OHP.dvi

Size: px
Start display at page:

Download "OHP.dvi"

Transcription

1 t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1

2 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2

3 2 F. (det F =0), : dx = F 1 dx (4). dx dx,. R, U F F = R U (5). U (right stretch tensor). (right ploar decomposition)., R, V F = V R (6). (left ploar decomposition), V (left stretch tensor). 3

4 2 90 F = R U (7) = (8) 0 } 0 {{ 1 } 0 } 0 {{ }}{{} F R U 90 2 F = V R (9) = (10) 0 } 0 {{ 1 } }{{}} 0 {{ 1 } F V R X 2 0 X 1 4

5 3 Cauchy-Green Cauchy-Green C = F T F = U R T R U = U 2 (11) B = F F T = V R R T V = V 2 (12) F 0 (τ) =F t (τ) F 0 (t) (13) t F t (τ) τ t 0 F 0 (t) F 0 (τ) dx dx X x O 5

6 1 dx 1 dx 2 dx 1 dx 2 =(F dx 1 ) (F dx 2 ) dx 1 dx 2 = dx 1 (C I) dx 2 (14) dx 1 dx 2 dx 1 dx 2 = dx 1 dx 2 (F 1 dx 1 ) (F 1 dx 2 ) = dx 1 (I B 1 ) dx 2 (15) t t 0 dx 2 u dx 2 dx 1 X dx 1 x O 6

7 2 dx 1 dx 2 dx 1 dx 2 =(F dx 1 ) (F dx 2 ) dx 1 dx 2 = dx 1 (C I) dx 2 (16) Green-Lagrange E Almange A dx 1 dx 2 dx 1 dx 2 = dx 1 dx 2 (F 1 dx 1 ) (F 1 dx 2 ) = dx 1 (I B 1 ) dx 2 (17) E = 1 (C I) (18) 2 A = 1 2 (I B 1 ) (19) 7

8 3 1 F = l L (20) dx 1 dx 1 dx 1 dx 1 = l L dx 1 l L dx 1 dx 1 dx 1 ( ) l 2 = dx 1 L 1 dx 2 1 (21) Green-Lagrange E Almange A dx 1 dx 1 dx 1 dx 1 = dx 1 dx 1 L l dx 1 L l dx 1 ) = dx 1 (1 L2 dx 1 (22) l 2 E = 1 ( ) l 2 2 L 1 2 (23) A = 1 ) (1 L2 2 l 2 (24) 8

9 E = 1 ( ) ( ) l 2 2 L 1 = 1 (u + L) 2 L 2 u 2 2 L 2 L A = 1 ) ( ) (1 L2 = 1 (u + L) 2 L 2 u 2 l 2 2 l 2 l u L (25) (26) 9

10 3 E = E ij e i e j = 1 { ui + u j + u } k u k e i e j 2 X j X i X i X i A = A ij e i e j = 1 { ui + u j + u } k u k e i e j 2 x j x i x i x i E L = E Lij e i e j = 1 { ui + u } j e i e j (27) 2 X j X i E A E = 1 (C I) 2 = 1 2 (F T F I) = 1 2 F T (I F T F 1 )F = 1 2 F T (I B 1 )F = F T AF (28) 10

11 4 F = RU (29) l L 0 0 l cos θ sin θ 0 L U = 0 h H 0 cos θ h H sin θ 0 l R = sin θ cosθ 0 F = L sin θ h H cos θ 0 h H l 2 l L h C = H E = 1 L h H (30) 2 h h H H 1 2 X 2,x 2 h h l L θ H H X 1,x 1 11

12 1 O x t dx L d + d 1: 2 X X +dx, t x x +dx, ẋ ẋ +dẋ. ẋ, dẋ d, (elocity gradient tensor) L. d = L dx (31), 2 d dx. t grad. L = x (32) 12

13 2 dx = F dx (33) dx d = Ḟ dx (34), d = Ldx dx = F dx d = L F dx (35),. Ḟ = L F (36) L = Ḟ F 1 (37), J = detf. J J =trl ( = ) i =di x i (38) 13

14 , L. L = D + W D = 1 ( ) L + L T 2 = 1 ( i + ) j e i e j 2 x j x i W = 1 ( ) L L T 2 = 1 ( i ) j e i e j (39) 2 x j x i D (deformation rate tensor) (stretching tensor), W (spin tensor) (rotation rate tensor). 14

15 3 D = 1 2 R( UU 1 + U 1 U)R T W = ṘRT R( UU 1 U 1 U)R T Ė = F T DF D = Ȧ + LT A + AL (40) 15

16 1 ds N dx B n dx B ds dx A F dx A 2:,,,.,, ds, N, ds, n,. n ds =(detf )F T N ds (41) F T n ds =(detf )N ds (42) Nanson (Nanson s formula). 16

17 2 dv d dx3 dx 2 dx 3 dx 2 dx 1 F dx 1 3:, dx 1,dX 2,dX 3 3 dv 6, dx 1,dx 2,dx 3, 3 d 6. dv d. d =(detf )dv (43) J det F (44) J. 17

18 m ρ, m = ρ d (45) (principle of conseration of mass), m, ṁ = 0 (46),. d =(detf )dv, J = detf, m = ρj dv (47) ṁ = = = V V V ( ρj + ρ J)dV ( ρ + ρtrl)j dv, ( ρ + ρdi)d (48) ρ + ρdi = 0 (49) 18

19 1 (body force) ρg, (surface force) t. g, ρg., t., ρ d ( ) ρ d = ρg d + t ds (50). Euler 1 (Euler s first law of motion). a,( ρfd) = ρf d. ρ(a g)d = t ds (51) s s 19

20 2, (angular momentum). ( ) x ρ d = x ρg d + x t ds (52),, (moment of momentum). Euler 2 (Euler s second law of motion). ( ρfd) = ρf d ẋ = = 0 (53). x ρa d = x ρg d + s s x t ds (54) 20

21 Cauchy 1 t l n df n m ds 4: ds df n ( 6)., t., t n. ( ) t n = df n ds (55) 21

22 Cauchy 2 t l n mds df n 5: 2 l, m, t n. t n = T nn n + T nl l + T nm m (56) T 1, 2., (n, l, m) (e 1, e 2, e 3 ), (e 2, e 3, e 1 ), (e 3, e 1, e 2 ), t 1, t 2, t 3,. t i = T ij e j (57) Cauchy T T ij. T = T ij e i e j (58) 22

23 Cauchy 3 Cauchy t 3 t 1 t n t 2 6: Δ s1,δ s2,δ s3,δ s Eular ( ρ d) = ρg d + s t ds ρ(a g)δ t n Δ s t 1 Δ s1 t 2 Δ s2 t 3 Δ s3 (59) Δ si /Δ s n i t n = t i n i (60) 23

24 Cauchy 4 t n = t i n i t i = T ij e j Cauchy (Cauchy s formula) : t n = T T n (61). Cauchy, Eular ρ(a g)d = s tds t t n = T T n ρ(a g)d = dit d (62). ρa =dit + ρg (63). ρa i = T ji x j + ρg i (64) Cauchy 1 (Cauchy s first law of motion) (equilibrium equation). 24

25 Cauchy 5, Euler x ρad = x ρg d + s x t ds t t n = T T n. x ρa d = {x (ρg +dit )+e ijk T ij e k } d (65) ρa =dit + ρg e ijk T ij e k d =0 e ijk T ij = 0 (66). T ij = T ji (67) T T = T (68), Cauchy 2 (Cauchy s second law of motion). Cauchy, 6. 25

26 Cauchy t.,,. Kirchhoff ˆT t 0 t J ˆT JT (69). 26

27 1 Piola Kirchihoff, 1 Piola Kirchihoff (first Piola Kirchihoff stress tensor), df n : t df n ds (70) t Π T N (71)., n, ds,, N, ds, Π (nominal stress). t t 0 N ds Π T df n ds n df n 7: 1 Piola Kirchihoff Nanson df n = Π T N ds = 1 J ΠT F T n ds (72) 27

28 , Cauchy t n (= df n /ds) =T T n T Π. T = 1 J F Π (73) 28

29 2 Piola Kirchihoff 2 Piola Kirchihoff (second Piola Kirchihoff stress tensor) S, df n F 1 df n :. t F 1 df n ds = F 1 t (74) t S T N (75) t t 0 N S T ds F 1 df n F 1 ds n df n 8: 2 Piola Kirchihoff Nanson df n = F S T N ds = 1 J F ST F T n ds (76) 29

30 , Cauchy t n (= df n /ds) =T T n T S. T = 1 J F S F T (77) 30

31 1,.,, (constitutie equation). 31

32 2 F, Cauchy T. Q, Q T Q T., Q F., T F. T = f(f ) (78) f, (tensor alued tensor function). Q T Q T = f(q F ) (79) Q f(f ) Q T = f(q F ) (80). f. 32

33 3, (principle of determinism for the stress) :. 2. (principle of local action) : X, X,. 3. (principle of material frame indiffernce or principle of material objectiity) : (referance frame) 1., 2 O O x = c(t)+q(t) x (81) T = Q(t) T Q(t) T (82),. 1 (eent) x t {x,t} (obserer). {x,t}, {x,t }. 33

34 4 2 O O x = c(t)+q(t) x (83) 2 b = x 2 x 1, b = x 2 x 1 x 2 x 1 = Q(t)(x 2 x 1 ) (84) b = Q(t) b (85) Q(t) K = Q(t) K Q(t) T (86) V, B, A, D, T (87) R, L, W (88) U, C, E, S (89) 34

35 4 ε ij (u) = 1 ( ui + u ) j 2 X j X i (90) T ij = κ(di u)δ ij +2Gε D ij(u) (91) x 1 x F ij = (92) E ij = = (93) cos θ 1 sin θ θ 35

36 4 T = ae (94) T = a E T = QT Q T a = a E = E T = a E QT Q T = ae = T (95) T = aa (96) S = ae (97) 36

37 , A [B]. [B] A Ω, Ω Ω, Ω Ω D. t, ρg, u V., ρ, g, V. A t Ω D ρg Ω 9: 37

38 . [B] t, g, u V. [1 ] (Cauchy 1 ) x T + ρg = 0 (98) X (S F T) + ρ 0 g = 0 (99) [2 ] u = u on Ω D (100) T T n = t on Ω Ω D (101) ( S F T ) T N = t (102) [3 ] [4 ] [1], [2] [4] [3] [4] 38

39 1 T T, u U. Ť T, ǔ U,. ( x Ť + ρg) ǔ d = 0 (103),., s t,s u t, u s, s = s t + s u. Ť :(ǔ x )d = t ǔ ds + n Ť u ds + s t s u, s u w =0 w W. ǔ U, w W ǔ + w U. Cauchy T,. ρg ǔd (104) T :(ǔ x )d = t ǔ ds + n T u ds + ρg ǔd (105) s t s u T : {(ǔ + w) x } d = t (ǔ + w)ds + n T u ds + ρg (ǔ + w)d (106) s t s u 39

40 2 Cauchy T,. T :(ǔ x )d = t ǔ ds + n T u ds + ρg ǔd (107) s t s u T : {(ǔ + w) x } d = t (ǔ + w)ds + n T u ds + ρg (ǔ + w)d (108) s t s u. T :(w x )d = t w ds + s t. T : δa (L) d = δ t w ds + δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i ρg wd (109) ρg w d (110) (111) S : δe d = t w ds + ρg w dv (112) V δv V 40

41 3 T : δa L d V dv = V S : δedv (113) 1 d (114) J T = 1 J F S F T S ij = JF 1 im T mnf 1 jn (115) δe = F T δa L F (F T δa L F ) ij = F ki δa Lkl F lj = x { ( k 1 δuk + δu )} l xl X i 2 x l x k X j = 1 ( xk δu k x l + x ) k δu l x l 2 X i x l X j X i x k X j = 1 ( xk δu k + x ) l δu l 2 X i X j X i X j = 1 {( ) u k δuk δ ki + δu ( )} l u k δ li 2 X i X j X j X i = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j = δe ij (116) 41

42 V S : δedv = = = = (F T δa L F ):(JF 1 T F T ) 1 J d J(F ki δa Lkl F lj )(F 1 im T mnf 1 jn ) 1 J d δ km δ ln A Lkl T mn d T : δa L d (117) 42

43 T ij δe ij dv (118) T ij δe ij = {δe}{t } = {δu} T [B][D][B]{u} (119) {δe} =[B]{δu} (120) {T } =[D]{E} =[D][B]{u} (121) S ij δe ij dv (122) S ij δe ij = {δe}{s} = {δu} T [B]{S} (123) {δe} {δu} u {S} 43

44 {E} {E} u E = 1 ( ui + u j + u ) k u k e i e j (124) 2 X j X i X i X j δe = 1 ( δui + δu j + δu k u k + u ) k δu k (125) 2 X j X i X i X j X i X j 44

45 Newton-Raphson 1,. find u h V h such that δu ht (Q(u h ) F )=0 δu h V h (126), V h V, V h V. Q, F,., Q(u) =F (127),. F {F k } 0=F 1 < F 2 < < F n = F (128). Newton-Raphson, Q(u k )=F k (129) u k u k 1. 45

46 Newton-Raphson 2 u k 1, u k F k F K k 1 K k 2 Q k 2 Q k Q k 1 F k 1 Δu k 1 Δu k 2 u k 0 = uk 1 u k 1 u k 2 u k $mbu$. K. u k 0 = u k 1 (130) Q k 0 = Q(u k 0) (131) K k 1 = Q u (132) u=u k 0 46

47 , K k 1 Δu k 1 = F k Q k 0 (133) u k 1 = uk 0 +Δuk 1 (134) u k 1, uk 0 uk 1 uk. 47

48 Newton-Raphson 3 F k F K k 1 K k 2 Q k 2 Q k Q k 1 F k 1 Δu k 1 Δu k 2 u k 0 = uk 1 u k 1 u k 2 u k $mbu$, u k i 1 u k i. Q k i 1 = Q(uk i 1 ) (135) K k i = Q (136) u u=u k i 1 K k i Δu k i = F k Q k i 1 (137) u k i = u k i 1 +Δu k i (138) u k i 1 uk i u k, u k i u k, F k Q k i 0. 48

49 , F k Q k i =0,. 49

50 T : δa (L) d = t w ds + δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i ρg w d (139) (140) t 0 S : δe dv = t w ds + ρg w dv (141) V V updated Lagrange Total Lagrange Total Lagrange V 50

51 Ω.. Ω = e Ω e (142),,. dω = dω (143) Ω e Ω e ds = ds (144) Ω e Ω e u N (i), u i., u (i) i u i = N (n) u (n) i (145), (n). X i = N (n) X (n) i (146) 51

52 δr.. δr = 1 δu k t k ds + Ω Ω ρ 0 δu k g k dω (147) {δu} = {δu 1,δu 2,δu 3 } T (148) {t} = {t 1,t 2,t 3 } T (149) {g} = {g 1,g 2,g 3 } T (150),. δr = = e Ω {δu} T {t} ds + ρ 0 {δu} T {g} dω [ Ω ] {δu} T {t} ds + Ω e ρ 0 {δu} T {g} dω Ω e (151) N (i) 0 0 [N i ]= 0 N (i) 0 (152) 0 0 N (i) [N] =[[N 1 ][N 2 ] [N n ]] (153), 3 3n [N]. 52

53 {δu (n) } {δu (n) } = 2 { } T δu (1) 1 δu(1) 2 δu(1) 3 δu (n) 1 δu(n) 2 δu(n) 3 (154), } {δu} =[N] {δu (n) (155), δr = e [ { } T [ ]] δu (n) [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e (156) 53

54 1 δe ij S ij dω = δr (157) δe ij, S ij i, j, Ω δe ij S ij = δe 11 S 11 + δe 22 S 22 + δe 33 S 33 +2δE 12 S 12 +2δE 23 S 23 +2δE 31 S 31 =(δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 )(S 11 S 22 S 33 S 12 S 23 S 31 ) T (158),. {δe} = {δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 } T (159) {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (160), δe ij S ij dω = {δe} T {S} dω Ω Ω = {δe} T {S} dω = δr e Ω e 54

55 2 δe ij, δe ij = 1 2 ( δui + δu j + δu k u k + u ) k δu k X j X i X i X j X i X j [Z 1 ] 1+ u 1 u X u X X u 0 1 X u 2 u X X 2 0 u u X X u 3 X 3 u 1 X 2 1+ u 1 X u 2 u 2 u X 2 X u 3 X 2 X 1 0 u 0 1 u 1 u X 3 X X 3 1+ u 2 X u 3 u 3 X 3 X 2 u 1 X u 1 u 2 u X 1 X X 1 1+ u 3 u X X 1 } { δu X { δu1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 (161) (162) } T (163),. u i X j {δe} =[Z 1 ] { } δu X (164) u i X j = N(n) X j u (n) i (165) 55

56 δu i X j. { } δu X δu 1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 = N (1) X 1 N (1) X 2 N (1) X 3 3 N (1) X 1 N (1) δu i X j = N(n) X j δu (n) i (166) N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 X 2 N (n) N (1) X 3 N (1) X 1 N (1) X 2 N (1) X 3 9 3n [Z 2 ], { } δu =[Z 2 ]{δu (n) } (168) X X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 δu (1) 1 δu (1) 2 δu (1) 3. δu (n) 1 δu (n) 2 δu (n) 3 (167) 56

57 4 [B] [B] [Z 1 ][Z 2 ] (169). {δe} =[B]{δu (n) } (170) [B (n) ] u 1 X 2 N (n) X 2 + ( ) 1+ u 1 N (n) u 2 N (n) u 3 N (n) X 1 X 1 X 1 X 1 X 1 X 1 ( ) u 1 N (n) X 2 X 2 1+ u 1 N (n) u 3 X 2 X 2 N (n) X 2 X ( ) 2 u 1 N (n) u 2 N (n) X 3 X 3 X 3 X 3 1+ u 3 X 3 ( ) ( ) 1+ u 1 N (n) X 1 X 2 1+ u 2 N (n) X 2 u 1 X 3 N (n) X 2 + u 1 X 2 N (n) X 3 u 2 X 3 N (n) X 2 + ( ) ( ) 1+ u 2 N (n) X 2 X 3 1+ u 3 N (n) X 3 N (n) X 3 X 1 + u 2 N (n) u 3 N (n) X 1 X 2 X 2 X 1 + u 3 N (n) X 1 X 2 ( ) 1+ u 1 N (n) X 1 X 3 + u 1 N (n) u 2 N (n) X 3 X 1 X 1 X 3 + u 2 N (n) u 3 N (n) X 3 X 1 X 1 X [B (n) ], [ ] [B] = [B (1) ] [B (n) ]. 57 ( ) 1+ u 3 X 3 X 2 + u 3 N (n) X 2 X 3 N (n) X 1 (171) (172)

58 ,. e Ω e {δe}{s} dω = e ] [{δu (n) } T [B] T {S} dω Ω e (173) 58

59 total Lagrange ] [{δu (n) } T [B] T {S} dω = e Ω e e [ ]] [{δu (n) } T [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e (174),, Q = F = u = [B] T {S} dω (175) Ω e [N] T {t} ds + ρ 0 [N] T {g} dω (176) Ω e } Ω e {u (n) (177) [ T δuh (Q(u h ) F ) ] = 0 (178) e, find u h V h such that [ T δuh (Q(u h ) F ) ] = 0 (179) e 59

60 for δu h V h, Newton-Raphson. 60

61 1 Newton-Raphson, K = Q u, dq dt = Q du u dt = K u (180),,. ( Ω S ij δe ij dv ) = Ω Ṡ ij δe ij + S ij δėijdω (181) C ijkl Hooke S ij = C ijkl E kl (182) Ṡ ij = C ijkl Ė kl (183) S ij = λ(tre ij )δ ij +2μE ij (184) C ijkl = λδ kl δ ij +2μδ ki δ jl (185) 61

62 2 Ṡ ij δe ij + S ij δėijdω Ω = C ijkl Ė kl δe ij + S ij δėijdω Ω 1 ( = C ijkl Ė kl δe ij + S ij δfki F kj + F Ω 2 ) ki δf kj dω ( ) = C ijkl Ė kl δe ij + S ij δfki F kj dω Ω (186) S ij, Ė kl k, l S ij = C ij 11 Ė 11 + C ij 22 Ė 22 + C ij 33 Ė (C ij 12 + C ij 21 )2Ė (C ij 23 + C ij 32 )2Ė (C ij 31 + C ij 13 )2Ė31 (187) C ij kl 1 2 (C ij kl + C ij lk ) (188) 62

63 , S. S 11 S 22 S 33 S 12 S 23 S 31 = C C11 22 C11 33 C11 12 C11 23 C11 31 C C22 22 C22 33 C22 12 C22 23 C22 31 C C33 22 C33 33 C33 12 C33 23 C33 31 C C12 22 C12 33 C12 12 C12 23 C12 31 C C23 22 C23 33 C23 12 C23 23 C23 31 C C31 22 C31 33 C31 12 C31 23 C31 31 Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 (189) 63

64 3 C ijkl 6 6 [D]. C ijkl, ij, kl, [D].,, {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (190) T {Ė11 {Ė} = Ė 22 Ė 33 2Ė12 2Ė23 2Ė31} (191), δe ij S ij dω Ω = δe ij C ijkl Ė kl dω Ω T = {δe} [D]{Ė} dω (192) Ω { } { } T u (n) u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 (193), {Ė} { =[B] u (n)} (194). Ė ij = 1 2 ( ui + u j + u k u k + u ) k u k X j X i X i X j X i X j (195) 64

65 4, 1 δe ij Ṡ ij dω = Ω e. [ { δu (n) } T Ω e [B] T [D][B]dΩ { } ] u (n) (196) 65

66 , δf ki S ij 5 F kj S 11 S 12 S 13 δf ki S ij F kj = {δf 11 δf 12 δf 13 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 21 δf 22 δf 23 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 31 δf 32 δf 33 } S 21 S 22 S 23 S 31 S 32 S 33 F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 (197) 66

67 , [σ] = S 11 S 12 S 13 S 21 S 22 S 23 (198) S 31 S 32 S 33 [σ] [Σ] = [σ] (199) [σ] {δf} = {δf 11 δf 12 δf 13 δf 21 δf 22 δf 23 δf 31 δf 32 δf 33 } T (200) { F } = { F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T (201), δf ki S ij F kj = {δf} T [Σ]{ F } (202) 67

68 6, δf ij = δx i = δu i X j X j (203) F ij = ẋ i = u i X j X j (204), [Z 2 ] { } δu } {δf} = =[Z 2 ] {δu (n) X { F { } } =[Z 2 ] u (n) (205) (206), δf ki S ij F kj = { } T { } δu (n) [Z2 ] T [Σ][Z 2 ] u (n) (207) 68

69 T [Z 2 ] T [Σ][Z 2 ] [A ij ]= { N (i) X 1 N (i) X 2 N (i) } S 11 S 12 S 13 S 21 S 22 S 23 X 3 S 31 S 22 S 33 [A 11 ] [A 12 ]... [A 1n ] [A] = [A 21 ] [A n1 ] [A nn ] N (j) X 1 N (j) X 2 N (j) X (208) (209), [Z 2 ] T [Σ][Z 2 ]=[A] (210) 69

70 7, 2 δf ki S ij F kj dω = Ω e. [ { δu (n) } T Ω e [A]dΩ { } ] u (n) (211) δe ij Ṡ ij dω + δf ki S ij F kj dω Ω Ω = [ { } T ( δu (n) [B] T [D][B]+[A] ) dω e Ω e { } ] u (n) (212). e Ω e ( [B] T [D][B]+[A] ) dω (213) 70

71 Updated Lagrange T : δa (L) d = δ t w ds + δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i Updated Lagrane ρg w d (214) (215) δa ij T ij d = δr (216), δr, A ij, Almange. δa ij = 1 ( δui + δu ) j (217) 2 x j x i T ij 71

72 1 δa ij T ij., δa ij T ij. δa ij T ij = δa 11 T 11 + δa 12 T 12 + δa 13 T 13 + δa 21 T 21 + δa 22 T 22 + δa 23 T 23 + δa 31 T 31 + δa 32 T 32 + δa 33 T 33 (218) = δa 11 T 11 + δa 22 T 22 + δa 33 T 33 (219) +2δA 12 T 12 +2δA 23 T 23 +2δA 31 T 31 (220), δa ij,t ij i, j., {δa} T = {δa 11 δa 22 δa 33 2δA 12 2δA 23 2δA 31 } T (221) {T } = {T 11 T 22 T 33 T 12 T 23 T 31 } (222),. δa ij T ij d = {δa} T {T } d (223) 72

73 2, δa ij. δa ij. δa 11 = δu 1 x 1 (224) δa 22 = δu 2 x 2 (225) δa 33 = δu 3 x 3 (226) 2δA 12 = δu 1 + δu 2 x 2 x 1 (227) 2δA 23 = δu 2 + δu 3 x 3 x 2 (228) 2δA 31 = δu 3 + δu 1 x 1 x 3 (229), u i = N (k) u (k) i (230) u i = N(k) u (k) i x j x j (231), δu i δu i = N (k) δu (k) i (232) δu i x j = N(k) δu (k) i (233) x j 73

74 ., {δu} =,. { } T δu (1) 1 δu (1) 2 δu (1) 3 δu (2) 1 δu (2) 2 δu (2) 3 δu (n) 1 δu (n) 2 δu (n) 3 (234) {δa} =[B][δu] (235), [B] [B (k) ],. [ ] B = ] [B (k) = [[ B (1)][ B (2)] N (k) x 1 N (k) x 2 N (k) x 3 N (k) x 2 N (k) x 1 N (k) x 3 [ B (n)]] (236),. δa ij T ij d = {δu} T [B] T {T } d (238) Q,. Q = 74 N (k) x 3 N (k) x 2 N (k) x 1 (237) [B] T [T ]d (239)

75 , V, δa ij δa ij = 1 ( δui + δu ) n (240) 2 X j X i 75

76 . 1, Newton-Raphson, Q u K. K = Q (241) u, u, Q = Q t = Q u u t = Q u (242) u,,.,. T : δa (L) d = t w ds + ρg w d (243) δ 76

77 2 F, J., 2 Piola-Kirchhoff S. F = x i e i e j X j (244) J =detf (245) T = 1 J F S F T (246) S Green-Lagrange E δe. E = 1 ( ui + u j + u ) k u k e i e j (247) 2 X j X i X i X j δe = 1 ( δui + δu j + δu k u k + u ) k δu k (248) 2 X j X i X i X j X i X j δa δe. δe = F T δa F (249),. δe : S dv = (F T δa F ):(JF 1 T F T ) 1 d (250) J = δa : T d (251) 77

78 3 δe : S dv. Total-Lagrange. δe : Ṡ + 1 ( ) δf T 2 Ḟ + Ḟ T δf : S dv (252). V 2 Piola-Kirchhoff S t (t) S t (t) Ṡ. 1, Ṡ = JF 1 S t (t) F T (253) δe : Ṡ =(F T δa F ):(JF 1 S t (t) F T ) (254) = JδA : Ṡ t (t) (255), V δe : ṠdV = δa : Ṡ t (t)d (256) 78

79 4 Ḟ δf,., L, 2, Ḟ = L F (257) δf = δf t (t) F (258) L = u i e i e j (259) x j 1 ( δf T 2 Ḟ + F ) T δf : S = 1 ( ) F T δf t (t) T L F + F T L T δf t (t) F : ( JF 1 T F ) T 2 = J 1 ( ) δf t (t) T L + L T δf t (t) : T (260) 2 V 1 ( δf T 2 Ḟ + F ) T 1 ( ) δf : S dv = δf t (t) T L + L T δf t (t) : T d (261) 2 updated Lagrange. δa : Ṡ t (t)+ 1 ( ) δf t (t) T L + L T δf t (t) : T d = δṙ 2 (262) 79

80 5. { } 1 δa ij Ṡ t (t) ij d + 2 (δf t(t) ki L kj + L ki δf t (t) kj ) T ij d = δṙ (263), 1., Ṡt(t) ṠF t(t) F. δa ij T ij., Ṡ ij D ij. δa ij Ṡ ij = {δa} T { Ṡ } (264) Ṡ = { Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 } (265) Ṡ ij = C ijkl D kl (266) D ij = 1 ( ui + u ) j 2 x j x i (267) Ṡt(t) Truesdell Kirchoff Oldroyd 80

81 5 Ṡij = C ijkl D kl.,, { Ṡ } = [ C] { } D Ṡ ij = C ij11 D 11 + C ij12 D 12 + C ij13 D 13 + C ij21 D 21 + C ij22 D 22 + C ij23 D 23 + C ij31 D 31 + C ij32 D 32 + C ij33 D 33 (268) = C ij11 D 11 + C ij22 D 22 + C ij33 D (C ij12 + C ij21 )(2D 12 ) (269) (C ij23 + C ij32 )(2D 23 ) (270) (C ij31 + C ij13 )(2D 31 ) (271). C ijkl = 1 2 (C ijkl + C ijlk ) (272) 81

82 Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 = C 1111 C1122 C1133 C1112 C1123 C1131 C 2211 C2222 C2233 C2212 C2223 C2231 C 2311 C3322 C3333 C2312 C3323 C3331 C 1211 C1222 C1233 C1212 C1223 C1231 C 2311 C2322 C2333 C2312 C2323 C2331 C 3111 C3122 C3133 C3112 C3123 C3131 D 11 D 22 D 33 2D 12 2D 23 2D 31 (273) 82

83 6 δa ij, {D} =[B] { u} (274) { } T { u} = u (1) 1 u (1) 2 u (1) 3 u (2) 1 u (2) 2 u (2) 3 u (n) 1 u (n) 2 u (n) 3 (275), 1. δa ij Ṡ t (t) ij d = {δu} T [B] T [ D] [B] { u} d (276) 83

84 7 2. T ij = T ji,. 1 2 (δf kil kj + L ki δf kj ) T ij = 1 2 T ijl ki δf kj T ijδf ki L kj (277) = δf ki T ij L kj (278)., δf ki T ij L kj = {δf} T [Σ] {L} (279) {δf} = {δf 11 δf 12 δf 13 δf 21 δf 22 δf 23 δf 31 δf 32 δf 33 } (280) {L} = {L 11 L 12 L 13 L 21 L 22 L 23 L 31 L 32 L 33 } (281) T 11 T 12 T 13 [T ]= T 21 T 22 T 23 (282) [Σ] = T 31 T 32 T 33 [T ] [0] [0] [0] [T ] [0] (283) [0] [0] [T ] 84

85 δf ij,l ij. 8 δf ij = δu i x j (284) L ij = u i (285) x j. { } δu {δf} = =[Z] {δu} (286) x, {L} = { } u x =[Z] { u} (287) { } { } δu δu1 δu 1 δu 1 δu 2 δu 2 δu 2 δu 3 δu 3 δu 3 = x x 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 x { } { } 3 u u1 u 1 u 1 u 2 u 2 u 2 u 3 u 3 u 3 = x x 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 x 3 (288) (289) 85

86 [ ] Z = N (1) N (2) x 1 x 1 N (1) N (2) x 2 x 2 N (1) N (2) x 3 x 3 N (1) N (2) x 1 x 1 N (1) N (2) x 2 N (1) N (2) x 3 x 3 N (1) N (2) x 1 x 1 N (1) N (2) x 2 x 2 N (1) N (2) x 3 x 3 N (n) x 1 N (n) x 2 N (n) x 3 N (n) x 1 x 2 N (n) x 2 N (n) x 3 N (n) x 1 N (n) x 2 N (n) x 3 (290) 86

87 9, δf ki T ij L kj. [Z] T [Σ] [Z]. ] { N (i) [G ij = x 1 δf ki T ij L kj = {δf} T [Σ] {L} (291) N (i) x 2 [Z] T [Σ] [Z] = = {δu} T [Z] T [Σ] [Z] { u} (292) N (i) x 3 } T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 N (i) x 1 N (i) x 2 N (i) x (293) [G 11 ] [G 1n ].. =[G] (294) [G n1 ] [G nn ] δf ki T ij L kj d = {δu} [G] { u} d (295) 87

88 10. (δa ij S t (t) ij + δf ki T ij L kj )d = {δu} ([B] T T [ ) D] [B]+[G] d { u} (296) V, δa ij, Ṡ t (t) ij Caushy

89 11,,. 1 d =, [J] [ ] J = x i = N(k) r j r j x (k) i, [B], N(k) x j. N (k) x 1 N (k) x 2 N (k) x 3 = [ ] 1 J = 1 (det J) dr 1 dr 2 dr 3 (297) x 1 r 1 x 1 r 2 x 1 r 3 x 2 r 1 x 2 r 2 x 2 r 3 x 3 r 1 x 3 r 2 x 3 r 3 ( = N(k) X (k) i r j (298) ) + u (k) i (299) [J] r 1 x 1 r 2 x 1 r 3 x 1 r 1 x 2 r 2 x 2 r 3 x 2 r 1 x 3 r 2 x 3 r 3 x 3 r 1 x 1 r 2 x 1 r 3 x 1 r 1 x 2 r 2 x 2 r 3 x 2 r 1 x 3 r 2 x 3 r 3 x 3 N (k) r 1 N (k) r 2 N (k) r 3 (300) (301) 89

90 , [J] X 1 X 1 [ ] r 1 X J = 2 r 3 X 1 r 1 r 2 r 3 r 2 X 2 X 2 X 3 X 3 X 3 r 1 r 2 r 3 (302) 90

91 total Lagrange updated Lagrange 1 updated V T : δa (L) d = S : δe dv = δa : Ṡt(t)+ 1 2 ( Ω S ij δe ij dv V t w ds + t w ds + V ρg w d (303) ρg w dv (304) ( ) δf t (t) T L + L T δf t (t) : T d = δṙ (305) ) = Ω Ṡ ij δe ij + S ij δėijdω (306) Ṡ t (t) ij = C ijkl D kl (307) Ṡt(t) Truesdell Kirchoff Oldroyd Total S ij = C ijkl E kl (308) C ijkl (Ṡij, Ėkl ) Ṡ ij = C ijkl Ė kl (309) 91

92 total Lagrange updated Lagrange 2 Ṡ t (t) ij = C ijkl D kl (310) S ij = C ijkl E kl (311) Ṡ ij = C ijkl Ė kl (312) Ṡ 0 (t) =J 0 (t)f 0 (t) 1 Ṡ t (t)f 0 (t) T (313) Ė 0 (t) =F 0 (t) T DF 0 (t) (314) C pqrs = 1 J F pif qj F rk F sl C ijkl (315) 92

93 (103) (117) Newton-Raphson 2 (157) (173) (180) (213) (214) (240) (241) (302) (241) (302) (303) (315) 93

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

Microsoft PowerPoint - 流体構造連成解析.ppt

Microsoft PowerPoint - 流体構造連成解析.ppt 流 体 構 造 連 成 解 析 東 京 大 学 大 学 院 新 領 域 創 成 科 学 研 究 科 渡 邉 浩 志 渡 邉 浩 志 自 己 紹 介 固 体 構 造 解 析 から 流 体 構 造 連 成 解 析 へ なぜ 有 限 要 素 法 を 学 ぶか 歴 史 の 流 れは 当 初 能 力 のある 限 られた 一 部 の 人 のみが 可 能 だったこ とが 科 学 技 術 の 発 展 により 一 般

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

housoku.dvi

housoku.dvi : 1 :, 2002 07 14 1 3 11 3 12 : 3 13 : 5 14 6 141 6 142 8 143 8 144 8 145 9 2 10 21 10 : 2 22 11 23 11 24 11 A : 12 B 14 C 15 ( ) ( ) ( ),, (,, ) 2,, : 1 3 1 11 (t),, ρv 0 (1) t (t) ( A ) ( ) ρ (t) t +ρ

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Lagrange.dvi

Lagrange.dvi Lagrange 1 2006.2.10 1 Introduction CfA survey 2dF SDSS high-z Euler Lagrange Lagrange CDM Lagrange Lagrange 2 Newton Friedmann Newton Newton Newton [1,2,3,4,5] ρ + r ρu = 0, 1 t r u +u r u = 1 t r ρ rp

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information