スライド タイトルなし

Size: px
Start display at page:

Download "スライド タイトルなし"

Transcription

1 高等研究院 インテックセンター成果報告会 極限を目指した 新しい半導体デバイスの実現 京都大学工学研究科電子工学専攻 木本恒暢 須田淳

2 光 電子理工学 エネルギー 環境問題や爆発的な情報量増大解決へ 物理限界への挑戦と新機能の創出 自在な光子制御 フォトニック結晶 シリコンナノフォト二クス ワイドバンドギャップ光半導体 極限的な電子制御 ワイドバンドギャップ (SiC) エレクトロニクス 原子揺らぎを考慮した LSI 設計 基礎物性 電磁工学 量子光学 電磁工学 ナノ電子工学

3 究極の電子デバイスを目指して 木本恒暢 須田淳 10,000 Vの電圧に耐える半導体デバイス 500 の高温でも動作する半導体デバイス 超高周波 高電力でも動作する半導体デバイス 消費電力が限りなくゼロの半導体デバイス SiC ( 炭化珪素 )

4 概要 1. SiCパワーデバイスの特徴 2. SiC 結晶成長と物性制御 3. SiCパワーデバイスの作製 4. まとめ

5 パワーデバイス パワーデバイス DC AC AC DC DC DC( 電圧変換 ) AC AC( 周波数変換 ) などの電力変換を行う 市場 :1.0 兆円 (2001) 1.6 兆円 (2008) 4 兆円 (2030) 10 兆円 (2050) Rated Current (A) 低耐圧デバイス DC-DC converter Server PC 中耐圧デバイス Automobile Electronics (ABS, Injector) HDD Telecom. HEV/EV Factory Automation Motor Control Home Appliance SW Power Supply AC Adaptor Lamp Ballast 高耐圧デバイス Power Transmission Traction SiC デバイスのターゲット Rated Voltage (V)

6 SiC パワーデバイスの特徴 特性オン抵抗 vs. 耐圧 On-Resistance (m cm 2 ) Si SiC Blocking Voltage (V) Conversion Capacity (VA) DC Transmission Large Factory THY. GTO Si BJT Telephone Line IGBT POWER-IC SiC Bullet Train UPS Inverter Electric Vehicle MOSFET Switching Power Module Operating Frequency (Hz) 高耐圧低オン抵抗高速 SW 高温動作 電力変換損失の大幅な低減 ( 高効率化 ) 冷却装置簡素化 超小型変換システム

7 パワーデバイス : Si vs. SiC SBD MOSFET PiN IGBT, GTO Si SBD PiN MOSFET, JFET BJT IGBT, GTO SiC 100 V 300 V 600 V 1.2 kv 4.5 kv 10 kv 20 kv 定格耐圧 (V) 工業的には 600~1200 V 級の SiC SBD と MOSFET がターゲット 学術的には 10 kv 級の SiC PiN と IGBT, GTO が未開拓

8 概要 1. SiCパワーデバイスの特徴 2. SiC 結晶成長と物性制御 3. SiCパワーデバイスの作製 4. まとめ

9 シリコンカーバイド (SiC) ウェハ 低抵抗 (N ドープ )4H-SiC 半絶縁性 4H-SiC 低抵抗 (N ドープ )6H-SiC 電力用 SiC パワーデバイス 通信用 SiC, GaN 高周波デバイス 窒化物半導体発光デバイス

10 超高耐圧 (> 10 kv) SiC デバイス 6.6 kv 電力系統 13~20 kv 耐圧のスイッチ / ダイオード A G1 G2 A 未踏 未開拓 G G3 G4 K 5 kv Si GTO x 4 K 20 kv SiC GTO x 1 損失低減 設備の小型化

11 20 kv 耐圧を実現する条件 ( 材料面 ) パワーデバイスの定格電圧 膜厚 ( m) SiC ドナー密度 (cm -3 ) 膜厚 ( m) Si ドナー密度 (cm -3 ) 1.2 kv kv kv kv 超高純度 超厚膜 超高品質 SiC 結晶が必須 物理的に不可能

12 Growth Rate ( m/h) C/Si = 1.2 SiC の高速エピタキシャル成長 standard SiH 4 Flow Rate (sccm) 85 m/h で良好な表面平坦性 8 o off-axis, Si face エピ層厚さ : 120 m 成長圧力 : 35 Torr 500 m height scale: 3 nm CMP 研磨 5 m In-situ H 2 エッチング (1650 o C, 35 Torr) 低圧成長 RMS = 0.18 nm (20 m )

13 残留窒素ドナー密度の低減 ドナー密度の成長圧力依存性 ドナー密度の C/Si 比依存性 Donor Concentration (cm -3 ) T = 1500 C/Si = 1.5 SiH 4 : 1.5 sccm C 3 H 8 : 0.75 sccm N-doped undoped 4H-SiC(0001) 8 o off Pressure (Torr) 低い圧力 + 高い C/Si 比 Net Donor Concentration (cm -3 ) H-SiC(0001) SiH 4 : 1.5 sccm P: 80 Torr C/Si Ratio N D = 5x10 12 cm -3 ( 純度 %)

14 SiC エピ成長層中の点欠陥 ( 深い準位 ) 0.0 Conduction Band Z 1/2 RD 1/2 E c 3.0 Z 1/2 センター密度とキャリヤ寿命の関係 / E C - E (ev) UT1 EH 6/7 Detected in n-type Valence Band Detected in p-type HK4 HK3 HK2 HK E - E V (ev) 1/ (s -1 ) / SRH (slope = 1) 1/ other Z 1/2 concentration (cm -3 ) Z 1/2 センター : ライフタイムキラー K. Danno et al., Appl. Phys. Lett. 90 (2007), E v

15 DLTS Signal (ff) DLTS スペクトル (n 型 SiC) 熱酸化による SiC 中の深い準位の低減 Z 1/2 as-grown EH 6/7 10 = 0.6 s 11 > 10 s Z 1/2 センター密度の深さ方向分布 Z 1/2 Concentration (cm -3 ) 0 Detection Limit (as-grown) (after defect 0 10 elimination) Temperature (K) Depth From Surface ( m) キャリア寿命の増大 after oxidation (1300 o C, 5h) 10 min as-grown 熱酸化 (1300, 5 h) 後のSiC Z 1/2, RD 1/2, EH 6/7 センター : 表面から深さ約 47 mの領域で検出限界 ( cm -3 ) 以下に低減 1 h T. Hiyoshi et al., Appl. Phys. Express 2 (2009), h

16 概要 1. SiCパワーデバイスの特徴 2. SiC 結晶成長と物性制御 3. SiCパワーデバイスの作製 4. まとめ

17 SiC ショットキー障壁ダイオード , 京大 2008, ROHM 1200 V 100 A J F = 100 A/cm 1.0 V Current (A) V B = 1750 V Voltage (V) T. Kimoto et al., IEEE EDL, 14 (1993), 548. ( 世界初の高耐圧 SiC SBD) A. Itoh et al., Proc. of ISPSD1995, p.101. ( 現在の世界標準構造 )

18 SiC ショットキー障壁ダイオード , 京大 2008, ROHM 1200 V 100 A J F = 100 A/cm 1.0 V Current (A) V B = 1750 V インバーターのスイッチング損失を60% 改善 Voltage (V) T. Kimoto et al., IEEE EDL, 14 (1993), 548. ( 世界初の高耐圧 SiC SBD) A. Itoh et al., Proc. of ISPSD1995, p.101. ( 現在の世界標準構造 )

19 SiO 2 L JTE 超高耐圧 SiC PiN ダイオード 6600 V 系統 13~20 kv パワーデバイス Ti/Al 高さ : 2.0 m n- バッファ層 p + 層 Al + 注入, 深さ 0.8 m N A : cm -3 JTE 領域 (p) Al + 注入 : 深さ 0.8 m n - ドリフト層 N D : 3~ cm -3 膜厚 : 90~100 m (50 m/h の高速成長 ) Ni n 型 4H-SiC 基板 (0001) 8 オフ

20 10 kv SiC PiN ダイオードの I-V 特性 ドリフト層膜厚 : 92 m N D = cm -3 JTE 幅 : L JTE = 200 m オン抵抗 : 95 m cm 2 逆方向破壊電圧 : 10.2 kv SiC 10.2 kv Current (A/cm 2 ) Si kv SiC PiN 8 kv Si PiN Voltage (V) T. Hiyoshi et al., IEEE Trans. Electron Devices 55 (2008), p.1841.

21 Current Density (A/cm 2 ) kv 級 SiC PiN ダイオードの特性改善 with oxidation 4H-SiC PiN without oxidation p + -Anode: 1x10 18 cm m n + -substrate SiO 2 n - layer: N d = 6x10 14 cm -3 d epi = 145 m Forward Voltage (V) 欠陥低減によるオン抵抗 (R on ) の改善 V B = 12 kv Without Oxidation With Oxidation R on = 97 m cm 2 R on = 46 m cm 2

22 SiC パワー MOSFET のオン抵抗 Gate DIMOSFET SiO 2 Source n + R n + p JFET p n - R Drift n + Drain R Ch R S Channel R Sub On-state Resistance (m cm 2 ) Si-MOSFET SiC-MOSFET 1 Si drift limit SiC drift limit Blocking Voltage (V) オン抵抗 R ON = R S + R Ch + R JFET + R Drift + R Sub

23 MOSFET チャネル移動度の向上 Effective Channel Mobility (cm 2 /Vs) H-SiC (1120), N 2 O N A ~1x10 16 cm -3 (0001) C, N 2 O (0001) Si, N 2 O (0001) Si, wet O Gate Voltage (V) Effective Channel Mobility (cm 2 /Vs) 100 4H-SiC MOSFET 80 (1120) (0001) C 20 (0001) Si Doping Concentration of p-body (cm -3 ) eff : (1120) > (0001) C > (0001) Si (N 2 O) > (0001) Si (O 2 ) T. Kimoto et al. Jpn. J. Appl. Phys. 44 (2005), p.1213.

24 SiC パワー MOSFET の量産開始 世界初の量産化に成功 (2010 年 12 月 ~) 2.4 x 4.8 mm 2 Si SiC 200 o C 200 o C

25 大容量 SiC トレンチ MOSFET ( 京大 ローム ) トレンチ形 MOSFET Source Gate 400 単チップで 300 A を達成 4.8mm 角 300A 300 Ti/Al Ti p+ n+ p-well SiO 2 Poly-Si SiC n- epi-layer Ti Drain Current (A) V gs = 20 V 5V step 従来 3.0mm 角 SiC n+ substrate Ni Metal Drain Voltage (V) 耐圧 > 600 V Drain セルピッチ 6 m チャネル長 0.4 m セルの微細化耐圧構造の改善により エピ層抵抗を20% 低減

26 横型 SiC RESURF MOSFET: for power IC Source Gate top-p region thickness : 0.1 m SiO 2 Drain p + n + RESURF1 RESURF2 n + Region (n - ) region (n) 0.6 m p-epilayer substrate (p + ) L RES : 10 m L LDD : 10 m MOS 界面特性の改善ダブル RESURF 構造 2 ゾーン RESURF 構造デバイスシミュレーション 低い R ON 高い V B

27 Drain Current [ma] SiC ダブル RESURF MOSFET の特性 L/W = 1.7/200 m V G = 0-20 V 4 V Step V T = 2.8 V Drain Voltage [V] V B = 1580 V R ON = 40 m cm 2 V T = 2.8 V Specific On-Resistance (m cm 2 ) R ON = 40 m cm 2 V B = 1580 V (I D 1000) Drain Current [A/cm 2 ] 4H-SiC 6H-SiC Si AIST '03 Kyoto '03 RPI '04 stable avalanche Lateral MOSFET Si limit (1D) Kyoto '03 Kyoto '03 RPI '02 this work Breakdown Voltage (V) M. Noborio et al., IEEE EDL, 30 (2009), 831.

28 1. SiC 結晶成長と物性制御 高速 高純度結晶成長 ( 不純物密度 < 1x10 13 cm -3 ) 熱酸化による欠陥消滅 ( 欠陥密度 < 1x10 11 cm -3 ) 2. SiC MOSFET Si の理論限界を 10 倍以上凌ぐ優れた性能 連携企業が量産化開始 ( 世界初 ) 3. PiN ダイオード 究極の電子デバイスを目指して SiC: 高耐圧 低損失 高速のパワーデバイス 超高耐圧 (> 10 kv) 達成さらなる性能向上の研究に取り組み中 ポスター

スライド タイトルなし

スライド タイトルなし 2012. 7. 9 窒化物半導体応用研究会 SiC パワー半導体の 研究開発動向 京都大学工学研究科電子工学専攻 木本恒暢 概要 1. SiCパワー半導体 2. SiCダイオードの進展 3. SiCスイッチングデバイスの進展 4. SiC 半導体の開発動向 5. まとめ 2 Rated Current (A) パワーデバイス パワーデバイス DC AC AC DC DC DC( 電圧変換 ) AC

More information

untitled

untitled 20101221JST (SiC - Buried Gate Static Induction Transistor: SiC-BGSIT) SOURCE GATE N source layer p + n p + n p + n p+ n drift layer n + substrate DRAIN SiC-BGSIT (mωcm 2 ) 200 100 40 10 4 1 Si limit

More information

Microsoft PowerPoint - 14.菅谷修正.pptx

Microsoft PowerPoint - 14.菅谷修正.pptx InGaAs/系量子ドット太陽電池の作製 革新デバイスチーム 菅谷武芳 電子 バンド3:伝導帯 E3 E3 E 正孔 バンド:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド:価電子帯 量子ドット太陽電池のバンド図 6%を超える理想的な量子ドット太陽 電池実現には E3として1 9eVが必要 量子ドット超格子太陽電池 理論上 変換効率6%以上 集光 を採用 MBE

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 12 回窒化物半導体応用研究会 2011 年 11 月 10 日 ノーマリオフ型 HFET の高性能化 前田就彦 日本電信電話株式会社 NTT フォトニクス研究所 243-0198 神奈川県厚木市森の里若宮 3-1 E-mail: maeda.narihiko@lab.ntt.co.jp 内容 (1) 電力応用におけるノーマリオフ型デバイス (2) / HFETにおけるノーマリオフ化 - デバイス構造のこれまでの展開

More information

hν 688 358 979 309 308.123 Hz α α α α α α No.37 に示す Ti Sa レーザーで実現 術移転も成功し 図 9 に示すよ うに 2 時間は連続測定が可能な システムを実現した Advanced S o l i d S t a t e L a s e r s 2016, JTu2A.26 1-3. 今後は光周波 数比計測装置としてさらに改良 を加えていくとともに

More information

Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi2, and Ni3P electrodes

Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi2, and Ni3P electrodes Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi 2, and Ni 3 P electrodes 杉井 岩井研究室 12M36240 武正敦 1 注目を集めるワイドギャップ半導体 パワーエレクトロニクス ( 半導体の電力変換分野への応用 ) に期待 ワイドギャップ半導体に注目 Properties (relative

More information

低損失V溝型SiCトレンチMOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p+ regions

低損失V溝型SiCトレンチMOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p+ regions エレクトロニクス 低損失 V 溝型 SiC トレンチ MOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p + regions * 斎藤雄和田圭司日吉透 Yu Saitoh Keiji Wada Toru Hiyoshi 増田健良築野孝御神村泰樹 Takeyoshi Masuda Takashi Tsuno Yasuki Mikamura 我々はワイドバンドギャップ半導体である炭化珪素

More information

Microsoft PowerPoint - 9.菅谷.pptx

Microsoft PowerPoint - 9.菅谷.pptx 超多積層量子ドット太陽電池と トンネル効果 菅谷武芳 革新デバイスチーム 量子ドット太陽電池 電子 バンド3:伝導帯 E23 E13 E12 正孔 バンド2:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド1:価電子帯 量子ドット太陽電池のバンド図 量子ドット超格子太陽電池 理論上 変換効率60%以上 集光 A. Luque et al., Phys. Rev. Lett.

More information

SiC 高チャネル移動度トランジスタ

SiC 高チャネル移動度トランジスタ エレクトロニクス SiC 高チャネル移動度トランジスタ 日吉透 * 増田健良 和田圭司 原田真 築野孝 並川靖生 SiC MOSFET with High Channel Mobility by Toru Hiyoshi, Takeyoshi Masuda, Keiji Wada, Shin Harada, Takashi Tsuno and Yasuo Namikawa SiC (silicon

More information

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs)

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs) ontents semicon.kuee.kyoto-u.ac.jp P 5.47 ev 1.12 ev Ge 0.66 ev Sn 0.08 ev DVD LSI, 3.20 ev GaN 3.42 ev ZnO 2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) 1.12

More information

Microsoft PowerPoint 修論発表_細田.ppt

Microsoft PowerPoint 修論発表_細田.ppt 0.0.0 ( 月 ) 修士論文発表 Carrier trasort modelig i diamods ( ダイヤモンドにおけるキャリヤ輸送モデリング ) 物理電子システム創造専攻岩井研究室 M688 細田倫央 Tokyo Istitute of Techology パワーデバイス基板としてのダイヤモンド Proerty (relative to Si) Si GaAs SiC Ga Diamod

More information

スライド 1

スライド 1 2014 年 9 月 17 日 ( 水 ) 第 75 回応用物理学会秋季学術講演会 TiC 電極,TiSi 2 電極と SiC 基板の Schottky ダイオード特性評価 Schottky diode characteristics of TiC and TiSi 2 electrodes on SiC substrates 東工大フロンティア研 1, 東工大総理工 2, 鈴木智之 1, 岡本真里

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

Superjunction MOSFET

Superjunction MOSFET 富士時報 Vol.82 No.6 2009 特集Superjunction MOSFET Superjunction MOSFET 大西泰彦 Yasuhiko Oonishi 大井明彦 Akihiko Ooi 島藤貴行 Takayuki Shimatou 不純物濃度制御に優れた多段エピタキシャル技術を適用し, 定格 600 V/0.16 Ω( パッケージ :TO - 220) の Superjunction(SJ)MOSFET

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

電力線重畳型機器認証技術

電力線重畳型機器認証技術 1 電力線重畳型認証技術 RFID over Power Line System ソニー株式会社コーポレート R&D 新規事業創出部門ホームエネルギーネットワーク事業開発部 和城賢典 2012 年 4 月 17 日 2 内容 イントロダクション 基本構造 測定結果 EV 充電スタンドへの取り組み 3 内容 イントロダクション 基本構造 測定結果 EV 充電スタンドへの取り組み 4 RFID の原理

More information

Microsoft PowerPoint - H30パワエレ-3回.pptx

Microsoft PowerPoint - H30パワエレ-3回.pptx パワーエレクトロニクス 第三回パワー半導体デバイス 平成 30 年 4 月 25 日 授業の予定 シラバスより パワーエレクトロニクス緒論 パワーエレクトロニクスにおける基礎理論 パワー半導体デバイス (2 回 ) 整流回路 (2 回 ) 整流回路の交流側特性と他励式インバータ 交流電力制御とサイクロコンバータ 直流チョッパ DC-DC コンバータと共振形コンバータ 自励式インバータ (2 回 )

More information

高耐圧SiC MOSFET

高耐圧SiC MOSFET エレクトロニクス 高耐圧 S i C M O S F E T 木村錬 * 内田光亮 日吉透酒井光彦 和田圭司 御神村泰樹 SiC High Blocking Voltage Transistor by Ren Kimura, Kousuke Uchida, Toru Hiyoshi, Mitsuhiko Sakai, Keiji Wada and Yasuki Mikamura Recently,

More information

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル AlGaN/GaN HFET 電流コラプスおよびサイドゲート効果に関する研究 徳島大学大学院先端技術科学教育部システム創生工学専攻電気電子創生工学コース大野 敖研究室木尾勇介 1 AlGaN/GaN HFET 研究背景 高絶縁破壊電界 高周波 高出力デバイス 基地局などで実用化 通信機器の発達 スマートフォン タブレットなど LTE LTE エンベロープトラッキング 低消費電力化 電源電圧を信号に応じて変更

More information

低転位GaN 基板上の低抵抗・高耐圧GaNダイオード

低転位GaN 基板上の低抵抗・高耐圧GaNダイオード エレクトロニクス 低転位 G a N 基板上の低抵抗 高耐圧 G a N ダイオード 住 吉 和 英 * 岡 田 政 也 上 野 昌 紀 木 山 誠 中 村 孝 夫 Low On-Resistance and High Breakdown Voltage GaN SBD on Low Dislocation Density GaN Substrates by Kazuhide Sumiyoshi,

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 21 年 6 月 1 日現在 研究種目 : 若手研究 ( スタートアップ ) 研究期間 :27~28 課題番号 :198624 研究課題名 ( 和文 ) InAlAs 酸化膜による III-V-OIMOS 構造の作製および界面準位に関する研究研究課題名 ( 英文 ) III-V-OIMOSstructurebyusingselectivewetoxidationofInAlAs

More information

窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性

窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性 Copyright NTT Basic Research Laboratories, NTT Corporation. All rights reserved. ダイヤモンド 高周波電力デバイスの開発とマイクロ波 ミリ波帯電力増幅器への応用 (614314) 研究代表者嘉数誠 (1) NTT 物性科学基礎研究所 研究分担者植田研二 (2) 小林康之 中川匡夫 NTT 物性科学基礎研究所 NTT 未来ねっと研究所

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発

第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発 第 1 回窒化物半導体応用研究会 平成 20 年 2 月 8 日 GaN 結晶成長技術の開発 半導体事業部 伊藤統夫 第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発 弊社社名変更について 2006

More information

スライド 1

スライド 1 2015 年 2 月 17 日 ( 火 ) 学士卒業論文発表会 TiC 及び TiSi 2 電極と SiC ショットキーダイオードの電気特性評価 (Electrical Characteristics of SiC Schottky Diodes with TiC and TiSi 2 Electrodes) Iwai and Kakushima Laboratory Tomoyuki Suzuki

More information

開発の社会的背景 パワーデバイスは 電気機器の電力制御に不可欠な半導体デバイスであり インバーターの普及に伴い省エネルギー技術の基盤となっている 最近では高電圧 大電流動作が技術的に可能になり ハイブリッド自動車のモーター駆動にも使われるなど急速に普及し 市場規模は 2 兆円に及ぶといわれる パワー

開発の社会的背景 パワーデバイスは 電気機器の電力制御に不可欠な半導体デバイスであり インバーターの普及に伴い省エネルギー技術の基盤となっている 最近では高電圧 大電流動作が技術的に可能になり ハイブリッド自動車のモーター駆動にも使われるなど急速に普及し 市場規模は 2 兆円に及ぶといわれる パワー ダイヤモンドパワーデバイスの高速 高温動作を実証 - 次世代半導体材料としての優位性を確認 - 平成 22 年 9 月 8 日独立行政法人産業技術総合研究所国立大学法人大阪大学 ポイント ダイヤモンドダイオードを用いたパワーデバイス用整流素子の動作を世界で初めて確認 高速かつ低損失の動作を確認でき 将来の実用化に期待 将来のパワーデバイスとして省エネルギー効果に期待 概要 独立行政法人産業技術総合研究所

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

(Microsoft PowerPoint - \203E\203B\203\223\203N\210\244\222m.ppt)

(Microsoft PowerPoint - \203E\203B\203\223\203N\210\244\222m.ppt) IGBT 発展の経緯と限界特性 中川明夫 中川コンサルティング事務所 1 パワーデバイス応用分野の変遷 1997 2005 HVDC Transmission HVDC Transmission IGBT 2 パワーデバイス発展の経緯 ( 東芝の例 ) Power rating (VA) 100M 10M 1M 100K 1 st wave 10K 1960 500A2500V 80A400V 150A1000V

More information

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - semi_ppt07.ppt [互換モード] 1 MOSFETの動作原理 しきい電圧 (V TH ) と制御 E 型とD 型 0 次近似によるドレイン電流解析 2 電子のエネルギーバンド図での考察 理想 MOS 構造の仮定 : シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない 金属 (M) 酸化膜 (O) シリコン (S) 電子エ金属 酸化膜 シリコン (M) (O) (S) フラットバンド ネルギー熱平衡で 伝導帯 E

More information

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt 半導体工学第 9 回目 / OKM 1 MOSFET の動作原理 しきい電圧 (V( TH) と制御 E 型と D 型 0 次近似によるドレイン電流解析 半導体工学第 9 回目 / OKM 2 電子のエネルギーバンド図での考察 金属 (M) 酸化膜 (O) シリコン (S) 熱平衡でフラットバンド 伝導帯 E c 電子エネルギ シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない

More information

1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Pho

1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Pho 1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Photonics Research Institute, AIST TBAs) AlGaAs/GaAs TBAs)

More information

記者発表資料

記者発表資料 2012 年 6 月 4 日 報道機関各位 東北大学流体科学研究所原子分子材料科学高等研究機構 高密度 均一量子ナノ円盤アレイ構造による高効率 量子ドット太陽電池の実現 ( シリコン量子ドット太陽電池において世界最高変換効率 12.6% を達成 ) < 概要 > 東北大学 流体科学研究所および原子分子材料科学高等研究機構 寒川教授グループはこの度 新しい鉄微粒子含有蛋白質 ( リステリアフェリティン

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 加工 Si 基板上への 非極性 GaN 結晶成長 1) 名古屋大学工学研究科 赤崎記念研究センター 2) 愛知工業大学工学研究科 1) 本田善央 1) 谷川智之 1) 鈴木希幸 1) 山口雅史 2) 澤木宣彦 豊田講堂時計台 赤崎研究センター auditorium Akasaki research center 常圧 MOVPE 減圧 MOVPE (2inch) HVPE MOVPE #3 MOVPE

More information

内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET の課題 4)SiC トレンチ MOSFET

内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET の課題 4)SiC トレンチ MOSFET SiC GaN パワー半導体の最新技術 課題 ならびにデバイス評価技術の重要性 2016 年 7 月 12 日 筑波大学数理物質系物理工学域 教授岩室憲幸 1 内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET

More information

<4D F736F F F696E74202D2091E F BB95A894BC93B191CC899E97708CA48B8689EF E9197BF>

<4D F736F F F696E74202D2091E F BB95A894BC93B191CC899E97708CA48B8689EF E9197BF> 1 豊田合成の GaN 系 LED の開発と製品化 豊田合成株式会社オプト E 事業部柴田直樹 Outline 2 A. TG LED チップの歴史と特性の紹介 PC タブレット向けチップ 照明向けチップ B. TG の結晶成長技術について AlN バッファ層上 GaN 層成長メカニズム C. TG の最新 LED チップの紹介 GaN 基板上 LED 非極性 m 面 GaN LED A-1. 省エネ

More information

Microsoft PowerPoint - 4.1I-V特性.pptx

Microsoft PowerPoint - 4.1I-V特性.pptx 4.1 I-V 特性 MOSFET 特性とモデル 1 物理レベルの設計 第 3 章までに システム~ トランジスタレベルまでの設計の概要を学んだが 製造するためには さらに物理的パラメータ ( 寸法など ) が必要 物理的パラメータの決定には トランジスタの特性を理解する必要がある ゲート内の配線の太さ = 最小加工寸法 物理的パラメータの例 電源配線の太さ = 電源ラインに接続されるゲート数 (

More information

AN504 Through-hole IRED/Right Angle Type 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はん

AN504 Through-hole IRED/Right Angle Type 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はん 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はんだ付け方法 ESD 出荷形態 950nm 60 deg. GaAs 放射強度選別を行い ランクごとに選別 半田ディップ マニュアルはんだ実装工程に対応 はんだ付けについては はんだ付け条件をご参照ください

More information

報道発表資料 2000 年 2 月 17 日 独立行政法人理化学研究所 北海道大学 新しい結晶成長プロセスによる 低欠陥 高品質の GaN 結晶薄膜基板作製に成功 理化学研究所 ( 小林俊一理事長 ) は 北海道大学との共同研究により 従来よりも低欠陥 高品質の窒化ガリウム (GaN) 結晶薄膜基板

報道発表資料 2000 年 2 月 17 日 独立行政法人理化学研究所 北海道大学 新しい結晶成長プロセスによる 低欠陥 高品質の GaN 結晶薄膜基板作製に成功 理化学研究所 ( 小林俊一理事長 ) は 北海道大学との共同研究により 従来よりも低欠陥 高品質の窒化ガリウム (GaN) 結晶薄膜基板 報道発表資料 2000 年 2 月 17 日 独立行政法人理化学研究所 北海道大学 新しい結晶成長プロセスによる 低欠陥 高品質の GaN 結晶薄膜基板作製に成功 理化学研究所 ( 小林俊一理事長 ) は 北海道大学との共同研究により 従来よりも低欠陥 高品質の窒化ガリウム (GaN) 結晶薄膜基板を製作することに成功しました 新しい手法は 当研究所半導体工学研究室の青柳克信主任研究員と 北大電子科学研究所の田中悟助教授らのグループで開発

More information

Microsoft PowerPoint - tft.ppt [互換モード]

Microsoft PowerPoint - tft.ppt [互換モード] 薄膜トランジスター 九州大学大学院 システム情報科学研究科 服部励治 薄膜トランジスターとは? Thin Film Transistor: TFT ソース電極 ゲート電極 ドレイン電極ソース電極ゲートドレイン電極 n poly 電極 a:h n n ガラス基板 p 基板 TFT 共通点 電界効果型トランジスター nmosfet 相違点 誘電膜上に作成される スタガー型を取りうる 薄膜トランジスター

More information

研究成果報告書

研究成果報告書 MIS HEMT MIS HEMT MIS HEMT AlGaN/GaN MIS ALD AlGaN/GaN MIS-HEMT (1)MIS MIS AlGaN/GaN MIS-HEMT BCl 3 Cl 2 Ti/Al/Mo/Au (15/60/35/50 nm) 850 ºC AlGaN Ni/Au (100/150 nm) 300 ºC Lg=3m Lgd=5 mwg=100 m ALD Al

More information

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析 [17.7 White Paper] 6 V 系スーパージャンクションパワー MOSFET TO-247-4L パッケージのシミュレーションによる解析 MOSFET チップの高速スイッチング性能をより引き出すことができる 4 ピン新パッケージ TO-247-4L 背景 耐圧が 6V 以上の High Voltage(HV) パワー半導体ではオン抵抗と耐圧のトレードオフの改善を行うためスーパージャンクション

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

Microsoft Word - sp8m4-j.doc

Microsoft Word - sp8m4-j.doc 4V 駆動タイプ Nch+Pch MOS FET 構造シリコン N チャネル / P チャネル MOS 型電界効果トランジスタ 外形寸法図 (Unit : mm) SOP8 5..4.75 (8) (5) 特長 ) 新ライン採用により 従来品よりオン抵抗大幅低減 2) ゲート保護ダイオード内蔵 3) 小型面実装パッケージ (SOP8) で省スペース pin mark () (4).27 3.9 6..2.4Min.

More information

スライド 1

スライド 1 Front End Processes FEP WG - - NEC 1 ITRS2006 update 2 ITRS vs. 2-1 FET 2-2 Source Drain Extension 2-3 Si-Silicide 2-4 2-5 1 , FEP Front End Processes Starting Materials: FEP Si,, SOI SOI: Si on Insulator,

More information

GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Inject

GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Inject 高耐圧 GaN パワーデバイス開発 松下電器産業 ( 株 ) 半導体社半導体デバイス研究センター 上田哲三 GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Injection

More information

Microsoft PowerPoint - 群馬大学_講演6-28.ppt

Microsoft PowerPoint - 群馬大学_講演6-28.ppt エコ社会を支えるパワー IC 技術 - 高耐圧 SOI と低耐圧 BCD- 中川明夫 謝辞 本報告で 出 等の表示のない部分の資料は 筆者が東芝在籍中に外部発表で使用した資料に基づいて再構成し 作成したものです 関係する方々に感謝の意を表します 1. 地球温暖化 CO 2 削減 2.IT 化によるエネルギー消費増大 3. エネルギー効率向上 ---インバータ 電源効率 LED HEV 4. 再生可能エネルギー開発

More information

Slide 1

Slide 1 SPring-8 利用推進協議会第 4 回次世代先端デバイス研究会 / 第 13 回 SPring-8 先端利用技術ワークショップ 2017.3.21 AP 品川京急第 2 ビル 先進パワーデバイスにおける 新規ゲート絶縁膜開発と 放射光利用 MOS 界面評価事例 大阪大学大学院工学研究科 渡部平司 転載不可 大阪大学大学院工学研究科渡部研究室 1/60 概要 ワイドバンドギャップ半導体パワーデバイス

More information

支援財団研究活動助成 生体超分子を利用利用した 3 次元メモリデバイスメモリデバイスの研究 奈良先端科学技術大学院大学物質創成科学研究科小原孝介

支援財団研究活動助成 生体超分子を利用利用した 3 次元メモリデバイスメモリデバイスの研究 奈良先端科学技術大学院大学物質創成科学研究科小原孝介 2009.3.10 支援財団研究活動助成 生体超分子を利用利用した 3 次元メモリデバイスメモリデバイスの研究 奈良先端科学技術大学院大学物質創成科学研究科小原孝介 研究背景研究背景研究背景研究背景データデータデータデータの種類種類種類種類データデータデータデータの保存保存保存保存パソコンパソコンパソコンパソコンパソコンパソコンパソコンパソコンデータデータデータデータデータデータデータデータ音楽音楽音楽音楽音楽音楽音楽音楽写真写真写真写真記録媒体記録媒体記録媒体記録媒体フラッシュメモリフラッシュメモリフラッシュメモリフラッシュメモリ動画動画動画動画

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 61 回応用物理学会 青山学院大学相模原キャンパス 春季学術講演会 2014 年 3 月 18 日 ( 火曜日 ) La 2 O 3 /InGaAs 界面ラフネスに及ぼす ALD プロセスの影響 Impact of ALD process on La 2 O 3 /InGaAs interface roughness 大嶺洋 1,Dariush Hassan Zadeh 1, 角嶋邦之 2, 片岡好則

More information

パナソニック技報

パナソニック技報 67 Next-generation Power Switching Devices for Automotive Applications: GaN and SiC Tetsuzo Ueda Yoshihiko Kanzawa Satoru Takahashi Kazuyuki Sawada Hiroyuki Umimoto Akira Yamasaki GaNSiCGaNSiGate Injection

More information

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp) Precision CMOS Dual Operational Amplifier Literature Number: JAJS760 CMOS & CMOS LMC6062 CMOS 19911126 33020 23900 11800 ds011297 Converted to nat2000 DTD Edited for 2001 Databook SGMLFIX:PR1.doc Fixed

More information

Triple 2:1 High-Speed Video Multiplexer (Rev. C

Triple 2:1 High-Speed Video Multiplexer (Rev. C www.tij.co.jp OPA3875 µ ± +5V µ RGB Channel OPA3875 OPA3875 (Patented) RGB Out SELECT ENABLE RED OUT GREEN OUT BLUE OUT 1 R G B RGB Channel 1 R1 G1 B1 X 1 Off Off Off 5V Channel Select EN OPA875 OPA4872

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 09/01/21 半導体電子工学 II 日付内容 ( 予定 ) 備考 1 10 月 1 日半導体電子工学 I の基礎 ( 復習 ) 2 10 月 8 日半導体電子工学 I の基礎 ( 復習 ) 3 10 月 15 日 pn 接合ダイオード (1) 4 10 月 22 日 pn 接合ダイオード (2) 5 10 月 29 日 pn 接合ダイオード

More information

研究成果報告書

研究成果報告書 ① ア ニ ー ル 温 度 の 違 い に よ る ナ ノ 構 造 制御 論文④ ⑤関連 シード層として Ti を用い Ag/Ti 薄膜を MgO(001)基板上に室温蒸着させた後にアニ ール処理を施す その際 アニール条件 温 度 時間 を変えた場合の基板上に形成され る Ag ナノ構造の変化について調べた Fig.1 の薄膜表面の原子間力顕微鏡 AFM 像に見られるように (a)ti シード層

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 一般機器用 For Consumer Products 汎用パワーインダクタ Common Power Inductors HER series RoHS HER327 HER427 HER527 HER627 HER88 HER9 特徴 直流重畳特性に優れている為 DC-DC コンバータ用インダクタとして最適 ドラムコアとリングコアに異なる磁性材料を使い電流特性を向上 * 既存同サイズと比べて電流特性を約

More information

SiCパワー半導体がもたらす 電気エネルギーの有効利用 -省エネ効果-

SiCパワー半導体がもたらす 電気エネルギーの有効利用 -省エネ効果- ( 日刊工業新聞社 ) 2013.11.8 SiCパワー半導体がもたらす電気エネルギーの有効利用 - 省エネ効果 - 松波弘之 ( 京都大学 ) 1. パワー半導体 SiCへの期待 2. 京都大学の寄与ーステップ制御エピタキシー 3.SiCパワーデバイス技術の進展 4. 産業機器分野への応用 5. グリーンイノベーションに向けて 21 世紀の課題 (2001 年頃の提案 ) 人口 食糧 エネルギー

More information

untitled

untitled 謝辞 本報告で 出 等の表示のない部分の資料は 筆者が東芝在籍中に外部発表で使用した資料に基づいて再構成し 作成したものです 関係する方々に感謝の意を表します 中川コンサルティング事務所 Application fields of Power Devices 1997 2005 Evolution of high power devices in Toshiba Three waves in device

More information

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3

More information

XP233P1501TR-j.pdf

XP233P1501TR-j.pdf P-channel MOSFET -3V, -1.5A JTR114-1 特長オン抵抗 駆動電圧環境への配慮 : RDS(on)=.19Ω@VGS =-1V : -4.5V : EU RoHS 指令対応 鉛フリー 用途 スイッチング用 内部接続図 端子配列 SOT-23(TO-236) Drain Gate Source 製品名 PRODUCT NAME PACKAGE ORDER UNIT * SOT-23(TO-236)

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション CIGS 太陽電池の研究開発 太陽光発電研究センター 化合物薄膜チーム 柴田肇 1 太陽電池の分類 シリコン系 結晶系 薄膜系 単結晶 多結晶 太陽電池 化合物系 有機系 単結晶系 GaAs InP 系多結晶系 CIGS, CZTS, CdTe 色素増感太陽電池有機薄膜 CIGS = CuIn 1-x Ga x Se 2 CZTS = Cu 2 ZnSnS 4-x Se x 化合物薄膜太陽電池 2

More information

スライド 1

スライド 1 パワーデバイスの故障解析 あらゆるサイズ 形状のダイオード MOS FET IGBT 等のパワーデバイスに対し最適な前処理を行い 裏面 IR-OBIRCH 解析や裏面発光解析により不良箇所を特定し観察いたします 解析の前処理 - 裏面研磨 - 平面研磨 各種サンプル形態に対応します Si チップサイズ :200um~15mm 角 ヒートシンク チップ封止樹脂パッケージ状態の裏面研磨 開封済みチップの裏面研磨

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp) LMV851,LMV852,LMV854 LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifiers Literature Number: JAJSAM3 LMV851/LMV852/LMV854 8MHz CMOS EMI LMV851/LMV852/LMV854 CMOS IC 40 125 LMV851/

More information

三菱パワーデバイス HVIC

三菱パワーデバイス HVIC 三菱パワーデバイス HVIC HVIC Innovative Power Devices for a Sustainable Future マイコンなどの入力信号で直接ゲート駆動が可能各種の保護機能内蔵で機器の信頼性向上に貢献する三菱電機 HVIC HVIC(High Voltage IC) は パルストランスやフォトカプラを用いたパワー MOSFETやIGBTのゲート駆動に代わり マイコンなどの入力信号で直接ゲートを駆動する高耐圧

More information

PS5042 Through-hole Phototransistor/Right Angle Type 特長 パッケージ 製品の特長 サイドビュータイプ 無色透明樹脂 光電流 : 1.4mA TYP. (V CE =5V,Ee=1mW/cm 2 ) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク感

PS5042 Through-hole Phototransistor/Right Angle Type 特長 パッケージ 製品の特長 サイドビュータイプ 無色透明樹脂 光電流 : 1.4mA TYP. (V CE =5V,Ee=1mW/cm 2 ) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク感 特長 パッケージ 製品の特長 サイドビュータイプ 無色透明樹脂 光電流 : 1.4mA TYP. (V CE =5V,Ee=1mW/cm 2 ) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク感度波長指向半値角素子材質はんだ付け方法 ESD 出荷形態 880nm 76 deg. Si 半田ディップ マニュアルはんだ実装工程に対応 はんだ付けについては はんだ付け条件をご参照ください 2kV (HBM

More information

過電流保護用/突入電流抑制用/過熱検知用"ポジスタ"

過電流保護用/突入電流抑制用/過熱検知用ポジスタ r rr r r! r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r 9 8 7 9 8 7 6 5 4 6 5 4 3 3-3 4 5 6-3 4 5 6 4 8 6 4 8 6 4-3

More information

XP231P0201TR-j.pdf

XP231P0201TR-j.pdf Pchannel MOSFET 3V,.2A JTR11381 特長オン抵抗 駆動電圧環境への配慮 : RDS(on)=5Ω@VGS =4.5V : 2.5V : EU RoHS 指令対応 鉛フリー 用途 スイッチング用 内部接続図 端子配列 SOT23(TO236) Drain Gate Source 製品名 PRODUCT NAME PACKAGE ORDER UNIT * SOT23(TO236)

More information

Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構)

Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface  (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構) 2014/03/19 応用物理学会 2014 年春季学術講演会 コンダクタンス法による AlGaN/GaN ヘテロ 接合界面トラップに関する研究 Investigation on interface traps in AlGaN/GaN heterojunction by conductance method 劉璞誠 1, 竇春萌 2, 角嶋邦之 2, 片岡好則 2, 西山彰 2, 杉井信之 2,

More information

SiC JFET による高速スイッチング電源

SiC JFET による高速スイッチング電源 エレクトロニクス S i C J F E T による高速スイッチング電源 初 川 聡 * 築 野 孝 藤 川 一 洋 志 賀 信 夫 ウリントヤ 和 田 和 千 大 平 孝 High-Speed Switching Power Supply Using SiC RESURF JFETs by Satoshi Hatsukawa, Takashi Tsuno, Kazuhiro Fujikawa, Nobuo

More information

LM35 高精度・摂氏直読温度センサIC

LM35 高精度・摂氏直読温度センサIC Precision Centigrade Temperature Sensors Literature Number: JAJSB56 IC A IC D IC IC ( ) IC ( K) 1/4 55 150 3/4 60 A 0.1 55 150 C 40 110 ( 10 ) TO-46 C CA D TO-92 C IC CA IC 19831026 24120 11800 ds005516

More information

動化 V ns 9)10) Grezaud 15ns 10) DC VSC (Voltage Source Converter) SiC HEV SiC-MOSFET FWD SiC-SBD SiC-MOSFET FET DENSO TECHNICAL REVIEW Vol 電 FW

動化 V ns 9)10) Grezaud 15ns 10) DC VSC (Voltage Source Converter) SiC HEV SiC-MOSFET FWD SiC-SBD SiC-MOSFET FET DENSO TECHNICAL REVIEW Vol 電 FW デッドタイム制御機能内蔵 * SiC MOSFET 用ゲートドライバの開発 Development of the Dead Time Controlled Gate Driver for SiC MOSFET 丹羽章雅 Akimasa NIWA 今澤孝則 Takanori IMAZAWA 山本昌弘 Masahiro YAMAMOTO 笹谷卓也 Takanari SASAYA 磯部高範 Takanori

More information

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ µ µ LT1398/LT1399 V IN A R G 00Ω CHANNEL A SELECT EN A R F 3Ω B C 97.6Ω CABLE V IN B R G 00Ω EN B R F 3Ω 97.6Ω V OUT OUTPUT (00mV/DIV) EN C V IN C 97.6Ω R G 00Ω R F 3Ω 1399 TA01 R F = R G = 30Ω f = 30MHz

More information

NJG1815K75 SPDT スイッチ GaAs MMIC 概要 NJG1815K75 は無線 LAN システムに最適な 1 ビットコントロール SPDT スイッチです 本製品は 1.8V の低切替電圧に対応し 高帯域 6GHz での低損入損失と高アイソレーション特性を特長とします また 保護素子

NJG1815K75 SPDT スイッチ GaAs MMIC 概要 NJG1815K75 は無線 LAN システムに最適な 1 ビットコントロール SPDT スイッチです 本製品は 1.8V の低切替電圧に対応し 高帯域 6GHz での低損入損失と高アイソレーション特性を特長とします また 保護素子 SPDT スイッチ GaAs MMIC 概要 は無線 LAN システムに最適な 1 ビットコントロール SPDT スイッチです 本製品は 1. の低切替電圧に対応し 高帯域 6GHz での低損入損失と高アイソレーション特性を特長とします また 保護素子を内蔵することにより高い ESD 耐圧を有します は RF ポートの DC カットキャパシタを内蔵しています また 超小型 薄型 DFN6-75 パッケージの採用により実装面積の削減に貢献します

More information

01 23A1-W-0012.indd

01 23A1-W-0012.indd Electrical Equipment for High Speed Rolling Stock 23A1-W-0012 1 Fuji Electric produces electrical equipment for Shinkansen (bullet) trains, contributing to the famously safe, high-speed operation of Shinkansen

More information

Microsoft PowerPoint - 集積回路工学(5)_ pptm

Microsoft PowerPoint - 集積回路工学(5)_ pptm 集積回路工学 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 2009/0/4 集積回路工学 A.Matuzawa (5MOS 論理回路の電気特性とスケーリング則 資料は松澤研のホームページ htt://c.e.titech.ac.j にあります 2009/0/4 集積回路工学 A.Matuzawa 2 インバータ回路 このようなインバータ回路をシミュレーションした 2009/0/4 集積回路工学

More information

DSP用いたスイッチング電源回路 軽負荷場合の効率向上手法の検討

DSP用いたスイッチング電源回路 軽負荷場合の効率向上手法の検討 第 56 回システム LSI 合同ゼミ Gunma-Univ. Kobayashi Lab 2014 年 1 月 18 日 ( 土 ) 於早稲田大学 DSP を用いたスイッチング電源回路 軽負荷場合の効率向上手法の検討 群馬大学 工学研究科電気電子専攻 靳光磊 ( ジンコウライ ) 1 OUTLINE 研究背景 目的 電源効率劣化の原因 研究方法 BLPFC AC/DC 変換回路部の検討 リンク電圧最適可変

More information

圧電型加速度センサ Piezoelectric Acceleration sensor 特長 Features 圧電素子に圧電型セラミックを用いた加速度センサは 小型堅牢 高感度で広帯域を特長としております 従って 低い周波数の振動加速度から衝突の様な高い加速度の測定まで 各分野で 幅広く使用されて

圧電型加速度センサ Piezoelectric Acceleration sensor 特長 Features 圧電素子に圧電型セラミックを用いた加速度センサは 小型堅牢 高感度で広帯域を特長としております 従って 低い周波数の振動加速度から衝突の様な高い加速度の測定まで 各分野で 幅広く使用されて 圧電型加速度センサ 小型タイプ φ3.5 5.85 2.5(H)mm 加速度 MAX100,000m/s 2 高温タイプ MAX250 小型 3 軸タイプ 8 7 5.5(H)mm Super miniature type φ3.5 5.85 2.5(H)mm 100,000m/s 2 High temperature resistance type MAX250 and Triaxial type

More information

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10 端子正定電圧電源 概要 は Io=mA の 端子正定電圧電源です 既存の NJM78L と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および.V の出力電圧もラインアップしました 外形図 特長 出力電流 ma max. 出力電圧精度 V O ±.% 高リップルリジェクション セラミックコンデンサ対応 過電流保護機能内蔵 サーマルシャットダウン回路内蔵 電圧ランク V,.V,

More information

この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスであ

この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスであ この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスである 量子効果 ナノデバイスとその応用について学ぶ 2 年 量子力学 1,2 電子物性工学 1 半導体デバイス

More information

Microsoft PowerPoint - pp601-1.ppt

Microsoft PowerPoint - pp601-1.ppt 特長 パッケージ 製品の特長 ダブルエンドタイプ 黒色可視光カット樹脂 光電流 : 4.8μA TYP. (V R =5V,Ee=0.5mW/cm 2 ) 可視光カット樹脂 (700nm 以下カット品 ) 鉛フリー製品 RoHS 対応 ピーク感度波長指向半値角素子材質はんだ付け方法 ESD 出荷形態 950nm 130 deg. Si 半田ディップ マニュアルはんだ実装工程に対応 はんだ付けについては

More information

IGBT モジュール「V シリーズ」の系列化

IGBT モジュール「V シリーズ」の系列化 特集IGBT モジュール V シリーズ の系列化 New Lineup of V-Series IGBT Modules 高橋孝太 Kouta Takahashi 吉渡新一 Shinichi Yoshiwatari 関野裕介 Yusuke Sekino 富士電機では, 最新世代の Ⅴシリーズ IGBT を用いた製品の系列化を進めている Ⅴシリーズ IGBT モジュールは, チップ損失の低減とパッケージ放熱性の改善により,IGBT

More information

<6D31335F819A A8817A89C896DA93C782DD91D682A6955C816991E58A A CF8D588CE3817A C8B8F82B382F1817A7

<6D31335F819A A8817A89C896DA93C782DD91D682A6955C816991E58A A CF8D588CE3817A C8B8F82B382F1817A7 電気電子工学専攻 54001 電磁波特論 2-0-0 電気電子コース EEE.S401 電気電子工学専攻 54002 無線通信工学 2-0-0 電気電子コース EEE.S451 Advanced Electromagnetic Waves ( 電磁波特論 ) Wireless Communication Engineering ( 無線通信工学 ) 旧電磁波特論あるいは旧 Advanced Electromagnetic

More information

低炭素社会にむけたグリーンエレクトロニクスの役割

低炭素社会にむけたグリーンエレクトロニクスの役割 2030 年低炭素社会にむけたグリー ンエレクトロニクスの役割と課題 ( 独 ) 産業技術総合研究所 大橋弘通 NEDO フォーラム資料 (2009 年 12 月 4 日 ) アジェンダ 技術背景と導入促進へのアプローチ グリーンエレクトロニクスの応用技術 グリーンエレクトロニクスのシーズ技術 海外の動向と課題 2007 年度 2008 年度 NEDO 調査ベース 2050 年における省エネルギー社会の実現に向けたグリーンエレクトロニクス技術

More information

Figure 1. Center and Edge comparison of a HEMT epi measured by PCOR-SIMS SM 図 1 は直径 150mm の Si ウェハ上に成長させた GaN HEMT 構造全体の PCOR-SIMS による深さプ ロファイルを示しています

Figure 1. Center and Edge comparison of a HEMT epi measured by PCOR-SIMS SM 図 1 は直径 150mm の Si ウェハ上に成長させた GaN HEMT 構造全体の PCOR-SIMS による深さプ ロファイルを示しています PCOR-SIMS による Si 基板上 GaN HEMT エピ構造の解析 Temel H. Buyuklimanli (temel@eag.com), Charles W. Magee, Ozgur Celik, Wei Ou, Andrew Klump, Wei Zhao, Yun Qi and Jeffrey Serfass 810 Kifer Road, Sunnyvale, CA 94086

More information

Microsoft Word - プレリリース参考資料_ver8青柳(最終版)

Microsoft Word - プレリリース参考資料_ver8青柳(最終版) 別紙 : 参考資料 従来の深紫外 LED に比べ 1/5 以下の低コストでの製造を可能に 新縦型深紫外 LED Ref-V DUV LED の開発に成功 立命館大学総合科学技術研究機構の黒瀬範子研究員並びに青柳克信上席研究員は従来 の 1/5 以下のコストで製造を可能にする新しいタイプの縦型深紫外 LED(Ref-V DUV LED) の開発に成功した 1. コスト1/5 以下の深紫外 LED 1)

More information

untitled

untitled 1.0 1. Display Format 8*2 Character 2. Power Supply 3.3V 3. Overall Module Size 30.0mm(W) x 19.5mm(H) x max 5.5mm(D) 4. Viewing Aera(W*H) 27.0mm(W) x 10.5mm(H) 5. Dot Size (W*H) 0.45mm(W) x 0.50mm(H) 6.

More information

USER'S GUIDE

USER'S GUIDE AC/DC Converter 非絶縁降圧型 PWM 方式 2W -12V 出 BM2P129TF 評価ボード 評価ボードは 90Vac 264Vacの から-12Vの負電圧を出 します 出 電流は最 0.167Aを供給します 650V MOSFET 内蔵 PWM 方式 DC/DCコンバータICのBM2P129TFを使用しています BM2P129TFは 650V 耐圧起動回路内蔵により 低消費電 に貢献します

More information

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4 68W

More information

事務連絡

事務連絡 二酸化炭素排出抑制に資する革新的技術の創出 平成 21 年度採択研究代表者 H23 年度 実績報告 橋詰保 北海道大学量子集積エレクトロニクス研究センター 教授 研究課題 異種接合 GaN 横型トランジスタのインバータ展開 1. 研究実施体制 (1) 北大 グループ 1 研究代表者 : 橋詰保 ( 北海道大学量子集積エレクトロニクス研究センター 教授 ) 2 研究項目 ドライエッチ面を含む Al 2

More information

BD9328EFJ-LB_Application Information : パワーマネジメント

BD9328EFJ-LB_Application Information : パワーマネジメント DC/DC Converter Application Information IC Product Name BD9328EFJ-LB Topology Buck (Step-Down) Switching Regulator Type Non-Isolation Input Output 1 4.2V to 18V 1.0V, 2.0A 2 4.2V to 18V 1.2V, 2.0A 3 4.2V

More information

降圧コンバータIC のスナバ回路 : パワーマネジメント

降圧コンバータIC のスナバ回路 : パワーマネジメント スイッチングレギュレータシリーズ 降圧コンバータ IC では スイッチノードで多くの高周波ノイズが発生します これらの高調波ノイズを除去する手段の一つとしてスナバ回路があります このアプリケーションノートでは RC スナバ回路の設定方法について説明しています RC スナバ回路 スイッチングの 1 サイクルで合計 の損失が抵抗で発生し スイッチングの回数だけ損失が発生するので 発生する損失は となります

More information

博士学位論文 4H-SiC バイポーラデバイスにおける 結晶欠陥と電気特性の関係に関する研究 中山浩二 2013 年 1 月 大阪大学大学院工学研究科

博士学位論文 4H-SiC バイポーラデバイスにおける 結晶欠陥と電気特性の関係に関する研究 中山浩二 2013 年 1 月 大阪大学大学院工学研究科 Title Author(s) 4H-SiC バイポーラデバイスにおける結晶欠陥と電気特性の関係に関する研究 中山, 浩二 Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/25962 DOI rights 博士学位論文 4H-SiC バイポーラデバイスにおける 結晶欠陥と電気特性の関係に関する研究 中山浩二 2013

More information

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています なお 本製品の評価キットを用意しています 詳細については 当社 営業までお問い合わせください 特長 高速応答 増倍率 2 段階切替機能 (Low ゲイン : シングル出力, High

More information

LM837 Low Noise Quad Operational Amplifier (jp)

LM837 Low Noise Quad Operational Amplifier (jp) Low Noise Quad Operational Amplifier Literature Number: JAJSBB7 600 Low Noise Quad Operational Amplifier 2000 8 Converted to nat2000 DTD ds009047tl/h/9047 33020 19860602 10 V/ s ( ); 8 V/ s ( ) 25 MHz

More information

スライド 1

スライド 1 High-k & Selete 1 2 * * NEC * # * # # 3 4 10 Si/Diamond, Si/SiC, Si/AlOx, Si Si,,, CN SoC, 2007 2010 2013 2016 2019 Materials Selection CZ Defectengineered SOI: Bonded, SIMOX, SOI Emerging Materials Various

More information

研究の背景 世界のエネルギー消費量は年々増加傾向にあり, 地球規模のエネルギー不足が懸念さ れています このため, 発電により生み出したエネルギー ( 電力 ) の利用の更なる高効 率化が求められており, その鍵は電力制御を担っているパワーデバイス ( 6) が握っ ています 現在主流である Si(

研究の背景 世界のエネルギー消費量は年々増加傾向にあり, 地球規模のエネルギー不足が懸念さ れています このため, 発電により生み出したエネルギー ( 電力 ) の利用の更なる高効 率化が求められており, その鍵は電力制御を担っているパワーデバイス ( 6) が握っ ています 現在主流である Si( News Release 平成 30 年 4 月 27 日 各報道機関文教担当記者 殿 水蒸気とニッケルを用いた非プラズマプロセスによるダイヤモンドの高速 異方性エッチング技術を開発 金沢大学理工研究域電子情報通信学系の德田規夫准教授, 大学院自然科学研究科電子情報科学専攻博士後期課程の長井雅嗣氏らの研究グループ ( 薄膜電子工学研究室 ) は, 国立研究開発法人産業技術総合研究所先進パワーエレクトロニクス研究センターダイヤモンドデバイスチームの牧野俊晴研究チーム長,

More information