3 ds f av SU(2) 9. ρ(su(2)) GL(n + 1, C) C[a, b, c, d,...] ρ(su(2)) *3 (Weyl) (unitary trick) G(n) 1 q... q n nq n 1 H(n) = q C (n + 1) n H(n) *2 B 2n R 2n π n /n! S 2n 1 2n *3 D, ( ) N+ := n exp(qn + ) N + D = a b + 2b c + 3c d + f(a, b, c, d,...) Df = 0 H(n) U + := {( ) } 1 q q C 0 1 (3.3) ρ {( ) 1 0 U := r 1 } r C f = 0 := nb a + (n 1)c b + (n 2)d c +, U + U SL(2, C) 10. f(a, b, c, d,...) Df = f = 0 Aronhold 2 2 SU(2) 5 K S 1 { ( ) } {( )} K 0 θ cos θ sin θ := exp θ R =, θ 0 sin θ cos θ { ( ) } {( )} K 0 iθ cos θ i sin θ := exp θ R =. iθ 0 i sin θ cos θ ρ(su(2)) f = f(a, b, c, d,...) ρ(k ) ρ(k ) (D )f = 0 i(d + )f = 0 10 f 9

21 I C[x 1,..., x n ] 1. h(x), h (x) I h(x) + h (x) I. 2. f(x) C[x 1,..., x n ] h(x) I f(x)h(x) I. 12. f =(f 1 (x), f 2 (x), f 3 (x),...) f(x) = i f i(x)g i (x) I f f I I = I f f 13. I C[x 1,..., x n ] 12 f I f I f h 1 (x),..., h l (x) I f h i (x) j f j(x)g ij (x) f 1 (x), f 2 (x),..., f m (x) I f f i (x) f 1 (x),..., f m (x) 7 13 n n (n + 1) C[x 1,..., x n, y] 4 y(= x n+1 ) y d f(x, y) f d (x)y d + f d 1 (x)y d f 0 (x) f d (x) 0 I y d y d a d C[x 1,..., x n ] a d d a 0 a 1 a 2 a = d 0 a d C[x 1,..., x n ] I a d a a f 1 (x, y),..., f m (x, y) I d max y i a i i f (i) (i) 1 (x, y), f 2 (x, y),... I f(x, y) I f 1 (x, y),..., f m (x, y) d max I f 1 (x, y),..., f m (x, y) 0 i d max 1 f (i) 1 (i) (x, y), f 2 (x, y), y 1 = s 1 y 2 2, y 2 3, y 2 4 y 2y 3 y 4 y 2 y 3 y 4 s 3 1 4s 1 s 2 + 8s 3 y 2 2, y 2 3, y 2 4 s 1 x 1 x 2 + x 3 x 4, x 1 x 4 + x 2 x 3, x 1 x 3 + x 2 x 4 (1234) y 0 = x 1 + x 2 + x 3 + x 4, y 1 = x 1 + 1x 2 x 3 1x 4, y 2 = x 1 x 2 + x 3 x 4, y 3 = x 1 1x 2 x 3 + 1x 4 y i ( 1) i 7 y 0, y 1 y 3, y 2 2, y 2 1y 2, y 2 3y 2, y 4 1, y 4 3 M l = x m l y n l l = 0, 1, 2, 3,... y, xy 2, x 4 y 7, x 15 y 26,... l 1 n n l m l m x m y n k[x, y] R l n l m l 3 {R l } l 1 l R l = R n l 1 m l m l 1 n l = 1 R 1 y = M 0

22 18 3 xy 2 = M 1 R l R l 1 M l R M l, l 0,

23 m f(x 1,..., x m ) f(x 1 A,..., x m A) = f(x 1,..., x m ) m A *1 S S f(x 1,..., x m ) S k[x 1,..., x m ] S * 2 14 S k[x 1,..., x m ] S ZariskiRees 1958 k[x 1,..., x m ] S *1 x i A, 1 i m, (x 1,..., x m)a i *2 k Q R C S G GL(n) G A (unipotent) (4.1) S 4.1 S k[x 1,..., x m ] S

24 ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 (4.2) g = g r,s,θ = a b d b c e d e f t g cos θ sin θ r sin θ cos θ s a b d b c e d e f g (4.3) G GL(6) k[a, b, c, d, e, f] G 1. G u = {g r,s,0 } k[a, b, c, d, e, f] Gu 2. k[a, b, c, d, e, f] Gu G 0 = {g 0,0,θ } k[a, b, c, d, e, f] G G u (i) 14 k[a, b, c, d, e, f] G k[a, b, c, d, e, f] Gu a, b, c a b d D = b c e d e f a, b, c, D G 0 a + c, ac b 2 D G GL(m) G *3 G (unipotent radical) G u G u x 1,..., x m G u G *3 G G u k[x 1,..., x m ] Gu G/G u G/G u * 4 1. k[x 1,..., x m ] Gu k[x 1,..., x m ] G k[x 1,..., x m ] Gu 2 3 n n A (1), A (2),..., A (n) A (1) A (2) A (n) A (1) A (2) A (n) A (i) 2n ( ) 1 a1 0 1 ( ) 1 a2 0 1 ( ) 1 an 0 1 (4.4) A 2n (a 1, a 2,..., a n ) A 2n (a 1,..., a n ) A 2n (a 1,..., a n) A 2n (a 1 + a 1,..., a n + a n) 2n x 1, y 1,..., x n, y n A 2n (a 1, a 2,..., a n ) f(x 1, a 1 x 1 + y 1,..., x n, a n x n + y n ) = f(x 1, y 1,..., x n, y n ) (4.5) *4 (reductive algebraic group)

25 3 21 (4.4) S k[x 1, y 1,..., x n, y n ] S 2 ( 1958 ) (4.4) S GL(32, C) C[x 1, y 1,..., x 16, y 16 ] S S A i := A 18 (1 i, 2 i,..., 9 i ) i = 0, 1, 3 k[x 1, y 1,..., x 9, y 9 ] {A0,A1,A3} ( ). A k[x 1,..., x m ] A. (Weitzenböck) s A 2n (a 1, a 2,..., a n ) A 2n (1, 1,..., 1) x 1,..., x n A 2n (1, 1,..., 1) 2 n ( ) x1 x 2... x n y 1 y 2... y n 2 p ij = x i y i x j y j A 2n(1, 1,..., 1) 5. A 2n (1, 1,..., 1) k[x 1, y 1,..., x n, y n ] A(1,...,1) x 1,..., x n p ij 1 i < j n 3 4 A, B k[x 1,..., x m ] A,B 2 n Casteravat-Tevelev 2005 (2n + 1) A = B = (n + n + 1) 2 (n n) 2 6 ( 2005 ). A, B k[x 0,..., x n 1, y 0,..., y n ] {A,B} 1. x 0,..., x n 1,

26 (n + 1) x 0 x 1... x n 1 x 0... x n 1 x n 1 y 0 y 1... y n 1 y n 3 5 (n + 2) 7 (n + 3) 7, 2n + 1 ( ) ( ) ( ) ( ) ( ) n n + 1 n + 2 2n 2n n 1 2n f = f(x, y) p = (a, b) f(a, b) f p p m (m 1) p m (m + 1) m f p mult p f n p 1,..., p n µ(f; p 1,..., p n ) := n mult pi f/ deg f f µ(p 1,..., p n ) := sup µ(f; p 1,..., p n ) f n = 1 µ = n 9 µ(p 1,..., p n ) = n n p 1,..., p n d (d + 1)(d + 2)/2 p m m(m + 1)/2 (d + 1)(d + 2)/2 n m i (m i + 1)/2 (4.6) i=1 d p 1,..., p n m 1,..., m n (a; b 1,..., b n ) l d = la, m i = lb i l l l 2 (a 2 n 1 b2 i )/2 n 1 b i/a > n a 2 n 1 b2 i < 0 7. µ(p 1,..., p n ) n b 1 = = b n (=: b) n 1 b i/a < n a 2 n 1 b2 i > 0 l la p 1,..., p n lb 2 n > 9 n p 1,..., p n f µ(f; p 1,..., p n ) < n 8. n 9 p 1, p 2 f = f 1,2 n = 2, 3, 4 µ(f; p 1,..., p n ) 2 n n = 5, 6 n = 7, 8, 9 (4.6) (d; m 1,..., m n ) = (2; 1 5 ), (3; 2, 1 6 ), (6; 3, 2 7 ), (3; 1 9 ) 5 p 1,..., p 5 2 f = f 1,...,5 µ(f; p 1,..., p 5 ) = 5/2 n = 5, 6 µ(p 1,..., p n ) 5 2 > n n = 7, 8 µ(p 1,..., p 7 ) 8 3 > 7 µ(p 1,..., p 8 ) 17 6 > 8

27 6 23 f 1,...,9 µ(f; p 1,..., p 9 ) 9/3 = n 5 (4.4) (n 3) f(x 1, y 1,..., x n, y n ) x 1,..., x n x-deg f y 1,..., y n y-deg f (n 3) A 2n (1, a 1, b 1, 1, 0,..., 0), A 2n (1, a 2, b 2, 0, 1,..., 0), z 1 = y 1 /x 1..., A 2n (1, a n 3, b n 3, 0, 0,..., 1) n y i /x i, i=4 z 2 = y 3 /x 3 z 1 = y 2 /x 2 n b i 3 y i /x i i=4 n a i 3 y i /x i, i=4 (n 3) n 1 x i z 1, z 2, z 3 d f(x, y) p 1 = (a 1, b 1 ),..., p n = (a n, b n ) m 1,..., m n f( z2 z 1, z3 n 1 xmi i z 1 )z a 1 7 a n 1 n x- deg f/y-deg f = a f f f(z 2 /z 1, z 3 /z 1 )z1 a / n 1 xmi i x-deg f/y-deg f > n 1 n 10. k[x, y] n 3m x m y n 11. y = 0 2 a + yg(x, y) a k R n 4.1 R x m y n f(x, y) x 0,..., x n 1 y 0,..., y n 12 ( ). x 0,..., x n 1 y 0,..., y n f(x, y) l 4 l+1 2l + 3 j=1 sin 2 2jπ 2l+3 (2 cos 2jπ 2l+3 )2n 1 l = 1 m

28 F n (x) F n (x + q) b, c, d, e aq +b, aq 2 +2bq +c,, aq 4 +4bq 3 +6cq 2 +4dq +e q 1 0 a b c b c d 1 q q q q 2 2q 1 c d e (catalecticant) F n (x) = 0

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information