December 28, 2018

Size: px
Start display at page:

Download "December 28, 2018"

Transcription

1 kigami@i.kyoto-u.ac.jp December 28, 28

2 Contents

3 Chapter (2..6) f(t, x) x t n n A(t) X : (a, b) R n dx dt = A(t)X (..) X (a, b) (..) A t A(t) t A(t)X R n compact... n = t = x F (t) = t f(s)ds...2. F (t) = dx dt = f(t)x x(t) = e F (t) x, dx = f(t)x + g(t)y dt dy dt = h(t)y t f(s)ds, H(t) = 2 t h(s)ds

4 t x(t) = e F (t) x + (e F (t) ) g(s)e H(s) F (s) ds y y(t) = e H(t) y. K = C R.. ( ). V K- u V u V norm (N) v V u. v = v =. (N2) λ K v V λv = λ v. (N3) u, v V u + v u + v. V 2 c, c 2 > v V c v v 2 c 2 v..2. V K- u, v V d(u, v) = u v d(, ) V V 2 d i (v, u) = v u i d (, ) d 2 (, ) c, c 2 > u, v V c d (u, v) d 2 (u, v) c 2 d (u, v) d(, ) V d(, ) V V..3. V K- V (V, ) Banach space 3

5 ..4. x = (x,..., x n ) R n n x = x i i= x 2 = n x i 2 i= x = max i=,...,n x i, 2, 3 R n x x 2 x n x (R n, p ) Banach R n..5. R n 2. i =,..., n e i R n i M = max i=,...,n e i x = (x,..., x n ) = n i= x ie i x = n x i e i i= n x i e i M x 2 C > x R n x C x 2 i= C 2 > x R n C 2 x 2 x (..) (..) {x m } m R n m x m x m 2 x m y m 2 = m y m = x m x m 2 y m =. x m 2 {y m } m {z k } k z R n m z m z 2. z 2 = z m z z m z C z m z 2 z = lim m z m =. z =. z 2 = (..) 4

6 ..6. (X, d) C b (X, d) = {f f : X R, f X } f C b (X, d) f = sup f(x) x X b C(X, d)..7. V K- A : V V (L) A V. (L2) Av sup < +. v V,v v. (L) (L2): (L2) {x m } m V m Ax m x y m = n x m xm Ax m m x m y m = Ax m, Ay Ax m m = x m A Av (L2) (L): C = sup x V m x m x v V,v v Ax m Ax = A(x m x) C x m x m Ax m Ax. A V..8. V K-..7 (L2) A : V V V V bounded linear operator A L(V ) L(V ) = {A A V V } A L(V ) = Av sup v V,v v L(V ) L(V ) operator norm 5

7 ..9. V K- L(V ) K- L(V ) L(V ) A, B L(V ) AB L(V ) A L(V ) B L(V ) (V, ) Banach (L(V ), L(V ) ) Banach. (N): A L(V ) A L(V ) = v V Av =. A =. (N2): A L(V ), λ K λax = λ Ax λa L(V ) = λ A L(V ). (N3): A, B L(V ) (A + B)v = Av + Bv Av + Bv. A + B L(V ) A L(V ) + B L(V ). L(V ) L(V ) A, B L(V ) Bv ABv = ABv Bv v Bv v AB L(V ) A L(V ) B L(V ). (V, ) Banach {A m } m L(V ) Cauchy ϵ > M ϵ > n, m M ϵ A n A m L(V ) < ϵ v V n, m M ϵ A n v A m v = (A n A m )v A n A m L(V ) v ϵ v. (..2) {A m v} m V Cauchy V Banach m Av A : V V (..2) m n M ϵ A n v Av ϵ v. n M ϵ A n A L(V ) ϵ. n A n A. (L(V ), L(V ) ) Banach... L(R n ) = M n,n (R) = R n2, M m,n (R) m n R n 2 L(R n ) 2 Ax 2 A 2 = sup. 2 L(R n ) = R n2 x R n,x x R n2 2 (L(R n ), 2 ) Banach 6

8 .2 K = R, C V K-.2.. (V, ) Banach {x n } n V N n x n < + x n n n=.2.2. (V, ) {x n } n V n n= x n n x n N x n.2.. y N = N n= x n y N+m y N N+m n=n+ x n. n= x n < + ϵ > N N+m n=n x n n N x n < ϵ. y N+m y N < ϵ {y n } n V Cauchy (V, ) Banack y V n y n y (V, ) Banach A L(V ) A n n! n e A A, B L(V ) AB = BA e A+B = e A e B. A n /n! L(V ) ( A L(V ) ) n /n! a = A L(V ) n= an /n!.2. n An /n! A, B L(V ) AB = BA U N = {(n, m) n, m {,,..., N}, n + m N + } ( N = n= N A n n! k k= r= )( N m= B m m! ) = N A k r B r (k r)!r! + N n= m= (n,m) U N An Bm n!m! A n B m n!m! = N (A + B) k + k! k= (n,m) U N n= An Bm n!m!. (.2.) 7

9 α = A L(V ), β = B L(V ) L(V ) (n,m) U N An Bm n!m! (n,m) U N αn βm n!m! k N+ (α + β) k k! N = e α+β (α + β) k k! k= N (n,m) U N e A e B = e A+B. A n B m n!m! (.2.) N.2.4. (V, ) a, b R a < b f : (a, b) V f α (a, b) v V lim f(α + h) f(α) h v h = v = df (α) f α dt.2.5. (V, ) Banach A L(V ) t R U(t) = e ta t R U(t) du = AU(t) = U(t)A dt. U(t + h) U(t) h B(h) = n 2 = e(t+h)a e ta h n 2 An h n! = e ta eha I h ( = e ta A + h h n 2 = eha I ( e ta = A + h h h n 2 h n 2 An n 2 An ) n! ) e ta n! (.2.2) B(h) L(V ) n 2 h n 2 ( A L(V )) n n! e A L(V ). (.2.2) h du dt = AU(t) = U(t)A. 8

10 .3 A M n,n (K) dx = Ax (.3.) dt K = C or R.3.. (.3.) t = x K n x(t) = e ta x e ta Jordan.3.2. k N I k, J k M k,k (C) I k J k = (Jordan ). A M n,n (C) P M n,n (C) n, n 2,..., n m N, A α,..., α m, P n n m = n α I n + J n.... P α AP = 2 I n2 + J n (.3.2)..... α m I nm + J nm C n (φ,..., φ n, φ 2,..., φ 2 n 2,..., φ m,..., φ m n m ) k =,..., m { Aφ k λφ k i i =, i = λφ k i + φ k i i = 2,..., n k 9

11 P AP A Jordan α i I ni + J ni A Jordan Jordan cell i =,..., m n i = m = n A diagonlizable semisimple.3.5. P, A M n,n (C) P e P AP = P e A P t t 2 t... k 2! (k )!. t... e tj k = t 2 2!... t... e ta = P e ta P e αt e tj n... e ta e = P α2t. e tjn P (.3.3)... e αmt e tj nm k =,..., m, i =,..., n k B = P AP i e ta φ k i = e α t kt j j! φk i j j= K n P e ta K n P (.3.4) e tb K n K n

12 .3.8. x(t) (.3.) (, ) x() x(t) = x(t) = e ta x() x() = m n k k= m n k a k i φ k i k= i= ( nk i e α kt a k t j i+j j! i= j= A k =,..., m n k = ψ k = φ k m x() = a k ψ k x(t) = k= m a k e αkt ψ k k= A M n,n (R) λ / R λ = η + ω.3.9. E(λ) = {x x C n, m (A λi) m x = } φ E(λ), e φ = f + g, f, g R n f g. φ = f g φ E(λ). E(λ) E(λ) φ φ f = (φ + φ)/2, g = (φ φ)/(2 ) f g.3.. (φ,..., φ m ) λ Jordan Aφ = λφ, Aφ i = λφ i + φ i (i = 2,..., n) φ i = f i + gi, f i, g i R n k e ta f k = e ηt t j j! (cos ωtf k j sin ωtg k j ) j= k e ta g k = e ηt t j j! (sin ωtf k j + cos ωtg k j ) j= ) φ k i

13 . Lemma.3.6 e ta (f k + k g k ) = e λt t j j! (f k j + g k j ).3.. j= P = P = a, b R a B = a b e at te at e tb = e at e bt A = P BP a + 2b + 2 a b 2a + 2b + 3 A = 2a 2b + 4 b 2 2a 2b + 6 2a 2b a + b 3a 2b ( + 2t)e at + 2e bt ( t)e at e bt ( 2 + 3t)e at + 2e bt e ta = (2 + 4t)e at 2e bt 2te at + e bt (2 + 6t)e at 2e bt 2e at 2e bt e at + e bt 3e at 2e bt a = b = 3 + 2t t 3t A = 4 3 6, e ta = e t 4t 2t 6t 2

14 a =, b = A = P.3. α, η, ω R η ω B = ω η α B η ± ω, α z = η + ω B z C C { t(f + } g) f =, g =, t C z { t(t } g) t C..3. e tb f = e ηt ((cos ωt)f (sin ωt)g) e tb g = e ηt ((sin ωt)f + (cos ωt)g) e ηt cos ωt e ηt sin ωt e tb = e sin ωt e ηt cos ωt e αt A = P BP η 2ω + 2α η + ω α 2η 3ω + 2α A = 2η 6ω 2α 4ω + α 2η ω 2α 2η ω 2α η + ω + α 3η 2ω 2α 3

15 e ta = P e tb P e ta A η, ω, α e ηt cos ωt, e ηt sin ωt, e αt ω = η = α = 3 A = 6 5, cos t + 2 sin t + 2 cos t sin t 2 cos t + 3 sin t + 2 e ta = e t 2 cos t + 6 sin t 2 4 sin t + 2 cos t + sin t 2 2 cos t + sin t cos t sin t + 3 cos t + 2 sin t 2.4 A 3 dx dt = Ax x() A A λi = λ, λ 2, λ 3 (a) λ, λ 2, λ 3 (a-) λ, λ 2, λ 3 p, p 2, p 3 λ, λ 2, λ 3 x(t) x(t) = αe λ t p + βe λ 2t p 2 + γe λ 3t p 3 P = (p p 2 p 3 ) α β = P x(). γ (a-2) λ, λ 2 λ = η + ω (η, ω R) λ 2 = η ω λ 3 λ u + v (u, v R 3 ) u v λ 2 A(u + v) = λ (u + v) A(u v) = λ 2 (u v) 4

16 .3. e ta u = e ηt ((cos ωt)u (sin ωt)v) e ta v = e ηt ((sin ωt)u + (cos ωt)v) λ 3 p e ta p = e λ 3t p x() = αu + βv + γp x(t) = e ηt (α cos ωt + β sin ωt)u + e ηt (β cos ωt α sin ωt)v + e λ 3t p Q = (u v p) α β = Q x(). γ (b) λ = λ 2 λ = λ 2 λ 3 (b-) λ p, p 2 λ p 3 λ 3 x(t) = αe λ t p + βe λ t p 2 + γe λ 3t p 3. t = x() = αp + βp 2 + γp 3 P = (p p 2 p 3 ) α β = P x(). γ (b-2) λ (A λ I)p (A λ I) 2 p = p p 2 = p p = (A λ )p 2 (A λ I)p = (A λ I) 2 p 2 = 5

17 Ap = λ p. p 2 λ (p, p 2 ) p 3 λ 3 Ap = λ p, Ap 2 = λ p 2 + p, Ap 3 = λ 3 p 3 P = (p p 2 p 3 ) λ P AP = λ λ 3 e λ t te λ t e ta = P e λ t P e λ 3t e ta p = e λ t p, e ta p 2 = e λ t p 2 + te λ t p, e ta p 3 = e λ 3t p 3 x() = αp + βp 2 + γp 3 e ta x() = e λ t (α + βt)p + βe λ t p 2 + γe λ 3t p 3. α β = P x(). γ (c) λ = λ 2 = λ 3 λ = λ = λ 2 = λ 3 λ E(λ) = {x x R 3, (A λi)x = } (c-): dim E(λ) = 3 A λi = λ Jordan λ λ (c-2): dim E(λ) = 2 A λi, (A λi) 2 = λ Jordan λ λ (c-3): dim E(λ) = A λi, (A λi) 2, (A λi) 3 = 6

18 λ Jordan λ λ (c-) A = λi x(t) = e λt x(). (c-2) (A λi)p p p 2 = p p = (A λi)p 2 Ap = λp. dim E(λ) = 2 p 3 E(λ) (p, p 3 ) P = (p p 2 p 3 ) λ P AP = λ λ t e ta = e λt P P (b-2) λ = λ 3 (c-3) (A λi) 2 p p p 3 = p p 2 = (A λi)p 3, p = (A λi)p 2 (A λi)p = (A λi) 3 p 3 = Ap = λp, Ap 2 = λp 2 + p, Ap 3 = λp 3 + p 2 P = (p p 2 p 3 ) λ P AP = λ λ e ta = e λt P t t2 2 t P 7

19 e ta p = e λt p, e ta p 2 = e λt (tp + p 2 ), e ta p 3 = e λt ( t 2 x() = αp + βp 2 + γp 3 x(t) = e ta x() = e λt ( ( α + βt + γ t2 2 2 p + tp 2 + p 3 ) ) p + (β + γt)p 2 + γp 3 )..4.. () 3 3 A = 2 2 A λi = (λ ) 3. (c) 2 3 A I = s 2. (c-3) 2 2 (A I) 2 = (A I) 3 = p 3 =, p 2 = (A I)p 3 =, p = (A I) 2 p 3 = 2 8

20 (2) P = 2 P = t t2 t e ta = e t + t2 2 3t t 2 2t 2 + t 2 2t 2t 2 2t t 2t A = A λi = ( λ)(λ 2 + 2λ + 2) λ = + i, λ 2 = i, λ 3 =. (a-2) λ 2 2i i λ 3 = u = 2, v = 2, p 3 = P = (u v p 3 ) = P =

21 .5 K = R or C (.3.) dx dt = Ax x(t) = A Jordan n,..., n m (n n m = n), α,..., α m η,..., η m A Jordan B A Jordan P B = P AP.5.. β R i =,..., m η i < β C > t e ta Ce bt L(R n ). e ta (i, j) a ij (t) a ij (t) = m e ηkt e n k ω k t c kl t l k= β > η k C t t k e ηt Ce βt C ij > a ij (t) C ij e βt M n,n (R n ) R n2 C > Z M n,n (R n ) l= Z L(R n ) C Z e ta C e ta = C max a ij (t) ( C max C ij ) e βt 2

22 .5.2. () (.3.) x (stable) t e ta as t (2) (.3.) x C > t e ta C (3) (.3.) x x() t e ta x().5.3. () (.3.) x i =,..., m η i < (2) (.3.) x i =,..., m η i < η i = n i = (3) (.3.) x i =,..., m η i > η i = n i 2. () i =,..., m η i < β < i =,..., m η i < β <.5. t e ta. i η i α i u i e ta u i = e α it u i e ta u i = e η it u i u i (2), (3) (a) i =,..., m η i < η i = n i = i =,..., k η i <, η k+ =... = η m = e ta (p, q)- a pq (t) a pq (t) = k i= n i e α it j= c p,q ij tj + m i=k+ c p,q i e α it i =,..., k η i < β < β C pq > m a pq (t) C pq e βt + c pq i i=k+.5. C > t e ta C. (b) i =,..., m η i > η i = n i 2 η i > α i u i e ta u i = e α it t e ta u i = e η it u i 2

23 η i = n i φ, φ 2 e ta φ = e α it (φ + tφ 2 ) t e ta = φ + tφ 2..6 K = R or C f : R K n A M n,n (K) dx dt = Ax + f(t) (.6.5) x(t) f (t). f(t) =. i =,..., n f i f n (t) [a, b] f i (.6.5) f(t) (external force) (non homogeneous term).6.. (.6.5) x(). (.6.5) x(t) = e ta x() + t d dt (e ta x(t)) = e ta f(t) e (t s)a f(s)ds (.6.6) 22

24 t e (t s)a f(s)ds (.6.5) (.6.5) x() = ( dx ) ( ) dt = Ax x() + (.6.5) c,..., c n d n dt φ + c d n n n dt φ c d n dt φ + c φ = (.6.7) φ : R K (.6.7) n homogeneous constant coefficient ordinary differential equation of order n) x = φ, x 2 = d dt φ,..., x n = dn dt n φ x x =..... A = c c c n 2 c n x n (.6.8) (.6.7) d dt x = Ax (.6.7) x() = φ() φ () (). φ(i) = φ (n ) () 23

25 d i dt i φ x(t) = e ta x() e ta (i, j)- a ij (t) n φ(t) = φ (j ) ()a j (t).6.2. () A p A (λ) = λi A j= p A (λ) = λ n + c n λ n + + c (2) A λ λ E A (λ) (3) λ,..., λ m (i j λ i λ j ) A p A (λ) = (λ λ ) n (λ λ m ) nm A Jordan λ I n + J n.... λ 2 I n2 + J n (4) k... λ m I nm + J nm ( d dt λ ) k+(t k e λt ) = (4), i =,..., m, j =,..., n i φ ij (t) = tj (j )! eλ it (.6.7) φ m n i φ(t) = c ij φ ij (t) (.6.9) i= (c ij ) i=,...,m,j=,...,ni (.6.9) φ (.6.7) j= 24

26 .6.3. () (φ,..., φ n ) (.6.7) (a fundamental system of solutions) i =,..., n φ i (.6.7) (.6.7) φ α,..., α n φ(t) = n α i φ i (t) i= (2) i =,..., n u i : R K n U = (u,..., u n ) U (Wronski matrix) M W U (t) u (t) u 2 (t) u n (t) MU W u () (t) u () 2 (t) u () n (t) (t) =... u (n ) (t) u (n ) 2 (t) u (n ) n (t) U (Wronski determinant or Wronskian) W U (t) W U (t) = M W U (t) (4) (φ,..., φ n,..., φ m,..., φ mnm ) (.6.7).6.5. Φ = (φ,..., φ n ) (.6.7) t R MΦ W (t) φ(t) = n α i φ i (t) i= α φ(t) MΦ W α 2 (t). = φ () (t). φ (n ) (t) α n 25

27 φ() φ () () (.6.7). φ (n ) () α φ() α 2. = M Φ W () φ () (). φ (n ) () a.. a n α n φ(t) = n α i φ i (t) i= K n b b n b. = e ta. b n a a n K n. (.6.7) ψ(t) ψ(t) a. =. ψ (n ) (t) a n ψ (.6.7). ψ(t) = i= β β n β i φ i (t) 26

28 β MΦ W (t). β n = ψ(t) a. =. ψ (n) (t) M W Φ (t) : Kn K n M W Φ a n. (t).6.6. R, C, L R, L >, C > I d 2 dt I + R d 2 L dt I + LC I = (.6.) J = d dt I d dt ( ) ( I = J LC R L ) ( ) I J λ 2 + R L λ + =. (.6.) LC ( R ) 2 4 L LC. () > CR 2 > 4L (.6.) ( λ = ) ( R (R ) 2 2 L + 4 and λ 2 = ) R (R ) 2 L LC 2 L 4 L LC λ, λ 2 < Φ = (e λt, e λ2t ) (.6.) ( ) e MΦ W λ t e (t) = λ 2t λ e λ t λ 2 e λ 2t W Φ (t) = e (λ +λ 2 )t (λ 2 λ ) (I(), I ()) I(t) = α e λt + α 2 e λ2t ( ) ( ) ( ) α I() = λ λ 2 α 2 I () 27

29 λ, λ 2 < (.6.) (2) = CR 2 = 4L (.6.) λ = R 2 L. p A (λ) = (λ λ ) 2 Φ = (e λt, te λt ) (.6.) ( ) e MΦ W λ t te (t) = λ t λ e λ t e λt + λ te λ t W Φ (t) = e 2λ t (I(), I ()) I I(t) = α e λ t + α 2 te λ t ( ) ( ) α = λ α 2 ( ) I() I () λ < (.6.) (3) < CR 2 < 4L η = R 2 L and ω = LC R ) 2 4( L (.6.) η ± ω C (e (η+ ω)t, e (η ω)t ) e (η+ ω)t = e ηt (cos ωt + sin ωt) e (η ω)t = e ηt (cos ωt sin ωt) Φ = (e ηt cos ωt, e ηt sin ωt) ( ) MΦ W e (t) = ηt cos ωt e ηt sin ωt ηe ηt cos ωt ωe ηt sin ωt ηe ηt sin ωt + ωe ηt cos ωt W Φ (t) = e 2ηt ω 28

30 (I(), I ()) I(t) = e ηt (α cos ωt+α 2 sin ωt) ( ) ( ) ( ) α I() = η ω I () α 2 R > η < (.6.) R = (.6.) f : R K d n dt φ + c d n n n dt φ c d n dt φ + c φ = f(t) (.6.2) φ (.6.2) f n A (.6.8) F (t) =. f(t).6. d x = Ax + F (t) dt x(t) = e ta x() + t e (t s)a F (s)ds e ta (i, j)- a ij (t) t t a n (t s) e (t s)a F (s)ds = f(s). ds a nn (t s) a n (t). a n n (t) = eta. a nn (t) 29

31 a n (t) (.6.7) (.6.7). ϕ(t) φ (t) = t ϕ(t s)f(s)ds φ (.6.2). (.6.2). γ φ(t) (.6.7). γ n ψ(t) φ(t) = ψ(t) + φ (t) φ (t) Φ = (φ,..., φ n ) (.6.7) () α. α n = W Φ(). ϕ(t) = α n n α i φ i (t) φ (t) = i= t ϕ(t s)f(s)ds. (2) : φ (t) = n i= ϕ i(t)φ i (t) ϕ i (t) γ γ n 3

32 .6.8. WΦ,f(t) k = φ (t)... φ k (t) φ k+ (t)... φ n (t) φ () (t)... φ () k (t) φ() k+ (t)... φ() n (t)..... (t)... φ (n 2) k (t) φ(n 2) k+ (t)... φ(n 2) n (t) (t)... φ (n ) (t) f(t) φ(n ) (t)... φ(n ) n (t) φ (n 2) φ (n ) k i =,..., n ϕ i (t) = φ (t) = t W i Φ,f (t) W Φ (t) dt n ϕ i (t)φ i (t). i= k+. (ϕ,..., ϕ n ) ϕ (t) MΦ W (t). ϕ n (t) =. ϕ n(t) f(t) n i= ϕ i(t)φ (j) i (t) = n φ (j) i= (t) = n = φ (n) i= { (j =,..., n 2) f(t) j = n ϕ i (t)φ (j) i (t) (j =,..., n ) ϕ i (t)φ (n) i (t) + f(t) j = n (.6.3) (.6.4) (t) + c n φ (n ) (t) + + c φ () (t) + c φ (t) n ϕ i (t) ( φ (n) i (t) + c n φ (n ) i (t) + + c φ () i (t) + c φ i (t) ) + f(t) = f(t) i= 3

33 φ (t) (.6.2) (.6.4) (.6.) f(t) d 2 dt I + R d 2 L dt I + LC I = f(t). d 2 dt I + R d 2 L dt I + I = cos γt (.6.5) LC.6.6 (.6.) () > CR 2 > 4L (.6.) λ = 2 ( R L + (R L ) 2 4 LC (.6.) ) and λ 2 = 2 α 2 e λ2t ( ) ( ) α = λ λ 2 α = t λ 2 λ, α 2 = ϕ(t) = e λs cos γsds = φ (t) = ( R L (R L ) ) 2 4. LC ( ) ϕ ϕ(t) = α e λt + α 2 λ 2 λ. ( ) λ 2 λ ( e λ t + e λ 2t ) t ϕ(t s) cos γsds e λt λ ( λ cos γt + γ sin γt) + λ 2 + γ2 λ 2 + γ 2 32

34 φ (t) = (λ λ 2 γ 2 ) cos γt γ(λ + λ 2 ) sin γt (λ 2 + γ 2 )(λ γ 2 ) ( λ + λ 2 λ λ 2 + γ 2 eλ t + λ ) 2 λ γ 2 eλ 2t A = (λ 2 + γ 2 )(λ γ 2 ) θ cos θ = λ λ 2 γ 2, sin θ = γ(λ + λ 2 ) A A φ (t) = A cos (γt + θ) + ( λ λ 2 λ λ 2 + γ 2 eλ t + λ ) 2 λ γ 2 eλ 2t I(t) λ, λ 2 < t I(t) = c e λ t + c 2 e λ 2t + φ (t) I(t) cos (γt + θ) A (2) = CR 2 = 4L (.6.) λ = R 2 L. ( ) (.6.) ϕ(t) = α e λt + α 2 te λt ( ) ( ) ( ) α = λ α 2 α =, α 2 =. ϕ(t) = te λ t. φ (t) = t = te λ t = ϕ(t s)f(s)ds t e λ s cos γsds e λ t t se λ s cos γsds ( ) (λ 2 (λ 2 + γ 2 ) 2 γ 2 ) cos γt 2λγ sin γt 33 + γ2 λ 2 + λ t λ 2 + γ 2 e λ t.

35 A = λ 2 + γ 2 cos θ = λ2 γ2, sin θ = 2λ A γa θ φ (t) = A cos (γt + θ) + γ2 λ 2 + λ t λ 2 + γ 2 e λ t. I(t) I(t) = c e λ t + c 2 te λ t + φ (t) λ < t I(t) cos (γt + θ). A (3) < CR 2 < 4L η = R 2 L and ω = LC R ) 2 4( L (.6.) ( ) (e ηt cos ωt, e ηt sin ωt) (.6.) ϕ(t) ϕ(t) = α e ηt cos ωt+α 2 e ηt sin ωt ( ) ( ) ( ) α = η ω α 2 α =, α 2 = eηt. ϕ(t) = ω ω sin ωt. φ (a) η ω γ Q = (η 2 + (ω γ) 2 )(η 2 + (ω + γ) 2 ) = (η 2 ω 2 + γ 2 ) 2 + 4η 2 ω 2 ( φ (t) = eηt (η 2 + ω 2 γ 2 ) cos ωt + η ) Q ω (η2 + ω 2 + γ 2 ) sin ωt η = R = φ (t) = (b) η = ω = γ + (η2 + ω 2 γ 2 ) cos γt 2ηγ sin γt Q (cos γt cos ωt) ω 2 γ2 φ (t) = t sin ωt 2ω 34

36 f d 2 dt f + a d 2 dt f + a f = (.6.6) φ (c a )(a c a c ) + (c a ) 2 (.6.7) d 2 dt φ + c d 2 dt φ + c φ = f(t) α f + α 2 f (.6.6) f = a f a f φ = α f + α 2 f d 2 dt φ + c d 2 dt φ + c φ f = (a 2 a )f + a a f = α ((a 2 a ) a c +c )f +(a a c a )f ( ) )+α 2 (c a )f +(c a )f ( ) ( ) a (c a ) + c a c a α = a (c a ) c a α 2 ( ) (.6.8) φ (.6.6) (.6.8) (.6.7) 35

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information