2017 II 1 Schwinger Yang-Mills 5. Higgs 1

Size: px
Start display at page:

Download "2017 II 1 Schwinger Yang-Mills 5. Higgs 1"

Transcription

1 2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2 φ(x) 4λφ 3 (x) + J(x) 0 (1.3) ˆφ(x) m 2 ˆφ(x) 4λ ˆφ 3 (x) + J(x) 0 (1.4) ˆφ(x) c- J(x) 0, + ˆφ(x) m 2 ˆφ(x) 4λ ˆφ 3 (x) + J(x) 0, J 0 (1.5) 0, J J 0, + J 0, J J 0, + 0, + 0, J (1.6) Schwinger h i δ δj(x) 0, + 0, J 0, + ˆφ(x) 0, J (1.7) 2

3 H J d 3 x{π(t, x) φ(t, x) L J } d 3 x{ 1 2 [Π(t, x)] φ(t, x) φ(t, x) m2 φ(t, x) 2 φ(t, x)j(t, x)} 0, + 0, J 0, + exp[ ī h dth J] 0, J(x) δj(x) δj(y) δ(x y) d 4 y δj(x) δj(y) δj(y) d 4 yδ(x y)δj(y) δj(x) ( h δ δ i )2 δj(x) δj(y) 0, + 0, J 0, + T ˆφ(x) ˆφ(y) 0, J (1.8) T T ˆφ(x) ˆφ(y) ˆφ(x) ˆφ(y) for x 0 > y 0, ˆφ(y) ˆφ(x) for y 0 > x 0 (1.9) (1.8) x 0 > y 0 h i δ δj(x) 0, + 0, J 0, + ˆφ(x) 0, J (1.10) n 0, + ˆφ(x) n, x 0 n, x 0 0, J δ δj(y) h i n, x 0 0, J Schwinger 3

4 ( h δ δ i )2 δj(x) δj(y) 0, + 0, J 0, + ˆφ(x) n, x 0 h δ n i δj(y) n, x0 0, J 0, + ˆφ(x) n, x 0 n, x 0 ˆφ(y) 0, J n 0, + ˆφ(x) ˆφ(y) 0, J (1.11) x 0 < y 0 ˆφ(x) ˆφ(y) n ( h δ i )n δj(x 1 )... δ δj(x n ) 0, + 0, J 0, + T ˆφ(x 1 )... ˆφ(x n ) 0, J Green (1.12) ig(x 1,..., x n ) 0, + T ˆφ(x 1 )... ˆφ(x n ) 0, J0 (1.13) Green LSZ S- Green T T 0 T ˆφ(x) ˆφ(y) 0 (1.14) T ( ) T ˆφ(x) ˆφ(y) ˆφ(x) ˆφ(y) for x 0 > y 0, x 0 y 0 x 0 y 0 T ˆφ(y) ˆφ(x) for y 0 > x 0 (1.15) T ˆφ(x) ˆφ(y) ˆφ(x) ˆφ(y)θ(x 0 y 0 ) + ˆφ(y) ˆφ(x)θ(y 0 x 0 ) (1.16) 4

5 x 0θ(x0 y 0 ) δ(x 0 y 0 ), θ(x 0 y 0 ) 1 for x 0 > y 0, 1 2 for x0 y 0 0 for y 0 > x 0 (1.17) x 0θ(y0 x 0 ) δ(x 0 y 0 ) (1.18) f(x 0 ) f(± ) 0 ( y 0 ))f(x 0 )dx 0 x 0θ(x0 y 0 )f(x 0 ))dx 0 x 0(θ(x0 θ(x0 y 0 ) )dx 0 x 0f(x0 y 0 )f(x 0 ))dx 0 )dx 0 x 0(θ(x0 y 0 +0 x 0f(x0 θ(x 0 y 0 )f(x 0 )) f(x 0 ) y 0 +0 f(y 0 + 0) f(y 0 ) θ(x 0 y 0 ) 1 2 x0 y 0 T x 0 y 0 T x 0T ˆφ(x) ˆφ(y) T ˆφ(x) ˆφ(y) x0 x0t ˆφ(x) ˆφ(y) T x ˆφ(x) ˆφ(y) + [ 0 ˆφ(x0, x), ˆφ(y 0, y)]δ(x 0 y 0 ) T T T Bjorken- Johnson-Low 5

6 1.1 Feynman Green 0, + 0, J 0, + 0, J Schwinger [ h δ i δj(x) m2 h δ i δj(x) 4( h δ 3 i )3 δj(x) + J(x)] 0, + 0, 3 J 0, + ˆφ(x) m 2 ˆφ(x) 4λ ˆφ 3 (x) + J(x) 0, J 0 (1.19) J(x) 0, + 0, J Lagrangian [ h i 0, + 0, J Dφ exp{ ī h d 4 xl J }. (1.20) δ δj(x) m2 h δ i δj(x) 4( h δ 3 i )3 δj(x) + J(x)] 0, + 0, 3 J Dφ[ φ(x) m 2 φ(x) 4λφ 3 (x) + J(x)] exp{ ī d 4 yl J } h δ Dφ( d 4 yl J ) exp{ ī d 4 yl J } δφ(x) h Dφ h δ i δφ(x) exp{ ī d 4 yl J } (1.21) h ( y ϵ(x) D(φ + ϵ) Dφ (1.22) Dφ h i δ δφ(x) exp{ ī h d 4 yl J } 0 (1.23) Dφ exp{ ī h d 4 yl J (φ)} 6

7 + D(φ + ϵ) exp{ ī h Dφ exp{ ī h d 4 yl J (φ + ϵ)} d 4 yl J (φ + ϵ)} Dφ exp{ ī d 4 yl J (φ)} h Dφ ī d 4 δ xϵ(x)( d 4 yl J ) exp{ ī h δφ(x) h d 4 yl J (φ)} (1.24) ϵ(x) ϵ(x) x Dφ h i δ δφ(x) exp{ ī h 0, + 0, J d 4 yl J } 0 (1.25) Dφ exp{ ī h d 4 xl J } (1.26) Feynman (1.22) Dφ x dφ(x) (1.27) (1.22) Grassmann Dψ x δ δψ(x) (1.28) (1.22) Schwinger Grassmann ψ(x)ψ(y) + ψ(y)ψ(x) 0 (1.29) 7

8 ψ(x)ψ(x) 0 (1.30) (1.22) 2 Feynman φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λ 4! φ4 (x) + φ(x)j(x) (2.1) Feynman T 1 2 µφ(x) µ φ(x) V 1 2 m2 φ 2 (x) + λ 4! φ4 (x) 1 2 m2 φ 2 (x) 2 λ 4! φ4 (x) λ 4! φ4 (x) (2.2) 0, + 0, J Dφ exp{ ī h d 4 xl J } (2.3) Green 8

9 Z(J) Schwinger L (0) J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) + φ(x)j(x) (2.4) Z(J) n0 Dφ exp{ ī h Dφ exp{ ī h d 4 xl J } d 4 x[l (0) J Dφ 1 iλ ( n! 4! h λ 4! φ4 (x)]} d 4 xφ 4 (x)) n exp{ ī h d 4 xl (0) J } (2.5) λ Feynman h i δ δj(y) exp{ ī h d 4 xl (0) J } φ(y) exp{ ī h d 4 xl (0) J } (2.6) δ δj(y) J(x) δ4 (x y) (2.7) δ 4 (x y) Dirac δj(x) d 4 y Z(J) n0 n0 Dφ 1 iλ ( n! 4! h 1 iλ [ n! 4! h d 4 y( h i Dφ exp{ ī h δ δj(y) J(x) δj(y) d 4 yφ 4 (y)) n exp{ ī h δ δj(y) )4 ] n 9 Dφ exp{ ī h d 4 xl (0) J } d 4 xl (0) J } (2.8) d 4 xl (0) J } (2.9)

10 Feynman h 1 ig F (x y) i h m 2 + iϵ δ4 (x y) i h d 4 k m 2 + iϵ (2π) 4eik(x y) d 4 k i h (2π) 4 k 2 m 2 + iϵ eik(x y) (2.10) ϵ Dirac δ 4 (x y) d 4 xl (0) J d 4 k (2π) 4eik(x y) (2.11) d 4 x{ 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) + φ(x)j(x)} d 4 x{ 1 2 φ(x)[ m2 ]φ(x) + J(x)φ(x)} d 4 x 1 2 φ (x)[ m 2 ]φ (x) + 1 i 2 h φ (x) φ(x) + d 4 x d 4 yj(x)ig F (x y)j(y) 1 m 2 + iϵ δ4 (x y)j(y)d 4 y (2.13) [ m 2 1 ] m 2 + iϵ δ4 (x y)j(y)d 4 y J(x) (2.14) Dφ exp{ ī h d 4 xl (0) J } 10 (2.12)

11 Dφ exp{ ī d 4 x 1 h 2 φ (x)[ m 2 ]φ (x) ( ī h )2 d 4 x d 4 yj(x)ig F (x y)j(y)} Dφ exp{ ī d 4 x 1 h 2 φ (x)[ m 2 ]φ (x) ( ī h )2 d 4 x d 4 yj(x)ig F (x y)j(y)} constant exp{ 1 2 ( ī h )2 d 4 x d 4 yj(x)ig F (x y)j(y)} (2.15) Dφ D(φ + ϵ) Dφ Dφ Feynman J 1 Dφ exp{ ī d 4 xl J } Z(J 0) h Feynman W (J) e iw (J) Z(J) iw (J) ln Z(J) Z(J) n0 Dφ exp{ ī d 4 xl J } h 1 iλ [ d 4 y( h δ n! 4! h i δj(y) )4 ] n exp{ 1 2 ( ī h )2 d 4 x d 4 yj(x)ig F (x y)j(y)} (2.16) Z(J) 2 J 0 (2.16) Z(J) 2 Green ( h δ δ i )2 δj(x 1 ) δj(x 2 ) Z(J) J0 T φ(x 1 )φ(x 2 ) (2.17) (2.16) 2 n 0 ( h δ δ i )2 δj(x 1 ) δj(x 2 ) exp{1 2 ( ī h )2 d 4 x d 4 yj(x)ig F (x y)j(y)} J0 11

12 ig F (x 1 x 2 ) (2.18) λ ( h δ δ iλ i )2 [ δj(x 1 ) δj(x 2 ) 4! h exp{ 1 2 ( ī h )2 d 4 x iλ 2! h d 4 y( h i δ δj(y) )4 ] d 4 yj(x)ig F (x y)j(y)} J0 d 4 yig F (x 1 y)ig F (y y)ig F (y x 2 ) (2.19) λ 2 Green T φ(x 1 )φ(x 2 ) ig F (x 1 x 2 ) (2.20) iλ d 4 yig F (x 1 y)ig F (y y)ig F (y x 2 ) 2! h Feynman Green ( h δ δ δ δ i )4 δj(x 1 ) δj(x 2 ) δj(x 3 ) δj(x 4 ) Z(J) J0 T φ(x 1 )φ(x 2 )φ(x 3 )φ(x 4 ) (2.21) ( h δ δ δ δ iλ i )4 [ δj(x 1 ) δj(x 2 ) δj(x 3 ) δj(x 4 ) 4! h exp{ 1 2 ( ī h )2 d 4 x iλ h d 4 y( h i δ δj(y) )4 ] d 4 yj(x)ig F (x y)j(y)} J0 (2.22) d 4 yig F (x 1 y)ig F (x 2 y)ig F (x 3 y)ig F (x 1 y) Green iλ h d 4 y (2.23) 12

13 ig F (x 1 x 2 ) (2.24) Feynman ϵ T φ(x)φ(y) ig F (x y) d 4 k i (2π) 4 k 2 m 2 + iϵ eik(x y) (2.25) d 4 k i (2π) 4 k 2 m 2 + iϵ eik(x y) d 3 k i (2π) 4 dk0 (k 0 ) 2 ( k 2 + m 2 iϵ) eik0 (x0 y0) i k( x y) d 3 k i (2π) 4 dk0 (x 0 y 0 ) i k( x y) (2.26) [k 0 (E iϵ)][k 0 ( E + iϵ)] eik0 E E k2 + m 2 > 0 (2.27) k 0 k 0 d 3 k 2π (2π) 4[ 2E θ(x0 y 0 )e ie(x0 y 0 ) i k( x y) + 2π 2E θ(y0 x 0 )e ie(y0 x 0 ) i k( x y) d 3 k y 0 )e ie(x0 y 0 ) i k( x y) + θ(y 0 x 0 )e ie(y0 x 0 ) i k( x y) ]. 2E(2π) 3[θ(x0 ig F (x y) (2.28) d 3 k y 0 )e ie(x0 y 0 ) i k( x y) + θ(y 0 x 0 )e i( E)(x0 y 0 ) i k( x y) ] 2E(2π) 3[θ(x0 13

14 ig F (x y) y x 1 E > 0 y 0 x 0 (x 0 > y 0 ) 2 E < 0 y 0 x 0 (y 0 > x 0 ) Feynman m iϵ 3 Maxwell A µ (x) A µ (t, x), µ 0, 1, 2, 3 L 1 4 µν ( µ A ν (x) n A µ (x))( µ A ν (x) n A µ (x)) 1 4 F µνf µν 1 2 [ E 2 B 2 ] (3.1) g µν (1, 1, 1, 1) F µν F νµ E B E (F 01, F 02, F 03 ), B ( F23, F 31, F 12 ). (3.2) F µν ( ) A µ (x) A µ(x) A µ (x) + µ ω(x) (3.3) 14

15 F µν F µν ω(x) ω(t, x) ω(x) A µ (x) ω(x) A µ (x) Coulomb A µ (x) k A k (x) 3 A k(x) 0 (3.4) k k1 Landau( Lorentz) Lorentz µ A µ (x) 0 (3.5) Weyl A 0 (x) 0 (3.6) 3.1 Maxwell Lagrangian S Maxwell d 4 xl d 4 x 1 4 F µνf µν (3.7) DA µ exp[ ī h S Maxwell] (3.8) DA µ x A 0 (x) x A 1 (x) x A 2 (x) x A 3 (x) (3.9)

16 Maxwell S Maxwell A µ (x) A ω µ(x) A µ (x) + µ ω(x) (3.10) ω(x) S Maxwell 4 (A µ ) A 0 (x) ω(x) DA µ DA ω µ DA µ (3.11) dµ dµ exp[ ī h S Maxwell] [DA µ /Dω] exp[ ī h S Maxwell] (3.12) DA µ Dω 3.2 Coulomb Coulomb k A k (x) 0 (3.13) [DA µ /Dω] DA ω µδ( k A ω k )det δ k A ω k (y) (3.14) δω(x) δ( k A ω k ) x δ( k A ω k (x)) (3.15) k A k (x) 0 16

17 k A ω k (x) 0 B(x) δ( k A ω k ) DB exp[i 3.14) d 4 xb(x) k A ω k (x)] (3.16) det δ k A ω k (y) (3.17) δω(x) 4 y x ω(x) k A ω k (y) 3.14) DA µ [DA µ /Dω]Dω DA ω µδ( k A ω k )det δ k A ω k (y) Dω δω(x) DA ω µδ( k A ω k )D( k A ω k ) DA µ δ( k A ω k )D( k A ω k ) DA µ (3.18) k A ω k (x) k A k (x) + k k ω(x) k A k (x) ω(x) (3.19) det δ k A ω k (y) det δ(y x) (3.20) δω(x) 3 DA µ δ( k A k )det δ(y x) exp[ ī h 17 d 4 x 1 4 F µνf µν ]

18 DA µ δ( k A k )det δ(y x) exp{ ī h DA µ δ( k A k )det δ(y x) exp{ ī h DA µ δ( k A k )det δ(y x) exp{ ī h d 4 x 1 2 [A ν A ν + ν A ν µ A µ ]} d 4 x 1 2 [A ν A ν + 0 A 0 0 A 0 ]} d 4 x 1 2 [A k A k A 0 A 0 ]} (3.21) ω Maxwell A ω µ A µ k A k 0 DA 0 exp{ ī h d 4 x 1 2 [ A 0 A 0 ]} 1 det δ(y x) (3.22) A 0 Ã0 δã0/δa 0 det δ(y x) DA 0 exp{ ī d 4 x 1 h 2 [ A 0 A 0 ]} 1 DÃ0 exp{ ī d 4 x 1 det δ(y x) h 2 [ Ã0Ã0 ]} 1 (3.23) det δ(y x) O(x) ϕ(x) Dϕ exp{ ī h ϕ(x)o(x)ϕ(x)d 4 x} det[o(x)δ(x y)] 1/2 DA k δ( k A k ) det δ(y x) exp{ ī h d 4 x 1 2 [A k A k ]} (3.24) 2 1 (3.25) det δ(y x) 18

19 DA k DB det δ(y x) exp{ ī d 4 x[ 1 h 2 A k A k + B k A k ]} 1 DB det δ(y x) exp{ ī det δ(y x) 3/2 h 1 1 det δ(y x) det δ(y x) 3/2 det δ(y x) 1/2 1 det δ(y x) d 4 x[ 1 2 k B 1 kb]} (3.26) Feynman Schwinger source DA k DB det δ(y x) exp{i DA k DB det δ(y x) exp{i d 4 x[ 1 2 ( A k 1 ( kb + J k ) 1 2 ( kb + J k ) 1 ( k B + J k )]} d 4 x[ 1 2 A k A k + B k A k J k A k ]} ) ( A k 1 ) ( k B + J k ) 1 DB det δ(y x) det δ(y x) 3/2 exp{i d 4 x[ 1 2 ( k B + J k ) 1 ( kb + J k )]} det δ(y x) DB det δ(y x) 3/2 exp{i d 4 x[ 1 2 B k k B 1 2 J 1 k J k + 1 ( B 1 ) 2 k J k + k 1 J k B ]} det δ(y x) DB det δ(y x) 3/2 exp{i d 4 x[ 1 2 (B kj k 1 det δ(y x) exp{i ) (B kj k ) ( kj k 1 d 4 x[ 1 2 J k [ g kl + k l ]J l ]} 19 kj k 1 2 J 1 k J k ]} (3.27)

20 k k ( 1 i )2 J k 0, g kl δ kl δ δj l (x) δ δj m (y) 0 T A l (x)a m (y) 0 1 i [δ lm 1 l m]δ(x y) d 4 k (2π) 4i[δ lm k l k m / k 2 ] e ik(x y) k 2 + iϵ d 3 k (2π) 3 2ω(k) [δ lm k l k m /( k) 2 ]e ik(x y) θ(x 0 y 0 ) d 3 k + (2π) 3 2ω(k) [δ lm k l k m /( k) 2 ]e ik(y x) θ(y 0 x 0 ) (3.28) k 0 ω(k) ck 0 > 0 Coulomb 3.3 Landau Landau µ A µ (x) 0 (3.29) µ A ω µ(x) µ A µ (x) + µ µ ω(x) µ A µ (x) + ω(x) (3.30) det δ µ A ω µ(y) det δ(y x) (3.31) δω(x) DA µ δ( µ A µ )det δ(y x) exp[i DA µ DBdet δ(y x) exp{i DA µ DBD cdc exp{i d 4 x 1 4 F µνf µν ] d 4 x[ 1 4 F µνf µν + B(x) µ A µ (x)]} d 4 x[ 1 4 F µνf µν + B(x) µ A µ (x) i c(x) c(x)]} 20 (3.32)

21 δ δ( µ A µ ) DB exp{i d 4 xb(x) µ A µ (x)} (3.33) Grassmann c(x) c(x) Faddeev-Popov det δ(y x) D cdc exp{i d 4 x[ i c(x) c(x)]} (3.34) 3.4 BRST(Becchi-Rouet-Stora-Tyutin) Faddeev-Popov Faddeev-Popov, c(x) c(x), λ BRST A µ (x) A µ (x) + iλ µ c(x), c(x) c(x), c(x) c(x) + λb(x), B(x) B(x), (3.35) c(x) c(x) λ c(x) c(x), c(x) c(x), λ λ. (3.36) BRST (A µ (x) + iλ µ c(x)) A µ (x) i µ c(x)λ A µ (x) + iλ µ c(x) (3.37) 21

22 µ c(x)λ λ µ c(x) (3.38) BRST ω(x) iλc(x) Maxwell Lorentz Landau µ A µ (x) 0 (3.39) L 1 4 F µνf µν + B(x) µ A µ (x) i c(x) µ µ c(x) (3.40) 2 ( c(x) + λb(x)) µ (A µ (x) + iλ µ c(x)) c(x) µ A µ (x) + λ[b(x) µ A µ (x) i c(x) µ µ c(x)] (3.41) 2 λ c(x) µ A µ (x) BRST BRST BRST (3.40) BRST DA µ DBD cdc exp{i d 4 x[ 1 4 F µνf µν + B(x) µ A µ (x) i c(x) c(x)]} (3.42) BRST BRST D(A µ + iλ µ c)dbd( c + λb)dc DA µ DBD cdc (3.43) Faddeev-Popov (3.32) BRST Slavnov-Taylor T c(x)a µ (y) T ( c(x) + λb(x))(a µ (y) + iλ µ c(y)) (3.44) 22

23 BRST Grassmann λ T λb(x)a µ (y) + T c(x)iλ µ c(y) 0 (3.45) Grassmann λ c(x) c(x)λ λ c(x) T B(x)A µ (y) T c(x)i µ c(y) (3.46) Slavnov-Taylor 3.5 Grassmann Grassmann Faddeev-Popov D cdc exp{i d 4 x[ i c(x) c(x)]} (3.47) Grassmann c(x) c(x) Grassmann c(x)c(y) + c(y)c(x) 0, c(x)c(y) + c(y) c(x) 0, c(x) c(y) + c(y) c(x) 0 (3.48) c(x)c(x) + c(x)c(x) 2c(x) 2 0, (3.49) c(x) 2 0 D cdc x δ δ δ c(x) y δc(y) (3.50) δ δc(y) d 4 x[ i c(x) c(x)] 23 δ δc(y) d 4 x[i c(x) c(x)]

24 δ δ c(y) d 4 x[ i c(x) c(x)] d 4 x[i x δ(x y) c(x)] i y c(y), d 4 x[ iδ(x y) x c(x)] i y c(y) (3.51) c(x) ϵ(x) Grassmann D(c + ϵ) δ y δ(c(y) + ϵ(y)) δc(y) δ y δ(c(y) + ϵ(y)) δc(y) δ δc(y) Dc (3.52) D( c + ϵ) D c (3.53) D cdc exp{i D( c + ϵ)dc exp{i D cdc exp{i d 4 x[ i c(x) c(x)]} d 4 x[ i( c(x) + ϵ(x)) c(x)]} d 4 x[ i c(x) c(x) iϵ(x) c(x)]} (3.54) ϵ(x) D cdc( d 4 y iϵ(y) c(y)) exp{i d 4 x[ i c(x) c(x)]} 0 (3.55) ϵ(y) ĉ(y) D cdc( c(y)) exp{i d 4 x[ i c(x) c(x)]} 0 (3.56) 24

25 ĉ(y) 0 Z D cdc exp{i d 4 x[ i c(x) c(x)]} det[ δ(x y)] (3.57) c (x) c(x) Grassmann Jacobian Dc det[ δ(x y)] 1 Dc (3.58) D cdc exp{i d 4 x[ i c(x)c (x)]} det[ δ(x y)] 1 D cdc exp{i d 4 x[ i c(x) c(x)]} (3.59) D cdc exp{i d 4 x[ i c(x)c (x)]} (3.57) Faddeev-Popov (3.32) (3.42) 3.6 Feynman Lorentz Landau DA µ DBD cdc exp{i d 4 x[ 1 4 F µνf µν + B(x) µ A µ (x) i c(x) c(x)]} (3.60) Feynman S d 4 x[ 1 2 Aµ ( g µν µ ν )A ν + B(x) µ A µ (x) i c(x) c(x)] (3.61) 25

26 Schwinger source S J d 4 x[ A µ (x)j µ (x) + J B (x)b(x) + J c (x) c(x) + J c (x)c(x)] (3.62) J c (x) J c (x) Grassmann A µ (x) a µ (x) + 1 (g µν µ ν )J ν (x) 1 µj B (x), B(x) b(x) 1 µj µ (x), c(x) c (x) i J c(x) c(x) c (x) + i J c(x), (3.63) S + S J d 4 x[ 1 2 aµ ( g µν µ ν )a ν + b(x) µ a µ (x) i c (x) c (x)] + d 4 x[ 1 2 J µ (x) 1 (g µν µ ν )J ν (x) J B (x) 1 µ J µ (x) +J c (x) i J c(x)] (3.64) Z J DA µ DBD cdc Da µ DbD c Dc (3.65) Da µ DbD c Dc exp{i(s + S J )} (3.66) Z J exp{i d 4 x[ 1 2 J µ (x) 1 (g µν µ ν )J ν (x) J B (x) 1 µ J µ (x) +J c (x) i J c(x)]} (3.67) 26

27 Feynman T A µ (x)a ν (y) ( 1 δ δ i )2 δj µ (x) δj ν (y) Z J J0 i (g µν µ ν )δ(x y) d 4 k (g µν kµkν ( i) k ) 2 e ik(x y), (2π) 4 k 2 + iϵ T B(x)A ν (y) ( 1 δ δ i )2 δj B (x) δj ν (y) Z J J0 i δ(x y) yν d 4 k k ν (2π) 4 k 2 + iϵ eik(x y), T c(x)c(y) ( 1 δ δ i )2 δj c (x) δj c (y) Z J J0 4 Dirac 1 δ(x y) d 4 k 1 (2π) 4 k 2 + iϵ eik(x y), (3.68) Dirac Fermi Ld 3 xdt ψ(t, x)[iγ µ µ (mc/ h)]ψ(t, x)d 3 xdt (4.1) 4 4 Dirac γ µ, γ µ γ ν + γ ν γ µ 2g µν, (γ 0 ) γ 0, 2 2 Pauli τ µ 0, 1, 2, 3 (γ k ) γ k, k 1, 2, 3 (4.2), τ 2 0 i i 0 27, τ (4.3)

28 4 4 γ , γ k 0 τ k τ k 0, k 1, 2, 3 (4.4) γ Dirac γ 5 γ 5 iγ 0 γ 1 γ 2 γ 3, {γ 5, γ µ } + 0 (4.5) γ γ , (γ 5 ) (4.6) ψ(t, x) α, α Dirac ψ(t, x) ψ(t, x) γ 0 (4.7) 4.1 Dirac ψ(t, x) ψ(t, x) Grassmann D ψdψ exp{ ī h ψ(x)[iγ µ µ (mc/ h)]ψ(x)d 4 x} (4.8) D ψdψ x δ δ δ ψ(x) y δψ(y) (4.9) D( ψ + ϵ)d(ψ + ϵ) D ψdψ (4.10) 28

29 D ψdψ exp{ ī h D( ψ + ϵ)dψ exp{ ī h D ψdψ exp{ ī h ψ(x)[iγ µ µ (mc/ h)]ψ(x)d 4 x} ϵ ( ψ(x) + ϵ)[iγ µ µ (mc/ h)]ψ(x)d 4 x} ( ψ(x) + ϵ)[iγ µ µ (mc/ h)]ψ(x)d 4 x} (4.11) D ψdψ{ ī ϵ(y)[iγ µ µ (mc/ h)]ψ(y)d 4 y} h exp{ ī ψ(x)[iγ µ µ (mc/ h)]ψ(x)d 4 x} 0 (4.12) h ϵ(y) [iγ µ µ (mc/ h)] ˆψ(y) D ψdψ{[iγ µ µ (mc/ h)]ψ(y)} exp{ ī ψ(x)[iγ µ µ (mc/ h)]ψ(x)d 4 x} h 0 (4.13) Feynman Grassmann Schwinger η(x) η(x) Z J D ψdψ exp{ ī h ( ψ(x)[iγ µ µ (mc/ h)]ψ(x) + η(x)ψ(x) + ψ(x)η(x) ) d 4 x} (4.14) ψ(x) ψ 1 (x) iγ µ µ (mc/ h) η(x), ψ(x) ψ 1 (x) η(x) iγ µ µ (mc/ h) (4.15) Z J D ψ Dψ exp{ ī ( ψ (x)[iγ µ µ (mc/ h)]ψ (x) ) d 4 x} h 29

30 exp{ ī 1 η(x) h iγ µ µ (mc/ h) η(x) d 4 x} (4.16) D ψdψ D ψ Dψ (4.17) Z J exp{ ī 1 η(x) h iγ µ µ (mc/ h) η(x) d 4 x} Schwinger Feynman T ψ(x) ψ(y) ( h δ δ i )2 δ η(x) δη(y) Z J J0 i h iγ µ µ (mc/ h) δ4 (x y) (4.18) i h d 4 k iγ µ µ (mc/ h) (2π) 4e ik(x y) d 4 k i h (2π) 4 γ µ k µ (mc/ h) + iϵ e ik(x y) (4.19) Maxwell Dirac d 4 xl d 4 { ψ(t, x)[iγ µ ( µ iea µ ) m]ψ(t, x) 1 4 ( µa ν ν A µ ) 2 } (5.1) Dirac γ 0 γ k g µν (1, 1, 1, 1) γ µ γ ν + γ ν γ µ 2g µν (5.2) 30

31 γ 5 iγ 0 γ 1 γ 2 γ 3 γ 5, (γ 5 ) 2 1 (5.3) γ 5 A µ ψ D µ µ iea µ (x) (5.4) ω(x) Maxwell A µ (x) A µ(x) A µ (x) + 1 e µω(x), ψ(x) ψ(x) U(x)ψ(x) exp[iω(x)]ψ(x), ψ(x) ψ(x) ψ(x)u(x) ψ(x) exp[ iω(x)] (5.5) ( ) D µ D µ U(x)D µ U(x) µ ie(a µ (x) + 1 ω(x)) (5.6) e ψ ψ(x) U(x)ψ(x) ( ) () U 1 (x)u 2 (x) exp[iω 1 (x)] exp[iω 2 (x) exp[i(ω 1 (x) + ω 2 (x))] (5.7) Abel U(1) A µ Abel Abel Yang-Mills 31

32 D µ ψ(x) D µ ψ(x) U(x)D µ U(x) U(x)ψ(x) U(x)D µ ψ(x) (5.8) ψ(x) [D µ, D ν ] D µ D n D ν D µ ie( µ A ν ν A µ ) ief µν (5.9) [UD µ U, UD ν U ] U[D µ, D ν ]U ief µν (5.10) Jacobi [D µ, [D ν, D α ]] + [D ν, [D α, D µ ]] + [D α, [D µ, D ν ]] 0 (5.11) Maxwell 4 2 µ F να + ν F αµ + α F µν 0 (5.12) Maxwell d 4 xl maxwell d 4 x{ 1 4 F µνf µν } (5.13) Pauli gf µν ψ(x)[γ µ, γ ν ]ψ(x) Pauli (minimal coupling) 0, + 0, J exp{i D ψdψda µ DBDcD c (5.14) d 4 x{ ψ(t, x)[iγ µ ( µ iea µ ) m]ψ(t, x) 1 4 ( µa ν ν A µ ) 2 +B(x) µ A µ (x) + i µ c µ c + ξ 2 B2 A µ (x)j µ (x) + η(x)ψ(x) + ψ(x)η(x)}} 32

33 ξ ( Abel Faddeev-Popov ) Dirac Grassmann ξ 2 B2 B(x) BRST BRST Feynman Feynman Schwinger c (source) J µ (x) Dirac Grassmann η(x) η(x) dµ D ψdψda µ DBDcD c (5.15) Bose Fermi ( 0 ) 5.2 h c 1 ( ) L J ψ(x)[iγ µ ( µ iea µ ) m]ψ(x) 1 4 ( µa ν ν A µ ) 2 +B(x) µ A µ (x) + i µ c µ c + ξ 2 B2 A µ (x)j µ (x) + η(x)ψ(x) + ψ(x)η(x) L 0 J + L int (5.16) L (0) J L int ea µ (x) ψ(x)γ µ ψ(x) (5.17) 0, + 0, J (5.18) dµ exp[i d 4 xl (0) J (x)] 1 n0 n! (i d 4 xl int (x)) n exp[i d 4 iδ xl int { δj µ (x), iδ δη(x), iδ δ η(x) }] dµ exp[i d 4 xl (0) J (x)] exp[ie d 4 iδ iδ iδ x{ δj µ γµ (x) δη(x) δ η(x) }] dµ exp[i d 4 xl (0) J (x)] 33

34 2 L (0) J L (0) J Schwinger Dirac ψ 0, + [iγ µ µ m] ˆψ(x) + η(x) 0, (0) dµ{[iγ µ µ m]ψ(x) + η(x)} exp[is (0) J ] dµ iδ exp[is(0) J ] 0 (5.19) δ ψ(x) Dyson S- Wick Feynman D (0) S (0) F (x y) 1 iγ µ µ m + iϵ δ4 (x y), F (x y) µν g µν + (ξ 1) µ ν / µ µ δ 4 (x y) (5.20) µ µ iϵ µ x µ A µ (x) A µ(x) + ψ(x) ψ (x) ψ(x) ψ (x) D (0) F (x y) µν J ν (y)d 4 y, S (0) F (x y)η(y)d 4 y, η(y)s (0) F (x y)d 4 y (5.21) Dψ Dψ 0, + 0, (0) J dµ exp{i 34 d 4 xl (0) J } J

35 dµ exp[i d 4 xl (0) J0] (5.22) exp{ i [ 1 2 J µ (x)d (0) F (x y) µν J ν (y) + η(x)s (0) F (x y)η(y)]d 4 xd 4 y} 0, + 0, (0) J0 1 0, + 0, (0) J (5.23) exp{ i [ 1 2 J µ (x)d (0) F (x y) µν J ν (y) + η(x)s (0) F (x y)η(y)]d 4 xd 4 y} Schwinger iδ iδ 0, + 0, (0) J J0 δ η(x) δη(y) 0, + T ψ(x) ψ(y) 0, (0) J0 is (0) F i 1 (x y) i iγ µ µ m + iϵ δ4 (x y) d 4 p 1 (2π) 4 p m + iϵ e ip(x y) d 3 p (2π) 3 2p 0 [( p + m) αβ e ip(x y) θ(x 0 y 0 ) ( p m) αβ e ip(x y) θ(y 0 x 0 )] (5.24) p 0 > δ δ 4 (x y) d 4 p exp[ ip(x y)] (2π) 4 1 p m + iϵ p + m p 2 m 2 + iϵ p + m p 2 m 2 + iϵ iϵ p 0 Feynman iϵ Dirac 35

36 ( ) iδ iδ 0, + 0, δj µ (x) δj ν (0) J J0 (y) 0, + T A µ (x)a ν (y) 0, (0) J0 id (0) F (x y) µν i g µν + (ξ 1) µ ν / µ µ δ 4 (x y) µ µ iϵ d 4 p g µν + (ξ 1)p µ p ν /p µ p µ i e ip(x y) (2π) 4 p µ p µ + iϵ d 3 p ( g (2π) 3 µν )[e ip(x y) θ(x 0 y 0 ) + e ip(x y) θ(y 0 x 0 )](5.25) 2p 0 ξ 1 Feynman ξ ( ) iϵ Maxwell ( ) 0, + 0, J exp[ie d 4 iδ iδ iδ x{ δj µ γµ }] (5.26) (x) δη(x) δ η(x) exp{ i [ 1 2 J µ (x)d (0) F (x y) µν J ν (y) + η(x)s (0) F (x y)η(y)]d 4 xd 4 y} e 0 Green 6 Yang-Mills Abel Abel Abel T a [T a, T b ] T a T b T b T a if abc T c (6.1) 36

37 a, b, c f abc structure constant) trt a T b 1 2 δ ab (6.2) SU(2) 3 Pauli T , T i i 0, T (6.3) [T a, T b ] iϵ abc T c (6.4) ϵ abc 3 ϵ D µ D µ µ iga a µ(x)t a a µ iga µ (x) (6.5) Abel T a Abel D µ µ iea µ (x) (6.6) Abel 2 A µ A a µt a F a µν E B [D µ, D ν ] ig( µ A a ν ν A a µ + gf abc A b µa c ν)t a igf µν (6.7) L Y M Abel Yang-Mills L Y M 1 2 trf µνf µν 1 4 FµνF a aµν µ,ν,a 1 4 ( µa a ν ν A a µ + gf abc A b µa c ν) 2 (6.8) 37

38 Maxwell SU(2) SU(2) ω a (x) g(x) exp[i 3 ω a (x)t a ] SU(2) (6.9) a1 Pauli SU(2) T a Abel A µ (x) a A µ (x) a T a A µ(x) g(x)a µ (x)g (x) + 1 ig ( µg(x))g (x) (6.10) A µ 2 D µ D µ µ iga µ(x) g(x)( µ iga µ (x))g (x) g(x)d µ g (x) (6.11) [D µ, D ν] igf µν g(x)[d µ, D ν ]g (x) g(x) ( igf µν ) g (x) (6.12) g(x)g (x) 1 Lagrangian L 1 4 F a µνf aµν 1 2 trf µνf µν 1 2 trf µνf µν (6.13) trt a T b (1/2)δ ab g(x) 38

39 ω a (x) g(x) exp[i 3 ω a (x)t a ] a1 1 + i 3 ω a (x)t a a1 1 + iω(x) (6.14) Abel A µ (x) a A µ (x) a T a A µ(x) A µ (x) + i[ω(x), A µ (x)] + 1 g µω(x) (6.15) A µ (x) a A a µ (x) A µ (x) a + f abc A µ (x) b ω(x) c + 1 g µω(x) a (6.16) dµ exp[ ī h Lagrangian L eff d 4 xl eff ] (6.17) L eff 1 4 F a µνf aµν + B a (x) µ A a µ i c a (x) µ [ µ c a (x) + gf abc A b µ(x)c c (x)] (6.18) dµ DA a µdb a D c a Dc a (6.19) Lorentz Landau) µ A a µ(x) 0 (6.20) B a (x) c a (x) Faddeev-Popov 39

40 c a (x) c a (x) c a (x) Grassmann Yang-Mills () BRST λ Grassmann A a µ(x) A a µ(x) + iλ( µ c a (x) + gf abc A b µ(x)c c (x)) c a (x) c a (x) iλ g 2 f abc c b (x)c c (x) c a (x) c a (x) + λb a (x) B a (x) B a (x) (6.21) L eff BRST 6.1 QCD Abel Abel QCD Quantum Chromodynamics ) Lagrangian L ψ(i D m)ψ + L Y M (6.22) Dirac γ 0 γ k g µν (1, 1, 1, 1) γ µ γ ν + γ ν γ µ 2g µν (6.23) γ 5 iγ 0 γ 1 γ 2 γ 3 γ 5, (γ 5 ) 2 1 (6.24) γ 5 D µ D γ µ D µ γ µ ( µ a iga a µt a ) γ µ ( µ iga µ ) (6.25) Abel T a Abel 2 40

41 A µ A a µt a F a µν E B [D µ, D ν ] ig( µ A a ν ν A a µ + gf abc A b µa c ν)t a igf µν (6.26) L Y M Abel Yang-Mills L Y M 1 4 FµνF a aµν µ,ν,a 1 4 ( µa a ν ν A a µ + gf abc A b µa c ν) 2 (6.27) Maxwell Abel Abel Abel T a [T a, T b ] T a T b T b T a if abc T c (6.28) a, b, c f abc structure constant) trt a T b 1 2 δ ab (6.29) SU(2) 3 Pauli T , T i i 0, T (6.30) [T a, T b ] iϵ abc T c (6.31) ϵ abc 3 ϵ SU(3) Gell-Mann Pauli {λ a, a 1 8} T a 1 2 λa, a 1 8 (6.32) 41

42 SU(n) n 2 1 n 2 1 SU(n) Dirac SU(2) ψ(x) ψ 1(x) ψ 2 (x), (6.33) 4 Dirac ψ 1 (x), ψ 2 (x) Dirac 4 4 γ QCD SU(3) 3 Dirac SU(2) SU(2) ω a (x) g(x) exp[i 3 ω a (x)t a ] SU(2) (6.34) a1 Pauli SU(2) T a Abel ψ(x) ψ(x) g(x)ψ(x), ψ(x) ψ ψ(x)g(x) (6.35) A µ (x) A µ (x) a T a A µ(x) g(x)a µ (x)g (x) + 1 a ig ( µg(x))g (x) ψ(x) g(x) A µ 2 D µ D µ µ iga µ(x) g(x)( µ iga µ (x))g (x) g(x)d µ g (x) (6.36) D µ ψ(x) D µψ (x) ( µ iga µ(x))ψ (x) g(x)( µ iga µ (x))ψ(x) g(x)d µ ψ(x) (6.37) 42

43 ψ(x) D µ (covariant derivative) [D µ, D ν] igf µν g(x)[d µ, D ν ]g (x) g(x) ( igf µν ) g (x) (6.38) g(x)g (x) 1 Lagrangian L ψ(i D m)ψ 1 4 F a µνf aµν ψ(i D m)ψ 1 2 trf µνf µν ψ (i D m)ψ 1 2 trf µνf µν (6.39) trt a T b (1/2)δ ab ψmψ g(x) dµ exp[ ī h Lagrangian L eff d 4 xl eff ] (6.40) L eff ψ(i D m)ψ 1 4 F a µνf aµν + B a (x) µ A a µ i c a (x) µ [ µ c a (x) + gf abc A b µ(x)c c (x)] (6.41) dµ D ψdψda a µdb a D c a Dc a (6.42) Lorentz Landau) µ A a µ(x) 0 (6.43) B a (x) c a (x) Faddeev-Popov c a (x) 43

44 6.2 Weinberg-Salam SU(2) L SU(2) TL a T a ( 1 γ 5 ) (6.44) 2 γ 5 Dirac ( 1 γ 5 2 ) (γ 5 ) 2 1, {γ 5, γ µ } + γ 5 γ µ + γ µ γ 5 0 (6.45) ( 1 γ 5 )( 1 γ 5 ) ( 1 γ 5 ) (6.46) (6.44) TL a [TL, a TL] b iϵ abc TL c (6.47) T a L SU(2) L Dirac L ψi D( 1 γ 5 )ψ F µνf a aµν ψiγ µ ( µ iga a µtl)( a 1 γ 5 )ψ F µνf a aµν ψ L iγ µ ( µ iga a µt a L)ψ L 1 4 F a µνf aµν (6.48) Lagrangain g L (x) exp[iω a (x)t a L] (6.49) ψ L (x) ψ L (x) g L (x)ψ L (x), ψl (x) ψ L ψ L (x)g R (x) (6.50) A µ (x) A µ (x) a TL a A µ(x) g L (x)a µ (x)g L(x) + 1 a ig ( µg L (x))g L(x) D L γ µ ( µ iga µ (x))( 1 γ 5 ) D L g R (x) D L g 2 L(x) (6.51) 44

45 Dirac ψ L (x) ( 1 γ 5 )ψ(x) 2 ψ L (x) ψ L (x) γ 0 ψ (x)( 1 γ 5 )γ 0 2 ψ(x)( 1 + γ 5 ) (6.52) 2 g R (x) exp[ iω a (x)t a ( 1 + γ 5 )], 2 g L (x) γ 0 γ 0 g R (x), g R (x) γ µ γ µ g L (x) (6.53) L ψ L i D L ψ L 1 4 F a µνf aµν ψ L i D L ψ L 1 4 trf µνf µν ψ Li D Lψ L 1 4 trf µνf µν (6.54) F µν F a µνt a L (6.55) tr Dirac T rt a T b 1 2 δ a,b trt a LT b L δ a,b ψ(x)mψ(x) ψ R (x)mψ L (x) + ψ L (x)mψ R (x) (6.56) ψ R (x) ( 1 + γ 5 )ψ(x) (6.57) 2 45

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

i x- p

i x- p 3 3 i........................................................................................................... 3............................... 3.. x- p-.................... 8..3.......................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein. * 1 1 3 5.1.............................. 5............................ 6.3 Bose-Einstein........................ 7 3 Bogoliubov-de Gennes 8 3.1 Bogoliubov-de Gennes.............................. 9 3.

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information