2012 A, N, Z, Q, R, C

Size: px
Start display at page:

Download "2012 A, N, Z, Q, R, C"

Transcription

1 2012 A, N, Z, Q, R, C

2 ? ,

3 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii) N { 5, 6, 7, } = {a a 5 } { } { } 1 2, 1 4, 1 1 8, = k 2 k (iii) N A 1 A x A x + 1 A A N n n = 1 n = k n = k + 1 (iii) p(n) n n p(n) 3

4 (1) p(1) (2) p(k) p(k + 1) (3) (1), (2), n p(n) (iii) p(n) n N A A = {n n N, p(n) } (1) 1 A (2) k A k + 1 A (iii) A = N n p(n) ( ) N a b a + b ab N a(x + y) = ax + ay N N Z Z Q 4

5 Z Z = {, 3, 2, 1, 0, 1, 2, 3, } a a + x = a x 0 0 a + x = 0 x a Z 0 0 Z Z ( ) 12 3 Z 12 5 Z a b 0 a = qb + r, 0 < = r < b q, r q a b r b a, 3b < = n < 2b, 2b < = n < b, b < = n < 0, 0 < = n < b, b < = n < 2b, a b q qb q qb < = a < (q + 1)b q q r = a qb qb < = a < (q + 1)b 0 < = r < b a = qb + r q, r a = q 1 b + r 1, a = q 2 b + r 2, 0 < = r 1, r 2 < b 5

6 0 = (q 1 q 2 )b + r 1 r 2 r 1 r 2 b 0 < = r 1, r 2 < b b < r 1 r 2 < b b 0 r 1 r 2 = 0 q 1 = q 2 ( ) a b a = bq q b a. a b a b = ( 2)( 3) ±1 1 ±1 Z a, b, c, 0 a, b, c, (least common multiple L.C.M.) a, b, c, 1 a, b, c, (greatest common measure G.C.M. greatest common divisor G.C.D.) 1 2 a b (a, b) (12, 32) = 4 (1) (2) 6

7 2 (1) (2) (3) a, b l d ab = dl (4) a, b c b bc a c a - (1) a, b, c, l, m m l q r m = ql + r, 0 < = r < l l m a l = al, m = am r = m ql = a(m ql ), r a b, c, r a, b, c, r 0 l r, l r = 0 m l ( ) ) ) (24, 42) = a > b > 0, a b r (a, b) = (r, b) a b q a = bq + r (a, b) = d 1 a = a d 1, b = b d 1. r = a d 1 b d 1 q = d 1 (a b q) r d 1.,d 1 b r d 1 < = (b, r) = d 2 (b, r) = d 2, b = b d 2, r = r d 2. a = b d 2 q + r d 2 = d 2 (b q + r ) d 2 < = (a, b) = d 1 d 1 = d 2 (a, b) = (b, r) ( ) 0 < = r < b 7

8 1 (6188, 4709) 6188 = = = = = = 17 2 (6188, 4709) = (4709, 1479) = (1479, 272) = (272, 119) = (119, 34) = (34, 17) = ( Euclid) Eukleides 365? 275? a, b (1) ab 3 a b 3 (2) a + b ab 3 a b 3 (3) a + b a 2 + b 2 3 a b (0)+(4) p 3 a, b (0) m, n mn p m n p. 8

9 (1) a + b ab p a b p (2) a + b a 2 + b 2 p a b p (3) a 2 + b 2 a 3 + b 3 p a b p (4) n a n + b n a n+1 + b n+1 p a b p n 8 r(n) (a, b) 0 < a r(a) < 4 3 r(b), 0 < b r(b) < 4 3 r(ab) (1) a r(a) r(b) (2) a b (1) k k k + 1. (2) n 3 n 2 k n 2 = 2k + 1 n, k, k + 1. (3) a, b, p, q p 2 + q 2 a = pq b a b 1 (1) pq b (2) a + 2b 5 5 [09 ] n (1) (n 2 + 1) (n + 2)(n 2) = 5 n + 2 n (2) (1) n + 2 n n 9

10 (3) (1),(2) 2n + 1 n n k, l (k > = l) {a n }, {b n } a 1 = k, b 1 = l n > = 1 { { b n (b n 0 ) a n b n (b n 0 ) a n+1 = b n+1 = (b n = 0 ) (b n = 0 ) a n (1) k = 1998, l = 185 {a n }, {b n } 5 (2) k, l, n b n > = b n+1 ( b n = 0 ) (3) k, l b n = 0 n (4) b n = 0 n a n k l b n 10

11 ±1 a ±1 ±a ±1 ±a 4 a α e α = ±p 1 e2 e 1 p 2 p m m p 1, p 2,, p m e 1, e 2,, e m 48 ( ) 48 = = = = 3 16 = () (1) 4 4 = 2 2 (2) a ( ) a a a = b c (1 < b < a, 1 < c < a) b c a a a a = p 1 p 2 p m = q 1 q 2 q n 2 (4) p abc = (ab)c p p 1, p 2,, p m q 1 p 1 q 1, p 1, p 1 = q 1 p 2 p m = q 2 q n b b < a a (3) (1)(2) ( ) 11

12 2 (1) (2) (1) 1 (2) (1) a b p ab p a b p (2) 2 (1) a p a p ab p 2 (4) b p b p a p ( ) (2) 2 = n m 2m 2 = n 2 n 2 2 2m ( ) 5 n p 1, p 2,, p n a = p 1 p 2 p n a a p 1, p 2,, p n 1 p 1, p 2,, p n a a p 1, p 2,, p n p 1, p 2,, p n ( ) 3.2 x 2 + y 2 = z 2 (x, y, z) x, y, z 1 x, y z 1 x y y. x z. y 2 = (z x)(z + x) 12

13 x z z x, z + x. ( ) 2 y = z + x z x y 2, z + x, 2 z + x, 2 z x 2 z x 2 2 d, z + x = 2du, z x = 2dv, z = d(u + v), x = d(u v), y 2 = 4duv x, y, z 1. z + x, 2 z x 2 1 z + x z x, 2 2 z + x z x, z + x z x, z + x z x, 2 2 z + x = 2a 2, z x = 2b 2 x = a 2 b 2, y = 2ab, z = a 2 + b 2 1 a b a b a > b x, z a b (x, y, z) 1. 1 (x, y, z) = (a 2 b 2, 2ab, a 2 + b 2 ), (2ab, a 2 b 2, a 2 + b 2 ) a > b, (a, b) = 1, a b a b (x, y, z) 1 2 x, y, z (x, y, z) p. 13

14 z ± x z ± y p 2a 2, 2b 2. a b p = 2. p = 2 a 2 b 2 a 2 b 2 = (a + b)(a b). a b. 2 (x, y, z) 1 2 x, y, z [00 ] (a) (b) (c) (d) (1) n n 6 15 n 30 1 < = n < = n (2) m, n m + n, mn 12 m, n 6 1 < = m < = n < = 100 m + n, mn 12 m, n (3) l, m, n l + m + n, lm + mn + nl, lmn 5 l, m, n 5 (4) l, m, n l + m + n, lm + mn + nl, lmn 30 l, m, n 30 1 < = l < = m < = n < = 100 l + m + n, lm + mn + nl, lmn 30 l, m, n (a) (b) (c) (d) a, b, c a 2 + b 2 = c 2 a, b (1) a b c (2) a a + c = 2d 2 d 14

15 9 9 a, b, c 06 3a = b 3, 5a = c 2 d 6 a d d = 1 (1) a 3 5 (2) a 3 5 (3) a (1) 5 n 6n + 1 6n 1 (2) N 6N 1 6n 1 (n ) (3) 6n 1 (n ) 15

16 4 4.1 x y x, y, z 2 2x + 3y = 1, xy 2x 3y + 1 = 0, 1 x + 1 y + 1 z = 1, x2 3y 2 = 1 5x + 2y = 1, 7x 5y = 3 5x + 2y = 1, 5( 2) + 2(3) = 1, 5(1) + 2( 2) = 1, 5(3) + 2( 7) = 1, 5x + 2y = 1 37x + 13y = {0} A a, b A a b A A d A A d A = { dn n : } 0 = a a A a A a = 0 a A n na A (n + 1)a = na ( a) A 16

17 a A na A na A n na A A d A a d a = dq + r 0 < = r < d d A dq A r = a dq A r > 0 d r = 0 A a d A { dn n : } d A n nd A A { dn n : } A = { dn n : } ( ) 1 7 ax + by = 1 (1) a b (2) a b (1) m, n a b d a = da, b = db am + bn = d(a m + b n) = 1 d 1 d = 1 a b (2) A A = { px + qy x, y Z } a = px 1 + qy 1 b = px 2 + qy 2 A a b = p(x 1 x 2 ) + q(y 1 y 2 ) A A. 6 A A d d A d = px 0 + qy 0 p = p 1 + q 0 A, q = p 0 + q 1 A p q d d p q p q d = 1 px + qy = 1 (x 0, y 0 ) ( ) 4.3 (i) m n m > = nq + 1 q

18 (ii) n n 7(2) (3) (4) 7(2) i = 0,, b 1 ai b r i. r i 0 b 1 0 < = i, j < = b 1 r i r j r i = r j. ai = bq i + r i aj = bq j + r j a(i j) = b(q i q j ) a b i j b. 0 (b 1) < = i j < = b 1 0 b i j = 0., i j = r i r j 0 < = i < = b 1 b i r i r i (0 < = i < = b 1) 0 b 1 k b q s r i = s i ai = bq i + s i q i s = k bq ai + b(q q i ) = k (x, y) = (i, q q i ) ax + by = k. ( ) 1 14(2) 8 a b ax + by = 1 1 x 0, y 0 (x, y) = (x 0 + bt, y 0 at), (t ) x y ax + by = 1 ax 0 + by 0 = 1 a(x x 0 ) + b(y y 0 ) = 0 a b x x 0 b bt x = x 0 + bt, y = y 0 at t x y ( ) ax + by = 1 18

19 4.4 3x + 2y = 1 127x + 52y = 1 a b 1 k a b k a b a b ax + by = 1 x y k ax + by = k a b ax + by = 1 (1) a > b a = bq + r, (0 < = r < b) (2) ax+by = (bq +r)x+by = rx+b(qx+y) y = qx+y ax+by = 1 rx + by = 1 (3) rx+by = 1 (x 0, y 0) y 0 = y 0 qx 0 (x 0, y 0 ) ax+by = 1 a b b r 1 sx + y = 1 x + ty = 1 (0, 1) (1, 0) ax + by = 1 127x + 52y = 1 (1) 127x + 52y = 1 (2) 127 = , y = 2x + y, 23x + 52y = 1 (3) 52 = , x = x + 2y, 23x + 6y = 1 (4) 23 = , y = 3x + y, 5x + 6y = 1 (5) 6 = , x = x + y, 5x + y = 1 (1) (x, y ) = (0, 1) (2) x = x + y (x, y ) = ( 1, 1) (3) y = 3x + y (x, y ) = ( 1, 4) (4) x = x + 2y (x, y ) = ( 9, 4) (5) y = 2x + y (x, y) = ( 9, 22), 127 ( 9) = = 1 19

20 1 a b 5x + y = n n > = 3 S = {a 1, a 2,, a n } S a i a j a i a j a j a i S (1) 2 a i > = 0 (i = 1, 2,, n) a i < = 0 (i = 1, 2,, n) (2) a 1, a 2,, a n G (i),(ii) (i) m, n G m + n G (ii) m, n G m > n m n G G d G = {kd k } (3) 0 x, C(x) x 3 C(12578) = 578, C(6) = 6 n 2 5 (1) x y 0 C(nx) = C(ny) C(x) = C(y) (2) C(nx) = 1 0 x (3) C(397x) = 1 0 x a, b (1) 4m + 6n = 7 m, n (2) 3m + 5n = 2 (m, n) (3) k ak b r(k) k, l b 1 k l r(k) r(l) 20

21 (4) am + bn = 1 m, n xy x y a, k a > = 2 L : ax + (a 2 + 1)y = k (1) L (2) k = a(a 2 + 1) x > 0, y > 0 L (3) k > a(a 2 + 1) x > 0, y > 0 L (1) 3x + 2y < = (x, y) (2) x 2 + y 3 + z 6 < = 10 0 (x, y, z) f(m, n) = m 2 mn + n 2 k (m, n) X(k) = {(m, n) m, n f(m, n) = k } (1) X(k) X(1) (2) k = 2, 4 X(k) (3) r X(2 r ) 21

22 5 5.1 a b m, a b m a b (mod. m) 9 2 a b m a b m a b m a b = mq a b m q 1, q 2 r 1, r 2 2 a b = mq a = mq 1 + r 1, b = mq 2 + r 2 mq = (q 1 q 2 )m + r 1 r 2 m q q 1 + q 2 = r 1 r 2 q q 1 + q 2 0 m q q 1 + q 2 > = m m r 1 r 2 < m q q 1 + q 2 = 0 r 1 r 2 = 0 a b m a = mq 1 + r, b = mq 2 + r a b = m(q 1 q 2 ) a b m ( ) 5.2 Z m Z : a a (mod. m) : a b (mod. m) b a (mod. m) : a b (mod. m) b c (mod. m) a c (mod. m) 22

23 m m, m m m m a k mk + a m m ( ) {0, 1, 2, 3, 4, 5, 6} {0, 1, 2, 3, 3, 2, 1} {7, 6, 9, 4, 10, 9, 13} a b (mod. m) 10 a a (mod. m), b b (mod. m) a ± b a ± b (mod. m), ab a b (mod. m) (1) a a (mod. m), b b (mod. m), c c (mod. m), f(x, y, z, ) x, y, z, f(a, b, c, ) f(a, b, c, ) (mod. m) (2) a a b b m (a+b) (a +b ) = (a a )+(b b ) m, ab a b = (a a )b + a (b b ) m (1) (1) a a (mod. m) 1) N Na Na (mod. m) 2) α a α a α (mod. m) (1) Na α b β c γ Na α b β c γ (mod. m) (1) Na α b β c γ Na α b β c γ (mod. m) (2) ( ) ab = ac a 0 b = c 11 ac bc (mod. m) (c, m) = 1 a b (mod. m) 23

24 ac bc m N ac bc = (a b)c = mn m c a b m a b (mod. m) ( ) 12 a m ax 1 (mod. m) x a m ax + my = 1 (x, y) = (α, β) aα = 1 mβ 1 (mod. m) x = α ( ) (1) n n 9 n x y z n x 2 = 7 2n (y z 2 ) (1) (2) yz 3 (3) y z x n [82 ] n f(x) = x n + a 1 x n a n 1 x + a n (n > 1) (1) α f(x) = 0 α (2) k(> 1) k f(1), f(2),, f(k) k f(x) = 0 24

25 , 2,, n n x φ(n) φ(1) = 1, (x = 1) φ(2) = 1, (x = 1) φ(3) = 2, (x = 1, 2) φ(4) = 2, (x = 1, 3) φ(5) = 4, (x = 1, 2, 3, 4) φ(6) = 2, (x = 1, 5) φ(n) p φ(p) = p 1 21 (2) p q φ(pq) = φ(p)φ(q) 13 a b φ(ab) = φ(a)φ(b) m = φ(a) α 1, α 2,, α m 1 a a n = φ(b) β 1, β 2,, β n α i, β j mn = φ(a)φ(b) a b ak + α i = bl + β j k l α i a a β j b b ab ab γ ij γ ij γ ij α i (mod. a), γ ij β j (mod. b) 1 ab i i γ i j γ ij ak + α i (mod. a) γ i j ak + α i (mod. b) γ ij γ i j a ab j ab mn φ(a)φ(b) < = φ(ab) (γ, ab) = 1 γ a b a α i, b β j i, j γ γ ab a b γ α i, β j φ(a)φ(b) > = φ(ab) ( ) 25

26 3 a = 14, b = 15 φ(14) = φ(2)φ(7) = 6, φ(15) = φ(3)φ(5) = 8 α i, β j α 1 = 1, α 2 = 3, α 3 = 5, α 4 = 9, α 5 = 11, α 6 = 13 β 1 = 1, β 2 = 2, β 3 = 4, β 4 = 7, β 5 = 8, β 6 = 11, β 7 = 13, β 8 = 14 α 4 = 9, β 6 = 11 14k + 9 = 15l + 11 k l k = 2, l = 2 19 γ 46 = = (mod. 14), (mod. 15) 191 ab = 210 α 6 = 13, β 5 = 8 14k + 13 = 15l + 8 k l k = 5, l = 5 83 γ 65 = (mod. 14), 83 8 (mod. 15) ab = = 108 ab ab 6 8 = 48 γ ij n a n a φ(n) 1 (mod. n) α 1, α 2,, α m, m = φ(n) n n a n aα i, aα j n α i, α j aα 1, aα 2,, aα m n n m aα 1, aα 2,, aα m α 1, α 2,, α m 1 n n aα 1 aα 2 aα m = a m α 1 α m α 1 α m (mod. n) α 1 α m n a m 1 (mod. n) 26

27 n φ(p) = p 1 p a ( ) a p 1 1 (mod. p) a p a a p a (mod. p) (3) n m < = n m n 1 m f(n) (1) f(15) (2) p, q f(pq) (3) p e f(p e ) N ϕ(n) N N ϕ(n) = {n n 1 < = n < N gcd(n, n) = 1 } gcd(a, b) a b A A ϕ(6) = {1, 5} = 2, ϕ(15) = {1, 2, 4, 7, 8, 11, 13, 14} = 8 (1) p q N = pq (i) N n gcd(n, n) 1 (ii) ϕ(n) (2) p q N = pq N ϕ(n) p q N ϕ(n) (3) N = ϕ(n) = N = pq (p > q) p q ( p q ), = = = = = =

28 n f(n), g(n) f(n) = n 7 ( 7 ) g(n) = 3f k n. (1) n f(n 7 ) = f(n). (2) n g(n). g(n) (2) p n p 1 p 1 A (1) k A nk p r k {r k k A} A (2) n p 1 1 p k= (1) p 1 < = r < = p 1 r, r p C r = p p 1 C r 1, p C r p. (2) p 2 p p. (3) n n p p, p r. (1) x 1, x 2,, x r (x 1 + x x r ) p p x 1 p2 p 1 x 2 x r r p 1, p 2,, p r 0 p 1 + p p r = p. (2) x 1, x 2,, x r (x 1 + x x r ) p (x p 1 + x p x p r ) p (3) r p r p 1 1 p 28

29 7 7.1 R[x] Q[x] R[x] Q[x] C[x] K Q R C K K[x] x deg f(x) f(x) 15 f(x), g(x) (deg g(x) > = 1) f(x) = g(x) q(x) + r(x), 0 < = deg r(x) < deg g(x) q(x), r(x) deg f(x) = n, deg g(x) = m q(x) r(x) n n < m q(x) = 0, r(x) = f(x) 0 n 1 f(x) g(x) n, m ax n, bx m f 1 (x) = f(x) a b xn m g(x), deg f 1 (x) < deg f(x) f 1 (x) = g(x) q 1 (x) + r 1 (x), 0 < = deg r 1 (x) < deg g(x) q 1 (x), r 1 (x) f(x) = g(x) a b xn m + f 1 (x) = g(x) a b xn m + g(x) q 1 (x) + r 1 (x) { } a = g(x) b xn m + q 1 (x) + r 1 (x) q(x) = a b xn m + q 1 (x) r(x) = r 1 (x) 2 f(x) = g(x) q 1 (x) + r 1 (x) = g(x) q 2 (x) + r 2 (x) g(x) {q 1 (x) q 2 (x)} = r 2 (x) r 1 (x) q 1 (x) q 2 (x) 0 deg(r 2 (x) r 1 (x)) > = deg g(x) deg r 1 (x) < deg g(x), deg r 2 (x) < deg g(x) deg(r 2 (x) r 1 (x)) < deg g(x) q 1 (x) = q 2 (x) r 1 (x) = r 2 (x) ( ) 29

30 7.2 f(x) g(x) f(x) = q(x)g(x) q(x) f(x) g(x) f(x) g(x) f(x) g(x) f(x) g(x) 0 { } 1 x 2 + 3x + 2 = (x + 1)(x + 2) = {3(x + 1)} (x + 2) = 3 K[x] 0 0 K[x] 0 0 f(x) (0 ) f(x) x + 1, 3(x + 1), 2(x + 1) f(x) = x 4 4 Q[x] f(x) = (x 2 2)(x 2 + 2) x 2 2, x R[x] f(x) = (x 2)(x + 2)(x 2 + 2) x 2, x + 2, x C[x] f(x) = (x 2)(x + 2)(x 2i)(x + 2i) f(x) g(x) f(x)p(x) = g(x) p(x) d(x) 2 f(x) g(x) d(x) f(x) g(x) 30

31 d(x) 2 f(x) g(x) d(x) f(x) g(x) (f(x) = g(x) = 0 ), (1) f(x) f(x) (2) 0 f(x) g(x) f(x) f(x) g(x) (3) f(x) 0 g(x) f(x) r(x) d(x) r(x), f(x) d(x) f(x) g(x) Q(x) 2 P (x) Q(x) {P (x)} 2 Q(x) 2 Q(x) = A(x) B(x) C(x) {A(x)} 2 + {B(x)} 2 = {C(x)} 2 A(x) B(x) C(x) f(x) = x 1, g(x) = (x + 1) 3 p(x)f(x) + q(x)g(x) = 1 p(x), q(x) p(x) p(x) 1 31

32 (1) a, b 3 a b 3 q 1, q 2 r 1, r 2 r 1, r 2 = 1, 2 a = 3q 1 + r 1, b = 3q 2 + r 2 ab = 3(3q 1 q 2 + q 1 r 2 + q 2 r 1 ) + r 1 r 2 r 1 r 2 = 1, 2, 4 ab 3 ab 3 a b 3 (2) (1) a b 3 a 3 a + b 3 a 3 b 3 b 3 a b 3 (3) a 2 + b 2 = (a + b) 2 2ab a + b 3 2ab ab 3 (1) a b 3 (0) mn p mn p m n p mn p 3 4 m n p (1) ab p a b p a p a = pa a + b p pn b = (a + b) a = pn pa b p b p a p a b p (2) a 2 + b 2 = (a + b) 2 2ab a + b p 2ab p p 2 ab p (1) a b p (3) a 3 + b 3 = (a + b)(a 2 ab + b 2 ) a + b a 2 ab + b 2 p a + b p a 2 + b 2 p (2) a b p a 2 ab + b 2 p a 2 + b 2 p ab p a p a 2 + b 2 p b 2 p p b p b p a b p 32

33 a 3 + b 3 = (a + b)(a 2 + b 2 ) ab(a + b) ab(a + b) p a + b p 2 a, b p ab p a 2 b 2 p 1 a 2 b 2 p p a b p (4) a p a n + b n p b n p p b p a b p p a b p n > = 2 a n+1 + b n+1 = (a + b)(a n + b n ) ab(a n 1 + b n 1 ) a n 1 + b n 1 p a + b a 2 + b 2 p 2 a, b p a b p a b p 2 2 (1) 0 < = r(n) < = 7 0 < a r(a) < 4 3 r(b) < = 28 3 a r(a) 8 a r(a) = 8 8 < 4 r(b) 6 < r(b) 3 r(b) = 7 (2) b r(b) = 8, r(ab) = 7 b = 8 + r(b) = 15 ab = 8k + 7 b = 15 ab = 8a + 7a 8(k a) = 7(a 1) 8 7 a 1 8 r(a) = 1 a = 8 + r(a) = (1) k k + 1 d k = dk, k + 1 = dh k, h 1 = dh k = d(h k ) d = 1 k k

34 (2) 2k + 1 k k + 1 (k + 1) = k k k k + 1 2k + 1 k + 1 2k +1 k 2k +1 2 k = 1 1 2k +1 = n 2, k +1, k n k + 1 k 1 n 2 k + 1 k 1 2k+1 = n 2, k+1, k n, k, k+1. (3) n 2 = 2k + 1 n 2 + k 2 = (k + 1) 2 3 n, k, k (2) n n = 11 n 2 = 121 = (11, 60, 61) 11 2 = 121, 60 2 = 3600, 61 2 = (1) b(p 2 + q 2 ) = apq 1 b a b pq b (2) p q g p = gp, q = gq, (p q ) 1 bg 2 (p 2 + q 2 ) = ag 2 p q b(p 2 + q 2 ) = ap q 2 (1) p q b p q = bk 2 p 2 + q 2 = ak 34

35 k 1 p 2 + q 2 p q p 2 + q 2 + 2p q p q (p + q ) 2 p q p + q p q p q p + q p q k = 1 b = p q a = p 2 + q 2 a + 2b = p + q 5 5 (1) n + 2 n d (n 2 + 1) (n + 2)(n 2) = 5 d 5 d 5 d = 1, 5 (2) (1) n + 2 n n (1) n n n n = 5k 2 (k = 1, 2, ) (3) 4(n 2 + 1) (2n + 1)(2n 1) = 5 2n + 1 n n n n 2n + 1 = 5(2k 1) (k = 1, 2, ) n n = 5k 3 (k = 1, 2, ) 6 6 (1) a 1 = 1998, b 1 = = a 2 = 185, b 2 = = a 3 = 148, b 3 = = a 4 = 37, b 4 = 0 a 5 = 37, b 5 = 0 35

36 (2) b n 0 b n+1 a n b n 0 < = b n+1 < b n b n = 0 {b n } b n+1 = b n k, l, n b n > = b n+1 ( b n = 0 ) (3) b n = 0 n b n b n > b n+1 {b n n = 1, 2, } b n = 0 n (4) (a, b) a b b k 0 (a k, b k ) = (b k, b k+1 ) a k b k q k a k = b k q k + b k+1 a k b k b k+1 b k b k+1 b k b k+1 (b k, b k+1 ) (a k, b k ) < = (b k, b k+1 ) b k b k+1 a k (a k, b k ) > = (b k, b k+1 ) (a k, b k ) = (b k, b k+1 ) (a k, a k+1 ) = (a k+1, a k+2 ) (3) N b N 1 0, b N = 0 (k, l) = (a 1, a 2 ) = = (a N 1, a N ) = (a N, b N ) = a N N < = n n (1) n (b) = 60 (2) m + n = 12k, mn = 12l mn = m(12k m) = 12l m 2 = 12(mk l) m 2 12 m n = 12 m n 6 m = 6, n = 12 m + n = (c) 36

37 m = 6k, n = 6l m + n = 6(k + l), mn = 36kl m + n, mn 12 k l k = 1 l = 1, 3,, 15 8 k = 2 l = 2, 4,, 16 8 k = 3 l = 3,, 15 7 k = 4 l = 4,, 16 7 k = k = ( ) = 72 (3) l + m + n, lm + mn + nl, lmn 5 lmn 5 l 5 m + n = l, mn = l(m + n) 5 m, n 5 m 5 n = m 5 l, m, n l, m, n 5 (a). (4) (3) l + m + n, lm + mn + nl lmn 5 30 = l + m + n, lm + mn + nl, lmn 6 lmn 6 l 2 (3) m + n, mn 2 l, m, n 2 l 3 m + n, mn 3 l, m, n 3 l, m, n 6 l, m, n 30 (a) 30 (l, m, n) = (30, 30, 30), (30, 30, 60), (30, 30, 90), (30, 60, 60), (30, 60, 90), (30, 90, 90) (60, 60, 60), (60, 60, 90), (60, 90, 90) (90, 90, 90) (1) a b c a = 2k + 1 b = 2l + 1, c = 2m a 2 + b 2 = 4(k 2 + k + l 2 + l) + 2, c 2 = 4m 2 37

38 4 a 2 + b 2 = c 2 b c (2) a 2 + b 2 = c 2 b 2 = (c a)(c + a) (1) c a, c + a c + a 2 c a 2 c + a 2 > c a 2 ( ) 2 b = c a c + a > = 1 p b p > 1 2 p c a 2 = kp, c + a 2 = lp c = (k + l)p, a = (l k)p p a b a b p > 1 p c a 2 c + a 2 ( ) 2 b c a c + a d 9 9 a + c 2 (1) b b 3 b = 3b 3a = b 3 = d 2 3a = (3b ) 3 = 27b 3 a = 9b 3 a 3 c 5 c = 5c 5a = c 2 5a = 5c 2 a = 5c 2 a 5 (2) a 3 5 p a = pa p(3a ) = b 3, p(5a ) = c 2 (1) b c p b = p l b, c = p m c b, c p 3a = p 3l b 3, 5a = p 2m c 2 p 3, 5 a p a p 6 d 6 a d d = 1 a

39 (3) a = 3 e 5 f 1 < = e, f < = 5 3a = 3 e+1 5 f = b 3, 5a = 3 e 5 f+1 = c 2 e + 1, f 3 e, f < = e, f < = 5 e = 2, f = 3 a = = (1) 5 p p 5 n 6n + 1 6n 1 (2) N 6N 1 > = 5 6N n + 1 6n 1 6n + 1 6n 1 + 1,, 6n l u + 1, 6v + 1 (6u + 1)(6v + 1) = 6(6uv + u + v) n 1 + 1,, 6n l + 1 (6n 1 + 1) e1 (6n l + 1) e l N N 1 6n 1 (n ) (3) 6n 1 (n ) k p 1,, p k L = 6p 1 p k 1 L p 1,, p k 1 L 6N 1 (2) 6n 1 p 1,, p k 6n 1 (n ) k (1) S M m m < 0 < M M m m M S M < M m m M < m M m 39

40 (2) S d S d a qd < = a < (q + 1)d q r = a qd r > 0 a d S 1 < = j < q a jd S a jd d = a (j +1)d S r = a dq S d S r = 0 S d S md 1 < j < = m jd S jd d = (j 1)d S md, (m 1)d,, d S 0 S m = n m = n 1 S = {nd, (n 1)d,, d}, {(n 1)d, (n 2)d,, d, 0} a 1, a 2,, a n d 0 d j jd G d + jd = (j + 1)d G {kd k } G G a a d q r a = dq + r dq G r = a dq S r > 0 d G r = 0 G d G {kd k } (1) x > = y C(nx) = C(ny) nx ny 1000 nx ny = n(x y) n 1000 x y 1000 C(x) = C(y) 40

41 (2) (1) C(0), C(n), C(2n),, C(999n) {C(0), C(n), C(2n),, C(999n)} 1000 {0, 1,, 999} 1000 {C(0), C(n), C(2n),, C(999n)} = {0, 1,, 999} C(0),, C(999n) 1 C(nx) = 1 0 x (3) 379x = y (x, y) 1 = 397x 1000y = 397x ( )y = 397(x 2y) 206y = ( )(x 2y) 206y = 206(x 3y) + 191(x 2y) = ( )(x 3y) + 191(x 2y) = 191(2x 5y) + 15(x 3y) = ( )(2x 5y) + 15(x 3y) = 15(25x 63y) + 11(2x 5y) ( 4) = 1 { 25x 63y = 3 2x 5y = 4 x = 267, y = ( 267) 1000( 106) = 1 (m, n) 397m 1000n = 1 397(m + 267) 1000(n + 106) = m m = 1000t n = 397t (x, y) t (x, y) = ( t, t) x t = 1 C(397x) = 1 0 x x = = 733 C( ) = C(291001) = 1 4 (2) (3) (1) 4m + 6n = 7 m, n m, n 41

42 (2) 3m + 5n = 2 (m, n) ( 1, 1) (m, n) 3m + 5n = 2 3( 1) + 5(1) = 2 3(m + 1) + 5(n 1) = m m + 1 = 5t n 1 = 3t (m, n) = ( 1 + 5t, 1 3t) (m, n) = ( 1 + 5t, 1 3t) (t ) (3) r(k) = r(l) ak al b (a b ) k l b 1 < = k, l < = b 1 (b 2) < = k l < = b 2 k l = 0 k l r(k) r(l) (4) A = {1, 2,, b 1} B = {r(k) k = 1, 2,, b 1} k r(k) = 0 ak b a b k b k = 1, 2,, b 1 r(k) b 0 B A (3) k l r(k) r(l) k = 1, 2,, b 1 r(k) B b 1 A A = B B r(k) = 1 42

43 ak 1 b ak 1 = bl (k, l) (m, n) = (k, l) (1) a( ak) + (a 2 + 1)k = k 1 ( ak, k) L (2) (m, n) L am + (a 2 + 1)n = k a(m + ak) + (a 2 + 1)(n k) = 0 3 a a 2 a a a m + ak a t m + ak = (a 2 + 1)t n k = at L t { m = ak + (a 2 + 1)t n = k at L { m = ak + (a 2 + 1)t > 0 n = k at > 0 t k a > t > ak a k = a(a 2 + 1) 4 a > t > a 2 t L (3) k > a(a 2 + 1) 4 k a ak a = k a(a 2 + 1) > 1 t L 43

44 16 16 (1) k 3x + 2y = k 0 (x, y) k = 0, 1,, 2008 k 3x + 2y = k (x, y) 3k + 2( k) = k 3(x k) + 2(y + k) = x k 2 y + k 3 (x, y) t x = k 2t, y = k + 3t x > = 0, y > = 0 k 3 < = t k < = 2 k t 3x + 2y = k 0 (x, y) m k t t k = 6m 2m < = t < = 3m m + 1 k = 6m + 1 2m < = t < = 3m m k = 6m + 2 2m < = t < = 3m + 1 m + 1 k = 6m + 3 2m + 1 < = t < = 3m m + 1 k = 6m + 4 2m < = t < = 3m + 2 m + 1 k = 6m + 5 2m < = t < = 3m m + 1 m 6m = m = 0, 1,, 334 6m (6m + 5) 335 = m=0 = ( ) 335 = ( ) (2) 3x + 2y + z < = 60 3x + 2y = k (x, y) z 0 < = z < = 60 k 60 k + 1 (x, y) z 3x + 2y = k 3x + 2y + z < = 60 (x, y, z) k = 6m k = 6m + 1 k = 6m + 2 k = 6m + 3 k = 6m + 4 k = 6m + 5 (m + 1)(60 6m + 1) m(60 6m) (m + 1)(60 6m 1) (m + 1)(60 6m 2) (m + 1)(60 6m 3) (m + 1)(60 6m 4) 44

45 (m + 1)(300 30m 9) + m(60 6m) = 36m m m = 0,, 9 3x + 2y = 60 ( z 0 ) 11 9 ( 36m m + 291) + 11 = m=0 = = 7106 ( ) (1) f(m, n) = k m 2 mn + n 2 k = 0 m 2 m m 2 D n D = n 2 4(n 2 k) = 3n 2 + 4k > = 0 0 < = n 2 4k < = n n 3 m 2 X(k) k = 1 0 < = n 2 4 < = n = 0, ±1 m 3 X(1) = {(1, 0), ( 1, 0), (0, 1), (0, 1), (1, 1), ( 1, 1)} (2) f(m, n) = m 2 mn + n 2 = k k m n f(m, n) m n f(m, n) k = 2 0 < = n 2 < = 8 3 n = 0 m2 = 2 X(2) 0 k = 4 m n m = 2p n = 2q m 2 mn + n 2 = 4p 2 4pq + 4q 2 = 4 p 2 pq + q 2 = 1 (1) (p, q) 6 (2p, 2q) f(m, n) = 4 X(4) 6 (3) (2) f(m, n) = 2 r (r ) m = 2p n = 2q f(m, n) = m 2 mn + n 2 = 2 r f(2p, 2q) = 4p 2 4pq + 4q 2 = 2 r f(p, q) = p 2 pq + q 2 = 2 r 2 X(2 r ) X(2 r 2 ) (2) X(2) 0 X(2 2 ) 6 X(2 r ) r

46 1 r X(2 r ) 0 n m D k = 2 r D = n 2 4(n 2 k) = 3n r+2 = N N 2 3 N 3 0 N = 3s ± l = (3 + 1) l 1 2 r 1 n N y 2 x 2 xy+y 2 = x 2 xy + y 2 = 2 2l 2 2l 2 l π l O 2 l 2 l x n 9 n 3 = n 2 (n 7 n) n n = 3k ± 1 n 9 n 3 = (3k ± 1) 3 {(3k ± 1) 6 1} = (27k 3 ± 27k 2 + 9k ± 1){(3k ± 1) 6 1} (±1){(3k ± 1) 6 1} (mod. 9) = (±1){(9k 2 ± 6k + 1) 3 1} (±1){(36k 2 ± 12k + 1)(±6k + 1) 1} (mod. 9) (±1){(±3k + 1)(±6k + 1) 1} (mod. 9) = (±1)(18k 2 ± 9k + 1 1) 0 (mod. 9) n 9 n n 9 n 3 = n 3 (n 3 1)(n 3 + 1) = (n 1)n(n + 1)n 2 (n 2 + n + 1)(n 2 n + 1) = (n 1){(n 1) 2 + 3n} n 3 (n + 1){(n + 1) 2 3n} n 3 n 3 9 n 3 1 (n 1){(n 1) 2 + 3n} 9 n 3 2 (n + 1){(n + 1) 2 + 3n}

47 19 19 (1) n 3 q r r = 0, 1, 2 n 2 = (3q + r) 2 = 3(3q 2 + 2qr) + r 2 n 2 r 2 3 r 2 = 0, 1, 4 = n n 3 (2) y z 3 (1) y 2 = 3k + 1, z 2 = 3l n = (6 + 1) 2n = 2n 1 i=0 2nC i 6 2n i n = 3m + 1 k, l, m 7 2n (y z 2 ) = (3m + 1){3k (3l + 1)} 7 2n (y z 2 ) 3 2 = (3m + 1){(3(10l + k + 3) + 2} x y z 3 yz 3 (3) yz 3 y z y = 3 z = 3 y = 3 x 2 = 7 2n (9 + 10z 2 ) 7 2n z 2 N 2 10z 2 = (N + 3)(N 3) N N + 3 = N N + 3 N 3 (N + 3, N 3) = (5z 2, 2), (z 2, 10), (10z, z), (5z, 2z), (10, z 2 ) z 2 z = 2 z = 3 y y = N 2 (N + y)(n y) = 90 N + y = N y + 2y N + y N y 4 90 y y = 3, z = 2 x 2 = 7 2n (9 + 40) = 7 2n+2 x = 7 n+1 47

48 20 20 (1) α α = q p q p f ( ) q = p ( q p ) n ( ) n 1 q + a a n 1 p ( ) q + a n = 0 p q n = p ( a 1 q n a n 1 qp n 2 + a n p n 1) p p q n p = ±1 α (2) f(x) = 0 α (1) α α k q r j α j r j = (α r)(α j 1 + α j 2 r + + r j 1 ) α r = kq α j r j k α j = r j + N j k a 0 = 1, N 0 = 0 f(α) = n n a j α n j = a j (r n j + N n j k) = j=0 n n a j r n j + k a j N n j = 0 j=0 j=0 j=0 n n a j r n j = f(r) = k a j N n j j=0 j=0 k k f(0), f(1), f(2),, f(k 1) n n 1 f(r) k f(0) = a n f(k) = a j k n j = k a j k n j 1 + a n f(0) k f(k) k k j=0 f(1), f(2),, f(k) k (2) j= α r (mod. k) f(α) f(r) (mod. k) f(x) = x + a a (1)

49 (1) , 2, 4, 7, 8, 11, 13, 14 f(15) = 8 (2) 1 < = m < = pq pq p q {p, 2p,, pq}, {q, 2q,, pq} pq q + p 1 f(pq) = pq (q + p 1) = (p 1)(q 1) (3) 1 p e p e p p e 1 1 p, 2 p,, p e 1 p ( f(p e ) = p e p e 1 = p e 1 1 ) p (1) (i) gcd(n, n) 1 p q N n p, 2p, 3p,, (q 1)p q, 2q, 3q,, (p 1)q (ii) 1 < = n < N gcd(n, n) 1 (i) (q 1) + (p 1) gcd(n, n) = 1 ϕ(n) = pq 1 (q 1) (p 1) = (p 1)(q 1) (2) N = pq (ii) ϕ(n) = N (p + q) + 1 p + q = N + 1 ϕ(n), pq = N p q x x 2 {N + 1 ϕ(n)}x + N = 0 49

50 (3) N + 1 ϕ(n) = = p, q = 9213 ± = 9213 ± = 9539, (1) m, n 7 m, n, i, j, m = 7m + i, n = 7n + j mn = (7m + i)(7n + j) = 7(7m n + m j + n i) + ij, f(mn) = f(ij).,, n 7, n 2, n 3,, n 7 7,. n n n n n n n , n f(n 7 ) = f(n) 7 7 n 7 n 7 n (2) (1), k, k 7 k k n+6 k n = k n 1 (k 7 k) = 7l k=1 k=1 k=1 g(n + 6) = g(n) (l ), 1 < = n < = 6., (1) g(1) = 3f( ) = 3f(21) = 0 g(2) = 3f( ) = 3f(14) = 0 g(3) = 3f( ) = 3f(21) = 0 g(4) = 3f( ) = 3f(14) = 0 g(5) = 3f( ) = 3f(21) = 0 g(6) = 3f( ) = 3f(6) = 18 50

51 , n = 6 g(6) = (1) {r k k A} B n p r k = 0 nk p k p 1 < = k < = p 1 0 B B A i, j A r i = r j n(i j) p i j p p + 2 < = i j < = p 2 i j = 0 i j r i r j B p 1 A B = A (2) k A q k nk = pq k + r k (ni)(nj) = p(pq i q j + q i r j + q j r i ) + r i r j n 2n (p 1)n = pn + r 1 r 2 r p 1 N B = A r 1 r 2 r p 1 = (p 1)! n p 1 (p 1)! (p 1)! = pn (p 1)! p n p 1 1 p (1) (2) r p C r = rp! r!(p r)! = p(p 1)! (r 1)!{(p 1) (r 1)}! = p p 1C r 1 p, r p p C r p. p 1 2 p = (1 + 1) p = 1 + pc r + 1 (1) 2 p 2 p 2 (p > 2) 0(p = 2) (3) n p n p.,. (i) n = 1. n = 2 (2) r=1 51

52 (ii) n = k. k p k = pm M. p 1 p 1 (1 + k) p = 1 + pc r k r + k p = 1 + pc r k r + pm + k r=1 p 1, pc r k r p N pn. r=1 r=1 (1 + k) p = 1 + pn + k (k + 1) p (k + 1) = pn, n = k + 1. (iii), n, n p n p., n p p n p (1) (x 1 +x 2 + +x r ) p (x 1 +x 2 + +x r ) p x 1, x 2,, x r p x 1 p2 p 1 x 2 x r r x 1, x 2,, x r p 1, p 2,, p r N N x 1, x 2,, x r p 1, p 2,, p r p 1, p 2,, p r x 1, x 2,, x r p 1!p 2! p r! p! p 1!p 2! p r!n = p! p x 1 p2 p 1 x 2 x r r N p! p 1!p 2! p r! 1 p p 1 + p p r = p p 1, p 2,, p r 1 (2) p 1, p 2,, p r 0 p j p! p 1!p 2! p r! = p (p 1)! p j p 1! (p j 1)! p r! p j p! p 1!p 2! p r! = p (p 1)! p 1! (p j 1)! p r! (1) p p p j < p p! p p j p p 1!p 2! p r! 52

53 (x 1 + x x r ) p (x 1 p + x 2 p + + x r p ) 2 p x 1 p2 p 1 x 2 x r r p j p j < p p x 1, x 2,, x r p (3) 2 x 1, x 2,, x r 1 (2) r p r = r(r p 1 1) p r p r p 1 1 p (1) p(x) = 1 f(x) = f(x)p(x) f(x) f(x) (2) 0 f(x) g(x) (1) f(x) f(x) g(x) f(x) f(x) f(x) f(x) g(x) f(x) f(x) g(x) (3) g(x) f(x) q(x) g(x) = f(x)q(x) + r(x) d(x) r(x), f(x) d(x) g(x) d(x) f(x) g(x) f(x) g(x) D(x) d(x) < = D(x) r(x) = g(x) f(x)q(x) D(x) r(x) D(x) r(x), f(x) D(x) < = d(x) D(x) = d(x) d(x) f(x) g(x) ( ) Q(x) 2 P (x) Q(x) 1 A(x) ax + b P (x) = Q(x)A(x) + ax + b {P (x)} 2 = {Q(x)A(x)} 2 +2(ax + b)q(x)a(x) + (ax + b) 2 53

54 {P (x)} 2 Q(x) {P (x)} 2 = Q(x)B(x) Q(x) [ B(x) Q(x){A(x)} 2 2(ax + b)a(x)] = (ax + b) 2 Q(x) 2 2 B(x) Q(x){A(x)} 2 2(ax + b)a(x) c P (x) Q(x) 0 c 0 Q(x) Q(x) = 1 (ax + b)2 c Q(x) 2 a 0 Q(x) = 0 x = b a 2 () Q(x) = 0 α β Q(x) = a(x α)(x β) α β x α x β f(x) f(x) Q(x) f(x) x α x β P (x) x α {P (x)} 2 x α {P (x)} 2 x α P (x) x α {P (x)} 2 Q(x) {P (x)} 2 x α x β P (x) x α x β P (x) Q(x) α = β 2 Q(x) = 0 x = α ( ) A(x) B(x) C(x) a, p b, q A(x) = ac(x) + p B(x) = bc(x) + q 1 ab 0 {A(x)} 2 + {B(x)} 2 = {C(x)} 2 a 2 {C(x)} 2 + 2apC(x) + p 2 + b 2 {C(x)} 2 + 2bqC(x) + q 2 = {C(x)} 2 1 C(x) cx + d c 0 x 2 a 2 c 2 + b 2 c 2 = c 2 1 a 2 + b 2 = 1 2apC(x) + p 2 + 2bqC(x) + q 2 = 0 54

55 x 2apc + 2bqc = 0 ap + bq = 0 2 p 2 + q 2 = 0 3 a q = 0 3 p = 0 2 p = bq a b 2 q 2 a 2 + q 2 = b2 + a 2 a 2 q 2 = 1 a 2 q2 = 0 A(x) B(x) C(x) () {A(x)} 2 + {B(x)} 2 = {C(x)} 2 {B(x)} 2 = {C(x) + A(x)}{C(x) A(x)} C(x) + A(x) C(x) A(x) 1 {B(x)} 2 k (k 0) C(x) + A(x) = kb(x) C(x) A(x) = 1 k B(x) A(x) = k2 1 2k B(x), C(x) = k k B(x) A(x) C(x) 1 k 2 ± 1 0 A(x) = k2 1 k 2 C(x), B(x) = 2k + 1 k C(x) A(x) B(x) C(x) (x + 1) 3 x 1 (x + 1) 3 = (x 1)(x 2 + 4x + 7) + 8 ( 1 8 x x + 7 ) (x 1) (x + 1)2 = 1 p(x)f(x) + q(x)g(x) = 1 { (x 1) p(x) x x + 7 } { + (x + 1) 3 q(x) 1 } =

56 x 1 (x + 1) 3 T (x) p(x) x x = (x + 1)3 T (x) q(x) 1 = (x 1)T (x) 8 p(x) = 1 8 x2 1 2 x (x + 1)3 T (x) q(x) = 1, (x 1)T (x) 8 (T (x) ) T (x) = 0 p(x) = 1 8 x2 1 2 x 7 8 q(x) = T (x) = 1 p(x) = x x x q(x) = x x = 1, x = 1 q(1)(1 + 1) 3 = 1, p( 1)( 1 1) = 1 p(x), q(x) P (x), Q(x) p(x) = (x + 1)P (x) 1 2, q(x) = (x 1)Q(x) { (x 1) (x + 1)P (x) 1 } { + (x + 1) 3 (x 1)Q(x) + 1 } = (x 2 1)P (x) + (x 2 1)(x + 1) 2 Q(x) = 1 (x + 1)3 8 + x 1 2 = (x2 1)( x 3) 8 P (x) = (x + 1) 2 Q(x) x Q(x) = 0 P (x) = x

57 ( p(x) = (x + 1) x + 3 ) = 1 8 x2 1 2 x 7 8 q(x) = 1 8 p(x), q(x) (x 1)p(x) ( + (x + 1) 3 q(x) = 1 (x 1) 1 8 x2 1 2 x 7 ) ( ) 1 + (x + 1) = 1 ( ) 57

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

kou05.dvi

kou05.dvi 2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................

More information

p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m

p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m P P N p() N : p() N : p() N 3,4,5, L N : N : N p() N : p() N : p() N p() N p() p( ) N : p() k N : p(k) p( k ) k p(k) k k p( k ) k k k 5 k 5 N : p() p() p( ) p q p q p q p q p q p q p q p q p q x y p q

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information