DVIOUT

Size: px
Start display at page:

Download "DVIOUT"

Transcription

1 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x) は (, ) で定義されていて f(x) dx M< を満足しているとします ( もちろん 区分的に連続かつ区分的になめらかとします ) まず 関数 f(x) を周期 L を持つ関数と考え 区間 L x L でフーリエ級数展開すると 関数 f(x) のフーリエ級数は a + X ³ a n cos n L x + b n sin n x L a k 1 L b k 1 L Z L L Z L L n1 f(t)cos k tdt (k, 1,, ) L f(t)sin k tdt (k 1,, 3, ) L となります ここで L を考えることにします lim a lim 1 L L L Z L L f(t) dt lim L f(x) dx M< に注意すれば Z 1 M f(t) dt lim L L L

2 54 第 3 章フーリエ変換 となり a が得られます さらに とおき L ( ) を考えると L X lim a n cos n X µ Z 1 L L L x lim f(t)cos n L L n1 n1 L L tdt cos n L x à X Z! lim f(t)cosn t dt cos n x n1 X µµ Z 1 lim f(t)cosn t dt cos n x n1 µ Z 1 f(t)costdt cos x d ( 区分求積法 ) が得られます 同様に X lim b n sin n X µ Z 1 L L L x lim L L n1 n1 L à X Z lim n1 X µµ 1 lim n1 µ Z 1 f(t)sin n L tdt sin n L x! f(t)sinn t dt sin n x f(t)sinn t dt sin n x f(t)sintdt sin x d ( 区分求積法 ) が得られます したがって 周期を持たない関数のフーリエ級数 ( フーリエ積分 ) は次の定理によって与えられます 定理 3.1 関数 f(x) の ( 三角関数による ) フーリエ積分は である ただし A() 1 B() 1 A()cosx d + f(t)cost dt, とする 1 なお 1 式を関数 f(x) のフーリエ積分と呼ぶ B()sinx d 1 続けて 1 式を変形すると A()cosx + B()sinx 1 1 f(t)(cos t cos x +sint sin x) dt f(t)cos(x t)dt 1 A() と B() は 周期を持つ関数をフーリエ級数展開した際に得られるフーリエ係数に相当します

3 3.1. フーリエ積分とフーリエ変換 55 より となります さらに に注意すると 1 f(t)cos(x t)dtd cos θ cos( θ) eiθ + e iθ ( 与式 ) Z となります ここで 1 1 f(t) ei(x t) + e i(x t) f(t)e i(x t) dtd + 1 f(t)e i(x t)v dtdv + 1 dtd f(t)e i(x t) dtd f(t)e i(x t) dtd ( v とおき 前項を変数変換 ) f(t)e i(x t) dtd ( v を とおき直す ) µ 1 e ix d F () 1 とおくと 次の定理を得ます ( 三角関数によるフーリエ積分を指数関数で表現し直したもの ) 定理 3. 関数 f(x) の ( 指数関数による ) フーリエ積分は である ただし 1 F () 1 F ()e ix d 1 とする なお 式を関数 f(x) のフーリエ変換 (Foie tansfom) と呼ぶ また 1 式と 式の積分の形が対称的によく似ていていることと 式では関数 f(x) を積分して関数 F () が得られるのに対して 1 式では関数 F () を積分して関数 f(x) が得られることから 1 式 ( フーリエ積分 ) を関数 f(x) の逆フーリエ変換または反転公式と呼びます 3 F () は 周期を持つ関数を複素フーリエ級数展開した際に得られる複素フーリエ係数に相当します 3 下記のように 式の変数 t を変数 x に書き換えると対称的によく似ていることがわかります F () 1 f(x)e ix dx 標準的な書き方

4 56 第 3 章フーリエ変換 これまで見てきたように フーリエ積分 ( 逆フーリエ変換 ) およびフーリエ変換の表記方法には 三角関数による表現と指数関数による表現があります 以後 本テキストでは 基本的に 表現のシンプルな指数関数による表現で記述することにします ( 一般的な書籍も指数関数による表現が標準となっています ) ただし 三角関数による表現の方がシンプルな場合は 三角関数による表現で記述します オイラーの公式 e iθ cosθ + i sin θ を使って 互いに変換できるようにしておきましょう (p.15 参照 ) 例として 区間 (, ) で定義された関数 (x<), f(x) 1 ( x 1), (x>1) のフーリエ変換を求めてみましょう 定理より 関数 f(x) のフーリエ変換 F () は F () 1 1 Z 1 1 e it dt i e it 1 i(e i 1) となります ここで 関数 F () を調べるために 三角関数による表現に直すと ( 与式 ) 1 i(cos( )+isin( ) 1) sin + icos 1 となります を変数として 関数 F () の実部 Re F () および虚部 Im F () のグラフを描くと図 3.1 のようになります Re F () ImF () 図 3.1: 関数 F () の実部および虚部のグラフ

5 3.1. フーリエ積分とフーリエ変換 57 また 関数 F () を波として捉えると 振幅の絶対値 F () は より F () µ sin + µ cos 1 sin +cos cos +1 cos cos 1 ³1 cos 1 sin F () sin となり 偏角 θ は µ Áµ cos 1 sin tan θ ³ sin.³ sin cos tan ³ tan µ 1 cos 4 ( sin θ +cos θ 1) ( 半角の公式 ) Áµ sin ( 半角の公式 ) より 区間 n <(n +1) (n, ±1, ±, ) において θ + n となります 4 を変数として 関数 F () の振幅の絶対値 F () および偏角 θ のグラフを描くと図 3. のようになります F () θ 図 3.: 関数 F () の振幅および偏角のグラフ このような考察は フーリエ変換を用いて波を解析する上で非常に重要となります これからも ここに描かれたグラフによく似たグラフがたくさん現れるので注目するようにしましょう 4 図 3. の偏角 θ のグラフの線はつながっていますが 実際には 点 n における θ の値は となります

6 58 第 3 章フーリエ変換 フーリエ級数の場合と同様に 関数が偶関数の場合と奇関数の場合のフーリエ積分を求めると 以下の系が得られます 系 3.3 偶関数 f(x) のフーリエ積分は である ただし C() とする なお C() をフーリエ余弦変換と呼ぶ 証明定理 3.1 より フーリエ積分は µ Z 1 f(t)cost dt cos x d + C()cosx d f(t)cost dt µ Z 1 sin x d である ここで 関数 f(x) が偶関数 (f( x) f(x)) であることに注意すると f(t)cost dt となる 同様に Z Z Z Z f(t)cost dt + f( s)cos( s)( ds)+ f( s)cos( s) ds + f(s)coss ds + f(t)cost dt + f(t)cost dt f( s)sin( s)( ds)+ f( s)sin( s) ds + f(s)sins ds + f(t)cost dt ( t s とおき 前項を変数変換 ) f(t)cost dt f(t)cost dt ( cos x は偶関数 ) ( t s とおき 前項を変数変換 ) ( sin x は奇関数 )

7 となる したがって ( 与式 ) 3.1. フーリエ積分とフーリエ変換 59 µ Ã f(t)cost dt cos x d! f(t)cost dt cos x d となる ここで とおけば が得られ 証明が完了する C() f(t)cost dt C()cosx d 系 3.4 奇関数 f(x) のフーリエ積分は である ただし S() とする なお S() をフーリエ正弦変換と呼ぶ S()sinx d 証明偶関数と同様に証明する 定理 3.1 より フーリエ積分は µ Z 1 µ Z 1 f(t)cost dt cos x d + sin x d である ここで 関数 f(x) が奇関数 (f( x) f(x)) であることに注意すると f(t)cost dt Z Z f(t)cost dt + f( s)cos( s)( ds)+ f( s)cos( s) ds + f(s)coss ds + f(t)cost dt f(t)cost dt ( t s とおき 前項を変数変換 ) f(t)cost dt f(t)cost dt ( cos x は偶関数 )

8 6 第 3 章フーリエ変換 となる 同様に となる したがって Z Z ( 与式 ) + f( s)sin( s)( ds)+ f( s)sin( s) ds + f(s)sins ds + µ Ã ( t s とおき 前項を変数変換 ) ( sin x は奇関数 ) sin x d! sin x d となる ここで とおけば が得られ 証明が完了する S() S()sinx d また 次のような系も得られます 5 系 3.5 (1) 関数 f(x) が偶関数ならば C() F () が成り立つ () 関数 f(x) が奇関数ならば S() if () が成り立つ 5 関数 F () を実部 (cos 波形 ) と虚部 (sin 波形 ) のベクトルで構成された波として捕らえれば F () に i を掛けることは 各ベクトルの位相を [ad] だけ進ませることに他なりません したがって F () が実部のみからなるベクトルの場合は それ自身が実軸への像となり C() に一致します 一方 F () が虚部のみからなるベクトルの場合は 位相を [ad] だけ進ませ これが実軸への像となり S() に一致します

9 3.1. フーリエ積分とフーリエ変換 61 証明 (1) を証明する F () 1 1 µz + 1 µz f( s)e i( s) ( ds)+ 1 µ f(s)e is ds + 1 µ f(t)e it dt + 1 f(t)(e it + e it ) dt ( t s とおき 前項を変数変換 ) ( f( x) f(x)) f(t) eit + e it dt () を証明する F () 1 1 µz f(t)cost dt C() + C() F (). 1 µz f( s)e i( s) ( ds)+ 1 µ f(s)e is ds + 1 µ f(t)e it dt + 1 f(t)( e it + e it ) dt i ( t s とおき 前項を変数変換 ) ( f( x) f(x)) f(t) eit e it i dt i i S() S() if ().

10 6 第 3 章フーリエ変換 定理 3.1 系 3.3 系 3.4 をまとめると下表のようになります フーリエ積分 フーリエ変換 関数 1 F ()e ix d F () 1 偶関数 C()cosx d C() f(t)cost dt 奇関数 S()sinx d S() 表 3.1: フーリエ積分 ( 逆フーリエ変換 ) とフーリエ変換

11 3.1. フーリエ積分とフーリエ変換 63 例題 1 区間 (, ) で定義された関数 1 ( x 1), f(x) ( x > 1) のフーリエ余弦変換を求めなさい 解答例関数 f(x) のフーリエ余弦変換 C() は Z C() f(t)cost dt sin t 1 となる sin Z 1 1 cos t dt * 参考のため 関数 C() の実部 Re C(), 虚部 Im C(), 振幅の絶対値 C(), 位相 θ のグラフをそれぞれ挙げておきます Re C() ImC() C() θ

12 64 第 3 章フーリエ変換 例題 区間 (, ) で定義された関数 (x 1), 1 ( 1 <x<), f(x) (x ), 1 ( <x<1), (x 1) のフーリエ正弦変換を求めなさい 解答例関数 f(x) のフーリエ正弦変換 S() は Z S() cos t 1 となる Z 1 1 cos 1 sin t dt * 参考のため 関数 S() の実部 Re S(), 虚部 Im S(), 振幅の絶対値 S(), 位相 θ のグラフをそれぞれ挙げておきます Re S() ImS() S() θ

13 3.1. フーリエ積分とフーリエ変換 65 例題 3 区間 (, ) で定義された関数 (x<), f(x) 1 ( x 3), (x>3) のフーリエ変換を求めなさい 解答例関数 f(x) のフーリエ変換 F () は となる F () 1 1 Z 3 1 e it dt 1 e it 3 1 i(e i3 e i ) i * 参考のため 関数 F () の実部 Re F (), 虚部 Im F (), 振幅の絶対値 F (), 位相 θ のグラフをそれぞれ挙げておきます Re F () ImF () F () θ

14 66 第 3 章フーリエ変換 3. フーリエ積分の収束 フーリエ積分の収束についてもフーリエ級数の収束と同様に次の定理が成り立ちます 定理 3.6 関数 f(x) が区間 (, ) で区分的に連続かつ区分的になめらかで さらに f(x) dx M< を満たしているとき 関数 f(x) のフーリエ積分は する f(x) が連続な点 x で f(x) に収束し f(x) が不連続な点 x で f(x +)+f(x ) に収束 証明フーリエ級数の収束の場合とほとんど同じなので 証明は省略します 上の定理より 次の系が直ちに得られます 系 3.7 関数 f(x) のフーリエ変換を F () とすると 等式 f(x +)+f(x ) 1 F ()e ix d が成り立つ ここで 関数 f(x) をフーリエ変換 F () し さらに 逆フーリエ変換することを考えてみましょう 前節で挙げた例で試してみると 関数 (x<), f(x) 1 ( x 1), (x>1) のフーリエ変換 F () は でしたから 逆フーリエ変換 f(x) は 1 F () 1 i(e i 1) F ()e ix d 1 µ 1 i(e i 1) e ix d を解けばよいことがわかります しかしながら これを直接解くことは非常に困難です ところが 定理 3.6 に注意すれば フーリエ積分によって得られた f(x) は 不連続な点以外では元の関

15 3.. フーリエ積分の収束 67 数 f(x) に一致することから 不連続な点のみ系 3.7 を使って値を修正すれば 逆フーリエ変換 f(x) を容易に得ることができます 具体的には 例の場合 (x<), 1 とすればよいことがわかります µ 1 i(e i 1) e ix d ³ f(x+)+f(x ) (x ), 1 ( <x<1), 1 (x 1), (x>1) 例題 1 区間 (, ) で定義された関数 1 ( x 1), f(x) ( x > 1) のフーリエ余弦変換を利用して 定積分 の値を求めなさい sin cos x 解答例関数 f(x) のフーリエ余弦変換 C() は Z C() f(t)cost dt sin t 1 d sin であるから 逆フーリエ余弦変換 f(x) は Z C()cosx d Z 1 1 cos t dt sin cos x となる したがって 系 3.7 より 以下のように定積分の値が求まる 1 ( x < 1), Z sin cos x 1 d ( x 1), ( x > 1). d

16 68 第 3 章フーリエ変換 例題 解答例 次の方程式を満たす関数 f(x) を求めなさい 1 x ( x 1), f(x)cosxt dt (x>1). 関数 f(x) を偶関数と考えて Z (1 ) ( 1), C() f(t)cost dt (>1) とおく ( フーリエ余弦変換が与えられている ) このとき 逆フーリエ余弦変換は C()cosx d Z 1 Ã! (1 ) cos x d Z 1 1 x (1 )cosx d à (1 ) µ + 1 x Z 1 cos x x 1 cos x x 1 sin x x sin x d 1 Z 1 ( 1) sin x x となる また C() の不連続な全ての点 で C() C( +)C( ) が成り立ち 逆フーリエ余弦変換と求める関数 f(x) は一致する したがって となる f(x) 1 cos x x * フーリエ積分 ( 逆フーリエ変換 ) とフーリエ変換は対称的な式であることから フーリエ積分の収束と同様に フーリエ変換の収束について d! F ( +)+F ( ) 1 が成り立ちます ( もちろん 同じ条件を与えた上で )

17 3.. フーリエ積分の収束 69 例題 3 等式 Z sin sin x 1 d sin x ( x ), ( x > ) が成り立つことを証明しなさい 解答例 奇関数 f(x) を sin x ( x ), f(x) ( x > ) とする このとき 関数 f(x) のフーリエ正弦変換は Z S() Z sin t sin t dt Z 1 (cos(t + t) cos(t t)) dt 1 Z 1 sin(1 + )t 1+. sin 1 (cos(1 + )t cos(1 )t) dt sin(1 )t 1 となる さらに 関数 f(x) の逆フーリエ正弦変換を求めると S()sinx d Z Ã! sin 1 sin x d sin sin x 1 d となる また f(x) の不連続な全ての点 x で f(x) f(x +)f(x ) が成り立ち 逆フーリエ正弦変換と元の関数 f(x) は一致する ゆえに 等式 Z sin sin x sin x ( x ), 1 d ( x > ) が成り立つ

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up 年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出

More information

Microsoft PowerPoint - 複素数.pptx

Microsoft PowerPoint - 複素数.pptx 00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 テイラー展開 次の図のように関数のグラフをのグラフ ( 積み木のようなものと考えます ) を積み重ねて作ってみましょう ただ単純に足すだけではうまく作れません 色々と削ることが必要になります 次のように半分にしたり, 分のに削らなくてはなりません どうですか? たった枚の積み木を積み重ねただけで, ほぼのグラフに近づきまし たね これから学ぶのがこのテイラー展開のお話です 初等関数の微分 初等関数の微分まずは

More information

学習指導要領

学習指導要領 () いろいろな式 学習指導要領ア式と証明 ( ア ) 整式の乗法 除法 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 都立清瀬高校学力スタンダード 変数の 次式の展開や因数分解ができる ( 例 ) 次の式を展開せよ y ( 例 ) 次の式を因数分解せよ 8 7y

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において,

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において, 3 章フーリエ変換 テーマと目標 単発現象に含まれる振動数を分析する方法とその考え方 フーリエ係数からフーリエ変換への橋渡しの数学的操作 フーリエ変換とフーリエ逆変換の定義 フーリエ変換の実例 デルタ関数の定義と使い方 フーリエ変換の性質 たたみ込み積分とフーリエ変換 パーセバルの等式 3. フーリエ変換の定義 [ 周期現象から非周期現象へ ] 前章まで, 周期現象を扱う数学の道具を学んだ. 周期現象には基本振動数があり,

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63>

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63> NAOSI: Ngski Uivrsiy's Ac il 電気回路講義ノート Auhor(s 辻, 峰男 Ciio 電気回路講義ノート ; 4 Issu D 4-4 U hp://hdl.hdl./69/3466 igh his docum is dowlodd hp://osi.lb.gski-u.c.jp 第 4 章フーリエ級数によるひずみ波の解析 フーリエ級数 (Fourir sris 周期関数

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

Microsoft PowerPoint - 計測工学第7回.pptx

Microsoft PowerPoint - 計測工学第7回.pptx 計測工学講義 第 7 回目 担当 : 西野信博 A3-525 号室 nishino@hiroshima-u.ac.jp home.hiroshima-u.ac.jp/nishino/ 1 プラズマ実験装置 NSTX(Princeton) 目 次 第 2 章スペクトル解析 フーリエ展開とフーリエ変換 相関関数とパワースペクトル 2 3 演習 スペクトル解析とはどのようなものかを わかりやすく簡潔に説明せよ

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 向丘高校学力スタンダード 自然数 整数 有理数 無理数 実数のそれぞれの 集合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には をつけよ ただし

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

微分方程式補足.moc

微分方程式補足.moc Bernoulli( ベルヌーイ ) の微分方程式 ' + P( ) = Q() n ( n 0,) 微分方程式の形の補足 ( 階 ) 注意 : n =0 のときは 階線形微分方程式 n = のときは変数分離形となる 解法 : z = -n とおいて関数 z の微分方程式を解く z' =( - n) -n ' よりこれを元の微分方程 式に代入する - n z' + P() = Q() n 両辺を n

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

高ゼミサポSelectⅢ数学Ⅰ_解答.indd

高ゼミサポSelectⅢ数学Ⅰ_解答.indd 数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数

More information

数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理は

数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理は 数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理はほぼ間違いなく出ると思うんで 時間がない人はこのあたりに絞ってやるとよいと思います 多分 前にも書きましたが

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 都立大江戸高校学力スタンダード 平方根の意味を理解し 平方根の計算法則に従って平方根を簡単にすることができる ( 例 1) 次の値を求めよ (1)5 の平方根 () 81 ( 例 ) 次の数を簡単にせよ (1) 5 () 7 1 (3) 49 無理数の加法や減法 乗法公式を利用した計算がで

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

Microsoft PowerPoint - dm1_6.pptx

Microsoft PowerPoint - dm1_6.pptx スケジュール 09/5 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/0 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/09 画像処理演習 0 : python (PC 教室 : 課題締め切り 11/13 3:59) 10/16 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/3

More information

項別超微分

項別超微分 13 項別超微分本章では 2 階以上の高階導関数を簡単な一般式で表すことが困難な関数について これら を級数に展開した上項別に超微分するものである 従って 12 超微分 で扱った e x, logx, sinx, cosx, sinhx, coshx の各関数は本章では扱わない 13 1 三角関数 双曲線関数の項別超微分 公式 13 1 1 ベルヌイ数とオイラー数をそれぞれ B 0 =1, B 2

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc (1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には を付けよ ただし 除法では 0 で割ることは考えない

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft PowerPoint - dm1_5.pptx

Microsoft PowerPoint - dm1_5.pptx デジタルメディア処理 1 017( 後期 ) 09/6 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/03 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/10 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/17 フィルタ処理 : 線形フィルタ, ハーフトーニング 10/4

More information

Microsoft Word - ComplexGeometry1.docx

Microsoft Word - ComplexGeometry1.docx Complex Geometry Speaer(s): Has-Joachim Hei (Imperial College, Loo) vieo のページ : https://www.msri.org/summer_schools/72/scheules/8495 Agea:. 正則関数 (Holomorphic Fuctio) とは 2. ワイエルストラスの予備定理 3. ハルトークスの定理 記号

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

< 三角関数 指数関数 対数関数の極限 > si lim は ラジアン角 6 逆関数の微分 : f æ ö lim ç 788 ± è ø 自然対数の底 3 指数関数 対数関数のグラフからも分かるように > ときは lim + lim + lim log + lim log + + < <

< 三角関数 指数関数 対数関数の極限 > si lim は ラジアン角 6 逆関数の微分 : f æ ö lim ç 788 ± è ø 自然対数の底 3 指数関数 対数関数のグラフからも分かるように > ときは lim + lim + lim log + lim log + + < < 数学 Ⅲ C 公式集 < 関数と極限 > 分数関数 c + のとき割り算の商と余りを利用して + r p + と変形できる このときグラフは 漸近線が, p の直角双曲線になる 無理関数 k f のグラフは k f のグラフで k > のとき 軸より上半分 k < のとき 軸より下半分 特に + や + は完璧にしておくこと 3 合成関数 f : が f g : が g f f g : ¾¾ ¾¾

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63>

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63> /8 平成 年 月 日午後 時 6 分 複素積分 : コーシーの積分公式 複素積分 : コーシーの積分公式 Ⅰ. 閉じた積分経路と円周 積分しなくても線積分の結果が分かる場合の第 弾です それは ( ( π d は正則関数 d! d 積分経路は を囲む (. になります これを コーシーの積分公式といいます 複素積分 : コーシーの積分定理 -Ⅰ. 線積分の実技での線積分では 半径 r の円 周上の閉じた経路

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 Prvl の等式 ovoluo 定理 フーリエ変換が G で, の逆フーリエ変換が, である時 F plc 変換と逆変換 F F ラプラス変換 ラプラス逆変換 plc 変換表 ラプラス空間 実空間,

More information

フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 - Prvl の等式 ovoluo 定理 フーリエ変換が G で, の逆フーリエ変換が, である時 F plc 変換と逆変換

More information

学習指導要領

学習指導要領 習熟度別クラス編成において 基礎クラスの学力スタンダード 表示は ( 基礎 ) と応用クラスの学力スタンダード 表示は ( 応用 ) を設定する () いろいろな式 ア式と証明 ( ア ) 整式の乗法 除法, 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 文字の 次式の展開や因数分解ができる

More information

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補 数 IB( 植松 ) 26 年夏学期解答 ( 兼ノート ) (27 年のは課題プリでやってしまったので ) (a) 補完公式を使う問題です 補完公式とは n+ 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x 2 3 y y y y2 y3 このデータを補完して得られる多項式を y=ax 3 +Bx 2 +Cx+D と置きます データより y = D y = A + B + C +

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

学年第 3 学年 2 単元名 ( 科目 ) いろいろな関数の導関数 ( 数学 Ⅲ) 3 単元の目標 三角関数 対数関数 指数関数の導関数を求めることができる 第 次導関数の意味を理解し 求めることができる 放物線 楕円 双曲線などの曲線の方程式を微分することができる 4 単元の学習計画 三角関数 対

学年第 3 学年 2 単元名 ( 科目 ) いろいろな関数の導関数 ( 数学 Ⅲ) 3 単元の目標 三角関数 対数関数 指数関数の導関数を求めることができる 第 次導関数の意味を理解し 求めることができる 放物線 楕円 双曲線などの曲線の方程式を微分することができる 4 単元の学習計画 三角関数 対 数学科 ( 数学 Ⅲ) 学習指導案 いろいろな関数の導関数 ( 高等学校第 3 学年 ) 神奈川県立総合教育センター < 高等学校 > 学習意欲を高める数学 理科学習指導事例集 平成 2 年 3 月 学習内容や学習活動の工夫や日常生活に関連した話題を取り入れた 抽象的な概念 を具体的なアプローチを通して理解させる 指導によって 学習意欲を高めることを 主な目的として行った授業実践の学習指導案です 学年第

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information