Size: px
Start display at page:

Download ""

Transcription

1

2 n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i

3 ,. ii

4 iii

5 Ω Ω F F σ (i) (ii) (iii) Ω F Λ F Λ { F Λ i F, i = 1,,... Λ i F F 1.1 ( ) F Ω ( ) Λ 1, Λ F, Λ 1 Λ F 1. C Ω C σ C σ σ(c) 1.3 Ω n R n C Ω σ(c) n B n B n n 1.4 C 1 { (, r] ; r }, C { (a, b] ; a < b < } σ(c i ) = B 1, i = 1, 1.5 ξ Ω n. C { } ξ 1 (A) ; A B n C σ ξ σ σ(ξ) 1.6 Ω σ F (Ω, F ), F Ω F 1

6 1. { n 1.7 (Ω i, F i ), i = 1,..., n C ; Λ i F i, i = 1,..., n Λ i } n Ω i { (ω 1,..., ω n ) ; ω i Ω i, i = 1,..., n } σ σ(c) F i, i = n ( n n ) 1,..., n σ F i Ω i, F i (Ω i, F i ), i = 1,..., n 1.8 (Ω, F ) F P P F (i) Λ F P (Λ) 0 (ii) P (Ω) = 1 (iii) Λ i F, i = 1,,... ( ) P Λ i = P (Λ i ) (σ ) P 1.8 ( ) P Λ F P (Λ) P (Λ) < P P σ Λ i F ( ) 1.9 (Ω, F ) P F (Ω, F, P ) Λ F P (Λ) Λ Λ 1.10 C Ω Q C (i) A C Q(A) 0 (ii) Q(Ω) = 1 (iii) A i C, i = 1,,... ( ) A i C Q A i = Q(A i )

7 1. 3 Q σ(c) σ(c) P A C P (A) = Q(A) A B (A \ B) (B \ A) A B A B 1.11 (Ω, F, P ) C F C Λ σ(c) A n C, n = 1,, lim P (Λ A n) = 0 σ(c) C n (Ω i, F i, P i ), i = 1,..., n Ω Ω i { n B Λ i ; Λ i F i, i = 1,..., n } C B n n C σ(c) = F i F F i ( n ) Q Q Λ i = A = l j=1 n P i (Λ i ) C n l n Λ (j) i Q(A) = P i (Λ (j) i ) j=1 A Q(A) A Q Q n F P P P 1,..., P n P = P i (Ω, F, P ) (Ω i, F i, P i ), i = 1,..., n 1. (Ω, F ) 1.1 Ω X A B 1 X 1 (A) = { ω Ω ; X(ω) A } F X F F

8 1. 4 X + + X 1.1 X 1 { } X 1 {} F X F 1.13 X F r X 1 ( (, r ] ) F R n B n n 1.14 R n g n 1.15 X i, i = 1,..., n Ω F g n Y (ω) g(x 1 (ω),..., X n (ω)) F 1.16 X n, n = 1,,... Ω F inf X n, sup X n, lim lim X n Ω Ω F lim X n(ω) R 1 ω F Ω X F Λ i, i = 1,..., n a i R 1, i = 1,..., n X(ω) = a i I Λi (ω) X I ω Λ I Λ (ω) = 1, n n X n, ω / Λ I Λ (ω) = Ω F X (Ω, F, P ) F X X F A B 1 X 1 (A) F P (X 1 (A)) X A P (X A) 1.18 B 1 µ µ = P X 1, µ(a) = P (X A), A B 1 µ B 1

9 1. 5 X Ω R 1 X P µ (Ω, F, P ) (R 1, B 1, µ) µ X F (x) µ( (, x] ) = P (X x) R 1 F X µ 1.0 R 1 F F (i) x y F (x) F (y) (ii) x c F (x) F (c) (iii) lim F (x) = 1, x lim F (x) = 0 x ( ) ( ) R 1 F ( ) ( ) X X F F 1.1 δ {a} a R 1 X µ X δ {a} µ(a) = P (X = a) = 1 X a 1 1. Φ(λ, u) λ > 0 u 0 X µ k {0} N X λ u Φ(λ, u) λ λk µ(ku) = P (X = ku) = e k! 1.3 N(m, v) < m < v > 0 X µ A B 1 X m v

10 1. 6 N(m, v) µ(a) = P (X A) 1 = e (x m) /v dx πv A m = 0 v = 1 X N(0, 1) (Ω, F, P ) X f Λ F P (X Λ) = f(x) dx f P X i, i = 1,..., n (Ω, F, P ) Ω n X(ω) = (X 1 (ω),..., X n (ω)) n 1.4 X n B n µ µ = P X 1 Λ µ(a) = P (X A), A B n µ B n µ X X 1,..., X n F (x 1,..., x n ) µ( (, x 1 ] (, x n ] ) = P (X 1 x 1,..., X n x n ) R n F X µ 1.6 n X X P (X A) = P ( X A), A B n (Ω, F, P ) A i F, i = 1,..., n A 1,..., A n ( n ) P A i = n P (A i )

11 1. 7 X i, i = 1,..., n (Ω, F, P ) k i 1.8 A i B ki, i = 1,..., n P (X 1 A 1,..., X n A n ) = n P (X i A i ) X 1,..., X n 1.9 n X 1,..., X n X i, i = 1,,... σ 1.30 F C i, i = 1,..., n Λ i C i, i = 1,..., n ( n ) P Λ i = n P (Λ i ) C 1,..., C n n C 1,..., C n F C i, i = 1,, X i, i = 1,..., n σ(x i ), i = 1,..., n ( 1.3 C i, i = 1,,... J 1,..., J p ) σ, l = 1,..., p j J l C j ( k ) ( ) 1.33 C i, i = 1,,... σ C j σ C j j=1 j=k+1 lim X n(ω) R 1 ω 1.16 F ω X(ω) = lim X n (ω), ω / X(ω) = 0 X F 1.34 P ( ) = 1 X n X 1 ω X(ω) = lim X n (ω) X n X X n X a.e.

12 1. 8 X n (ω), n = 1,,... = p=1 N=1 n,m N { ω Ω ; X n (ω) X m (ω) < 1 p P ( ) = 1 } 1.35 X n ε > 0 lim P ( ω Ω ; N n, m X n(ω) X m (ω) < ε ) = 1 N X n X ε > 0 lim P ( ω Ω ; n m X m(ω) X(ω) < ε ) = (Ω, F, P ) X X(ω) P (dω) < Ω X 1.37 (Ω, F, P ) X EX X(ω)P (dω) Ω EX X EX E[X] E(X) Λ F X(ω)P (dω) X(ω)I Λ (ω)p (dω) Λ E(X ; Λ) Ω E(X ; Λ) E[XI Λ ], Λ F

13 X Y (Ω, F, P ) (i) X Y a, b R 1 E(aX + by ) = aex + bey ( ) (ii) X Y a.e. EX EY (iii) EX E X ( ) (iv) X n, n = 1,, X n X a.e. EX n EX X (Ω, F, P ) n g n 1.15 g(x) Ω Eg(X) X P X µ g(x) µ 1.39 µ X n g Eg(X) Eg(X) Eg(X) = g(x 1,..., x n )µ(dx 1 dx n ) (1.1) (R n, B n, µ) Ẽ (1.1) Ẽg 1.40 X EX k X k E X k X k V (X) E[(X EX) ] X 1.41 δ {a} EX = a, V (X) = Φ(λ, u) EX = V (X) = uke λ k=0 λk k! = uλ (uk uλ) e λ k=0 λk k! = u λ

14 N(m, v) EX = V (X) = x 1 πv e (x m) /v dx = m (x m) 1 e (x m) /v dx = v πv m v X 1.46 ( ),. (Ω i, F i ), i = 1, Ω Ω 1 Ω, F F 1 F Λ Ω Λ ω1 { ω Ω ; (ω 1, ω ) Λ } ω 1 Λ Ω X X ω1 (ω ) X(ω 1, ω ) Ω X ω1 ω 1 X 1.44 Λ F ω 1 Ω 1 Λ ω1 F X F ω 1 Ω 1 X ω1 F 1.45 (Ω i, F i, P i ), i = 1, (Ω, F, P ) X F X ωi (ω j )P j (dω j ), i j + F i Ω j X(ω 1, ω )P (dω 1 dω ) = P 1 (dω 1 ) X ω1 (ω )P (dω ) (1.) Ω Ω 1 Ω = P (dω ) X ω (ω 1 )P 1 (dω 1 ) (1.3) Ω Ω 1 X (Ω, F, P ) X ωi (ω j )P j (dω j ) Ω i (1.) Ω j (1.3) 1.46 X i, i = 1,..., n X i n X i [ n ] n E X i = EX i 1.47 E XY (E X p ) 1/p (E Y q ) 1/q 1 p + 1 q = 1, 1 < p <

15 lim E( X n X p ) = 0 X n X p p = 1 X n X 1.49 X n, n = 1,,... lim sup X n (ω) P (dω) = 0 a n {ω ; X n (ω) a} a E( X n ; X n (ω) a) n X n, n = 1,,... X n X a.e. lim E( X n X ) = Y X n Y a.e., n = 1,,... X n X a.e. lim E( X n X ) = 0

16 (R n ).1 (Ω, F, P ) Z Z ReZ ImZ Z Z EZ EZ = E[ReZ] + ie[imz].1 X n µ X R n ϕ ϕ(t) Ee i(t,x) = ( exp i t k x k )µ(dx 1 dx n ), t = (t 1,..., t n ) k=1 ϕ X µ (t, X) e i(t,x) e i(t,x) 1 µ f ϕ ϕ(t) = ( exp i t k x k )f(x 1,..., x n ) dx 1 dx n k=1 ϕ f X Y X 1.6 X X. n X ϕ X ϕ X 1

17 . 13 (i) ϕ X (0) = 1 ϕ X (t) 1 ϕ X ( t) = ϕ X (t) (ii) ϕ X (t + h) ϕ X (t) ϕ X (h) ϕ X (0) (iii) ϕ X R n n 1 n = 1 ( ) ϕ X (t + h) ϕ X (t) = Ee i(t+h)x Ee itx = E[e itx (e ihx 1)] (E e ihx 1 ) (E e ihx 1 ) E[ e ihx 1 ] = E[(cos(hX) 1) + sin (hx)] = E(1 cos(hx)) = Re (ϕ X (0) ϕ X (h)) ϕ X (0) ϕ X (h) ϕ X (t + h) ϕ X (t) ϕ X (h) ϕ X (0) ( ) ϕ X (h) ϕ X (0) = ϕ X (0) ϕ X (h) = E(1 e ihx ) E 1 e ihx 1 e ihx lim 1 e ihx = 0 h 0 lim E 1 h 0 eihx = 0 ( ) ε > 0 δ > 0 h < δ ϕ X (t + h) ϕ X (t) < ε ϕ X R 1 n n 1 n = 1.3 X i, i = 1,..., n n X X i X n ϕ X (t) = ϕ Xi (t), t = (t 1,..., t n ) (.1)

18 . 14 n n = ϕ X (t) = E[e it(x 1+X ) ] = E[cos(tX 1 + tx ) + i sin(tx 1 + tx )] = E[cos tx 1 cos tx sin tx 1 sin tx ] + ie[sin tx 1 cos tx + cos tx 1 sin tx ] = E[cos tx 1 cos tx ] E[sin tx 1 sin tx ] + ie[sin tx 1 cos tx ] + ie[cos tx 1 sin tx ] (.) (.) 1.46 ϕ X (t) = E[cos tx 1 ]E[cos tx ] E[sin tx 1 ]E[sin tx ] = E[cos tx 1 ](E[cos tx ] + ie[sin tx ]) = E[e itx 1 ]E[e itx ] + ie[sin tx 1 ]E[cos tx ] + ie[cos tx 1 ]E[sin tx ] + ie[sin tx 1 ](E[cos tx ] + ie[sin tx ]) n = n n + 1 X X n X n+1 ϕ X (t) = Ee it(x 1+ +X n +X n+1 ) = E[e it(x 1+ +X n ) e itx n+1 ] = E[e it(x 1+ +X n ) ]E[e itx n+1 ] ( n ) = ϕ Xi (t) ϕ Xn+1 (t) = n+1 ϕ Xi (t) X 1,..., X n X (.1).4 δ {a} ϕ(t) = e ita.5 Φ(λ, u) ϕ(t) = k=0 e ituk e λ λ k k! = exp{λ(e itu 1)}

19 N(m, v) ϕ(t) = e itx 1 πv e (x m) /v dx = e itm vt / f ˆf ˆf f.7 n X µ ϕ n A = (a i, b i ) µ( A) = 0 µ(a) = ( 1 ) n lim π T T T T T n e it ka k e it k b k k=1 it k ϕ(t 1,..., t n ) dt 1 dt n (.3) n n A A A = [a i, b i ] (a i, b i ) 0 sin t t [0, T ] T T 0 sin t t dt = = T dt = π ( 0 0 T J e tu sin t dt 0 J = [ e tu cos t ] T 0 0 T u 0 0 ) e tu du sin t dt (.4) e tu sin t dt du (.5) e tu cos t dt [ = 1 e T u cos T + ue tu sin t J = 1 u + 1 e T u u + 1 T sin t dt = 0 t cos T + u sin T u + 1 ] T = 1 e T u cos T ue T u sin T u J 0 0 T u e tu sin t dt 0 (cos T + u sin T ) (.5) 1 u + 1 du u e T u (cos T + u sin T ) du u + 1 u e T u du = T

20 sin t t dt = T lim T 0 sin t t dt = 0 1 [ u + 1 du = tan 1 u ] 0 = π (.4) 0 sin xt t dt = π, x > 0 0, x = 0 π (.6), x < 0 (.3) T T e ita e itb it ϕ(t) dt = T T e ita e itb it ( ) e itx µ(dx) dt (.7) e ita e itb it e itx e ita e itb it e it(a b) e itb e itb T it (e it(a b) 1) e itb it e it(a b) 1 it a b e ita e itb e itx eit(x a) e it(x b) dt µ(dx) < it T it (.7) T T e ita e itb it ϕ(t) dt = T T e it(x a) e it(x b) it dt µ(dx) (.8) T J(T, x, a, b) T e it(x a) e it(x b) it dt T J(T, x, a, b) = 0 sin (x a)t t T dt 0 sin (x b)t t dt (.9) (.6) lim J(T, x, a, b) = T 0, x < a b < x π, π, x = a x = b a < x < b

21 . 17 (.9) (.6) sup J(T, x, a, b) < x,t lim J(T, x, a, b) µ(dx) = T lim J(T, x, a, b)i A(x) µ(dx) T + lim J(T, x, a, b)i A(x) µ(dx) T µ( A) = 0 0 lim T J(T, x, a, b) µ(dx) = (π) µ(a) (.8) (.3).8 n X Y µ X µ Y ϕ X ϕ Y ϕ X = ϕ Y µ X = µ Y C µ X ( A) + µ Y ( A) = 0 A = (, a] µ X ({a}) + µ Y ({a}) > 0 a { a ; µ X ({a}) > 0 } = n N { a ; µ X({a}) > 1/n } { a ; µ X ({a}) > 1/n } a n { a ; µ X ({a}) > 0 } a µ X ({a}) + µ Y ({a}) > 0 a B = (, b] A m C, m = 1,,... µ X (B) = lim m µ X(A m ), µ Y (B) = lim m µ Y (A m ) ϕ X = ϕ Y µ X (A m ) = µ Y (A m ), m = 1,, µ X (B) = µ Y (B) B X Y µ X = µ Y.

22 . 18. µ, µ k, k = 1,,... R n.9 g k g(x 1,..., x n )µ k (dx 1 dx n ) g(x 1,..., x n )µ(dx 1 dx n ) (.10) µ k µ µ k µ k.10 (i) µ k µ (ii) (iii) (iv) (v) Γ R n lim µ k(γ) µ(γ) k G R n lim µ k (G) µ(g) k µ( A) = 0 A B n lim µ k(a) = µ(a) k F F k µ µ k (vi) F x lim F k(x) = F (x) k f lim k f(x 1,..., x n )µ k (dx 1 dx n ) = f(x 1,..., x n )µ(dx 1 dx n ) ( ) ) : Γ R 1 ρ(x, Γ) inf{ x y ; y Γ } ( 1 ) j h j (x) hj (x) I Γ (x) 1 + ρ(x, Γ) h j (x) I Γ (x), x R 1 h j, j = 1,,... lim k h j (x)µ k (dx) µ k (Γ) h j (x)µ k (dx) lim k µ k (Γ)

23 . 19 lim b j k h j (x)µ k (dx) {b j } j lim j b j lim k µ k (Γ) ( ) lim b j = lim j = j µ(γ) lim µ k (Γ) k h j (x)µ(dx) I Γ (x)µ(dx) = µ(γ) ( ) ( ) ( )( ) ( ) : A B 1 A i A Ā A A i A Ā Ai Ā ( )( ) µ(a i ) lim µ k (A i ) lim µ k (A) lim µ k (A) lim µ k (Ā) µ(ā) (.11) Ā = A i ( A) µ( A) = 0 µ(ā) µ(ai ) + µ( A) = µ(a i ) (.1) (.11) (.1) µ(ā) = µ(ai ) (.11) lim µ k(a) = µ(a) k ( ) ( ) : x F A (, x] A i = (, x) µ( A) = µ(a) µ(a i ) = F (x) lim y x F (y) = 0 A ( ) F (x) = µ(a) = lim k µ k (A) = lim k F k (x) ( ) ( ) ( ) : f ε > 0 f f sup x R 1 f(x) f(x) < ε (.13) f f K M > 0 K [ M, M] f [ M, M]

24 . 0 ε > 0 δ > 0 x, y [ M, M] x y < δ f(x) f(y) < ε (.14) l j a j b j < δ/ Λ j = (a j, b j ] Λ j Λ j = [ M, M] α j f(b j ) f j=1 f(x) l α j I Λj (x) j=1 (.14) f(x) f(x) = < ε l f(x) f(b j ) I Λj (x) j=1 l I Λj (x) j=1 = ε I [ M,M] (x) ε (.13) f F R 1 Λ j F F x A(x) (, x] A(x) B B { x ; µ( A(x)) > 0 } B = { x ; µ( A(x)) > 1/n } n=1 { x ; µ( A(x)) > 1/n } x n B B { R 1 F R 1 Λ j F F R 1 Λ j F Λ j F µ(λ j ) = µ((, b j ]) µ((, a j ]) = F (b j ) F (a j ) = lim k {F k (b j ) F k (a j )} = lim k µ k (Λ j )

25 . 1 f(x)µ(dx) = l α j µ(λ j ) j=1 = lim k l j=1 α j µ k (Λ j ) = lim k f(x)µ k (dx) (.15) (.13) (.15) ε > 0 k 0 k k 0 f(x)µ(dx) f(x)µ k (dx) f(x)µ(dx) f(x)µ(dx) + f(x)µ(dx) f(x)µ k (dx) + f(x)µ k (dx) f(x)µ k (dx) < 3ε ( ) ( ) ( ) : a > 0 J a [ a, a] J a 1 J { a+1 0 [0, 1] f a µ ε > 0 a, ( ) µ(j a ) I Ja (x)µ(dx) 1 µ(j a ) < ε (.16) = lim f a (x)µ(dx) k lim k lim k f a (x)µ k (dx) I Ja+1 (x)µ k (dx) µ k (J a+1 ) = lim inf k n µ k(j a+1 ) n 0 k n 0 1 µ k (J a+1 ) < ε (.17) ε > 0 a = a(ε) g gf a g(x) = g(x)f a (x) + g(x)(1 f a (x)) g(x)f a (x) + g (1 f a (x)) g(x)µ(dx) g(x)µ k (dx) g(x)f a (x)µ(dx) g(x)f a (x)µ k (dx) { } + g (1 f a (x))µ(dx) + (1 f a (x))µ k (dx)

26 . (.16) (.17) k n 0 (1 f a (x))µ(dx) + (1 f a (x))µ k (dx) 1 µ(j a ) + 1 µ k (J a+1 ) < ε ( ) ε > 0 k 0 k k 0 g(x)f a (x)µ(dx) g(x)f a (x)µ k (dx) < ε j max(n 0, k 0 ) k j g(x)µ(dx) g(x)µ k (dx) < ε + ε g µ k µ.11 M R n M ε > 0 R n Γ µ M µ(γ) > 1 ε (.18) ( ) : M ε > 0 Γ µ(γ) 1 ε µ µ Γ M Γ l [ l, l] µ l µ Γl µ l, l = 1,,... µ lj, j = 1,,... G k ( k, k) l j k j G k Γ lj l j k µ lj (G k ) µ lj (Γ lj ) 1 ε µ lj µ µ M.10 ( ) k µ(g k ) lim µ lj (G k ) 1 ε j µ(r 1 ) = lim k µ(g k ) 1 ε µ ( ) : (.18) µ k M, k = 1,,... Helly F k µ k { a j ; j = 1,,... } R 1

27 . 3 F 0 F k (a j ) 1, k = 1,,... F k a j { F k ; k = 1,,... } { F k(j, l) ; l = 1,,... } ρ F k(1, l) (a 1 ) ρ(a 1 ) { k(, l) ; l = 1,,... } { k(1, l) ; l = 1,,... } F k(, l) (a ) ρ(a ) { k(3, l) ; l = 1,,... } { k(, l) ; l = 1,,... } { k(l, l) ; l = 1,,... } m k(1, 1),, k(m 1, m 1) { k(m, l) ; l = 1,,... } F k(m, l) (a m ) ρ(a m ) F k(l, l) (a m ) ρ(a m ), m = 1,,... J x { y R 1 ; y > x } F F (x) inf ρ(a m ) a m J x a mj x a mj J x ρ(a mj ), j = 1,,... ρ(a mj ), j = 1,,... F (x) = lim j ρ(a mj ) (.19) a p J x l a p a ml ρ(a p ) ρ(a ml ) lim j ρ(a mj ) inf ρ(a m ) = F (x) a m J x a p J x F (x) = inf a p J x ρ(a p ) lim j ρ(a mj ) F (x) (.19) F h 0 a mj x a pj x + h a pj a mj a mj J x a pj J x+h, j = 1,,... F 1.0 a pj a mj 0 ρ(a pj ) ρ(a mj ) 0 lim ( ρ(a pj ) ρ(a mj ) ) j = F (x + h) F (x)

28 . 4 F F k x k c F (x k ), k = 1,,... lim F (x k) F (c) k a p J c a p J xk k ρ(a p ) inf ρ(a m ) = F (x k ) lim F (x k ) F (c) a m J xk k a p J c F (c) = inf a p J c ρ(a p ) lim k F (x k ) F (c) F (c) = lim F (x k ) F (x k ) F k (.18) ε > 0 A > 0 sup k µ k ([ A, A] c ) < ε (.0) a m < A sup F k(l, l) (a m ) ε l ρ(a m ) ε a m J x F (x) = inf ρ(a m ) ε a m J x x < A F (x) ε lim F (x) = 0 (.0) a m > A x inf F k(l, l) (a m ) > 1 ε l ρ(a m ) > 1 ε a m > x > A x a m J x F (x) = inf ρ(a m ) > 1 ε a m J x x > A F (x) > 1 ε lim F (x) = 1 F 1.0 F x F k(l, l) (x) F (x) x F ε > 0 F (x) > F (a p ) ε x a p J x a j J ap a p (.19) F (x) > ρ(a j ) ε = lim F k(l, l) (a j ) ε l lim F k(l, l) (x) ε l (.1)

29 . 5 a m a m < x F (x) < F (a m ) + ε a m < a j < x a j F (x) < ρ(a j ) + ε = lim F k(l, l) (a j ) + ε l F k(l, l) (x) + ε (.) lim l (.1) (.) x F (x) = lim F k(l, l) (x) l µ F.10 µ k(l, l) µ µ k, k = 1,,....1 µ R n M {µ k, k = 1,,... }.11 µ k µ µ k µ µ k µ g k j g(x)µ kj (dx) lim g(x)µ kj (dx) g(x)µ(dx) (.3) j.11 { µ kj ; j = 1,,... } µ kjl, l = 1,,... µ kjl µ lim l g(x)µ kjl (dx) = g(x)µ(dx) (.3) µ k µ.3.13 X k, X n µ k, µ µ k µ X k X µ k µ (.10) X k X g Eg(X k ) Eg(X)

30 . 6 X k X.14 ϕ ϕ k µ µ k µ k µ ϕ k ϕ ε > 0 δ > 0 h < δ ϕ k (t + h) ϕ k (t) < 3ε (.4) k M { µ, µ k, k = 1,,... } M µ.11 ε > 0 µ(γ) > 1 ε inf k µ k(γ) > 1 ε (.5) Γ R 1 e ihx { h ; h 1 } Γ sup e ihx 1 h ε > 0 x Γ h < δ sup e ihx 1 < ε (.6) x Γ δ > 0 (.5) (.6) k h < δ h ϕ k (t + h) ϕ k (t) = (e R i(t+h)x e itx )µ k (dx) 1 e R ihx 1 µ k (dx) 1 = e ihx 1 µ k (dx) + Γ Γ{ eihx 1 µ k (dx) < ε + µ k (Γ { ) < 3ε (.4) k ϕ ϕ(t + h) ϕ(t) < 3ε K R 1 { t 1,..., t l } K δ t K t t j < δ t j, j = 1,..., l µ k µ t R 1 ϕ k (t) ϕ(t)

31 . 7 k 0 k k 0 ϕ k (t j ) ϕ(t j ) < ε, j = 1,..., l k k 0 sup ϕ k (t) ϕ(t) t K l { ϕ k (t) ϕ k (t j ) I { t tj <δ} + ϕ k (t j ) ϕ(t j ) j=1 } + ϕ(t j ) ϕ(t) I { t tj <δ} < 7lε ε ϕ k ϕ K.15 ϕ k µ k ϕ k ϕ ϕ µ k µ ϕ µ ϕ k ϕ.16 ν R n ψ ν A > 0 ν([ 4A, 4A] n ) A n A 1 (n 1)/n A 1 (n 1)/n A 1 (n 1)/n A 1 (n 1)/n ψ(t 1,..., t n ) dt 1 dt n 1 (.7) n = 1 1 T T T ψ(t) dt = 1 T = = T T T T sin T x T x e itx ν(dx) dt 1 T eitx dt ν(dx) ν(dx) (.8) (.8) sin T x/t x 1 x > A sin T x 1 T x T x < 1 AT (.8) ν([ A, A]) + 1 AT T = A 1 (.8) ( 1 ν([ A, A]) ) A A 1 A 1 ψ(t) dt ν([ A, A]) + 1 ( 1 ν([ A, A]) ) 1 ν([ A, A]) ( ν([ 4A, 4A]) + 1 )

32 . 8 (.7) (.15) δ δ > 0 ϕ k (t) dt δ > 0 1 δ δ δ δ ϕ k (t) dt 1 δ δ δ δ δ ϕ(t) dt 1 δ ϕ(t) dt δ δ ϕ k (t) ϕ(t) dt (.9) ε > 0 k 0 k k 0 1 δ δ δ ϕ k (t) dt 1 ε (.30) ϕ(0) = lim ϕ k (0) = 1 ϕ t = 0 k ε > 0 δ > 0 t < δ ϕ(t) 1 < ε ϕ k ϕ ϕ k (t) 1 δ k 0 k k 0 1 δ δ δ ϕ k (t) ϕ(t) dt < ε (.31) δ δ δ ϕ(t) dt = δ δ δ δ ε(δ) (1 ϕ(t)) dt 1 ϕ(t) dt δ δ ϕ(t) dt δ(1 ε) (.3) (.31) (.3) (.9) (.30) ε > 0 inf k µ k ([ Ã, Ã]) > 1 4ε (.33) Ã > 0.16 (.7) n = 1 ν = µ k ψ = ϕ k A = δ 1 µ k ([ 4A, 4A]) 1 δ δ δ ϕ k (t) dt 1

33 . 9 (.30) k k 0 µ k ([ 4A, 4A]) (1 ε) 1 = 1 4ε µ j µ j ([ A j, A j ]) > 1 4ε, j = 1,,..., k 0 1 A j à max(a 1,..., A k0 1, 4A) (.33).11 µ k, k = 1,,... µ kj, j = 1,,... µ µ kj µ ϕ kj µ ϕ kj ϕ µ ϕ µ kl µ k ν µ kl ν ϕ kl ϕ ν ϕ ν = µ M {µ k, k = 1,,... }.11 µ k µ.1 µ k µ.14 ϕ k ϕ ϕ k ϕ ϕ

34 ( ) B j, j = 1,,... F σ σ k σ B j σ k k σ σ k {B j, j = 1,,... } k=1 σ k k=1 ξ j, j = 1,,... B j = σ(ξ j ), j = 1,,... {ξ j, j = 1,,... } j=k 3.1 Λ j B j, j = 1,,... lim Λ k lim Λ k ξ j 0 ω Λ { ω ; lim ξ j (ω) = 0 } j k Λ ξ 1,..., ξ k Λ σ B j F, j = 1,... σ {B j, j = 1,,... } 0 1 ( k F k σ ( C = σ j=1 j=1 ) B j F k C F k ) B j C σ(c) = σ k=1 ( ) B j j=1 30

35 3. 31 Λ {B j, j = 1,,... } ( ) k Λ σ B j Λ σ(c) j=k 1.11 ε > 0 Λ ε C ( l l Λ ε F l = σ P ( (Λ\Λ ε ) (Λ ε \Λ) ) < ε (3.1) j=1 ( Λ σ l+1 = σ ) B j Λ j=l+1 B j ) 1.33 Λ ε Λ (3.1) P (Λ) = P (Λ Λ) P (Λ Λ ε ) + P ( (Λ\Λ ε ) (Λ ε \Λ) ) P (Λ)P (Λ ε ) + ε P (Λ)( P (Λ) + P ( (Λ\Λ ε ) (Λ ε \Λ) ) ) + ε P (Λ) + P (Λ)P ( (Λ\Λ ε ) (Λ ε \Λ) ) + ε P (Λ) + ε ε P (Λ) P (Λ) 0 P (Λ)(1 P (Λ)) = 0 P (Λ) σ X P (X = c) = 1 c X F F (x ) lim F (y) F (x ) x y x F σ(x) X 1 ( (, x] ) σ(x) X 1 ( (, x] ) 0 1 F (x) = P (X 1 ( (, x] ) ) 0 1 F c sup{ x R 1 ; F (x) = 0 } c < F (c ) = 0 F (c) = 1 P (X = c) = 1

36 ξ i, i = 1,,... ω ξ i (ω), i = 1,,... 0 < lim b n b n Y n = lim lim Y n ξ i b n b n = 1 k n k X (k) n = n Y n X (k) n = (ξ ξ k 1 )/b n (ξ ξ k 1 )/ lim n Λ k = i=k ξ i b n b n X (k) n (ω) ω Λ k { ω Ω ; X (k) n (ω) X (k) m (ω) < 1 } p p=1 N=k n,m=n ( Λ k σ j=k ) σ(ξ j ) lim Λ k Y n (ω) ω Λ P (Λ k Λ) = 0 (Y n X (k) n )(ω) (ξ 1 (ω) + + ξ k 1 (ω))/ lim b n ω Γ k Λ k Λ P (Λ k Λ) = P (Λ k Λ { ) + P (Λ k { Λ) ω Λ k Λ { ω Γ { k P (Λk Λ { ) = 0 P (Λ { k Λ) = 0 P (Λk Λ) = 0 P ((lim Λ k ) Λ) = 0 ( ω Λ j ) Λ ω (Λ k Λ) k=1 j k k=1 ( ) P ((lim Λ k ) Λ) P (Λ k Λ) lim Λ k P (lim Λ k ) 0 1 P (Λ) 0 1 k=1 = 0 lim b n = Y n lim Y n = lim X (k) n lim k σ k a R 1 { lim Y n a } = { lim X (k) n a } σ k X n (k) k lim Y n 3.3 lim Y n

37 ξ i, i = 1,,... (ξ ξ n )/n ( S i ξ 1 + +ξ i ξ i, i = 1,..., n Eξ i = 0, i = 1,..., n P ( max S i a ) ES n, a > 0 i n a ES n < Eξ i v i <, i = 1,..., n Λ { ω Ω ; max i n S i(ω) a } i = 1,..., n Λ i Λ i { ω Ω ; S 1 (ω) < a,..., S i 1 (ω) < a, S i (ω) a } n Λ 1,..., Λ n Λ i = Λ ES n E(S n ; Λ) = E(S n ; Λ i ) = = E((S i + ξ i ξ n ) ; Λ i ) { E(S i ; Λ i ) + E(S i (ξ i ξ n ) ; Λ i ) j=i + E((ξ i ξ n ) ; Λ i ) } (3.) S i I Λi (ξ 1,..., ξ i ) ξ i ξ n E(S i (ξ i ξ n ) ; Λ i ) = E[S i I Λi (ξ i ξ n )] = E[S i I Λi ]E[(ξ i ξ n )] = 0 (3.) Λ i S i a ES n E(S i ; Λ i ) a P (Λ i ) = a P (Λ)

38 Λ n, n = 1,,... P (Λ k ) < k=1 P (lim Λ k ) = ξ i, i = 1,,... Eξ i = 0, i = 1,,... V (ξ i ) < S n ξ ξ n Λ k P (Λ k ) < Λ k { ω Ω ; k=1 sup S n S pn 1 } p n n k v i V (ξ i ), i = 1,,... Eξ i = 0 u < t E(S t S u ) = E(ξ u ξ t ) = V (ξ u ξ t ) t t t = V (ξ i ) = i=u+1 p n i=u+1 v i i=u v i i=p n v i < ( 1 k ) 3 v i < p n ( P (Λ k ) = lim P max S n S pn 1 ) l p n n l k = lim l P ( max S n S pn 1 ) n p n l p n k lim k E(S l S pn ) l l lim k = k l i=p n v i P (Λ k ) < k=1 i=p n v i < 1 k

39 3. 35 ( ) P Λ j = 0 ( P Λ { ) j = 1 k=1 j=k K = K(ω) k=1 j=k k K ω Λ { k n, m p n K(ω) S n (ω) S m (ω) S n (ω) S pn (ω) + S pn (ω) S m (ω) < 1 k + 1 k = k {S n (ω)}, n = 1,,... lim S n(ω) = ξ i (ω) S n 3.8 u i ( > 0) x i lim x i = 0 lim u i y n x i u i u n 1, v i u i u i 1, v 0 0 x i = = = i u i (y i y i 1 ) = v j (y i y i 1 ) j=1 v j (y i y i 1 ) = i=j p v j (y n y j 1 ) + j=1 v j (y n y j 1 ) j=1 j=1 j=p+1 v j (y n y j 1 ) (3.3) y n y n K, n = 1,,... (3.3) Ku p max y n y i p i n j=p+1 v j max y n y i (u n u p ) p i n max y n y i u n p i n

40 3. 36 y n ε > 0 sup y n y m < ε p<n<m p > 0 Ku p p < ε n 0 u i u n0 n n 0 1 Ku p u n x i < u n + max p i n y n y i < ε lim x i = 0 u n ξ i, i = 1,,... Eξ i = 0, i = 1,,... ξ i 0 n Eξ i i < η i ξ i η i 3.7 i ξ i i ξ i 3.8 (ω) i ω n 1 ξ i (ω) 0 n 1 ξ i ξ i, i = 1,,... i ξ i Eξ i a (< ), V (ξ i ) < a n η i ξ i a η i 3.9 n 1 η i 0 n 1 ξ i a 3.3 (ξ ξ n )/n

41 n ξ n,i, i = 1,..., n Eξ n,i = 0 V (ξ n,i ) = 1 (L) S n ξ n,i N(0, 1) (L) τ > 0 lim L n(τ) lim E(ξ n,i ; ξ n,i > τ) = 0 ϕ n,i, ϕ Sn ξ n,i, S n ξ n,i, i = 1,..., n n.3 ϕ Sn (t) = ϕ n,i (t) N(0, 1) ϕ.6 ϕ(t) = e t S n N(0, 1).15 t R 1 n ϕ n,i (t) e t (3.4) a R 1 e ia 1 a (3.5) e ia 1 ia a e ia 1 ia + a n t R 1 a 3 6 (3.6) (3.7) max i n 1 ϕ n,i(t) 0 (3.8) n Eξ n,i = 0 (3.6) ϕ n,i (t) 1 = E(e itξ n,i 1) = E(e itξ n,i 1 itξ n,i ) t Eξ n,i = t V (ξ n,i) τ > 0 i = 1,..., n V (ξ n,i ) = Eξ n,i = E(ξ n,i ; ξ n,i > τ) + E(ξ n,i ; ξ n,i τ) L n (τ) + τ i = 1,..., n ϕ n,i (t) 1 t (L n(τ) + τ ) max i n ϕ n,i(t) 1 t (L n(τ) + τ ) ε > 0 τ ε τ (L) n 0 n n 0 L n (τ) < ε

42 3. 38 n n 0 max i n ϕ n,i(t) 1 t ε n t R 1 (3.8) t R 1 lim ϕ Sn (t) exp e (ϕn,i(t) 1) 1 ϕ n,i (t) 1 { } n ϕ Sn (t) exp (ϕ n,i (t) 1) = ϕ n,i (t) { } (ϕ n,i (t) 1) = 0 (3.9) = n e (ϕ n,i(t) 1) ϕ n,i (t) e (ϕn,i(t) 1) (ϕ n,i (t) 1) + 1 e (ϕn,i(t) 1) C > 0 z 1 z C e z 1 1 (z 1) C z 1 { } ϕ Sn (t) exp (ϕ n,i (t) 1) C ϕ n,i (t) 1 (3.6) Eξ n,i = ϕ Sn (t) exp { C max i n ϕ n,i(t) 1 = C max i n ϕ n,i(t) 1 V (ξ n,i ) = 1 ϕ n,i (t) 1 E(e itξ n,i 1 itξ n,i ) (ϕ n,i (t) 1) } C max i n ϕ n,i(t) 1 t = t C max i n ϕ n,i(t) 1 Eξ n,i n (3.8) t R 1 (3.9) t R 1 { lim exp (ϕ n,i (t) 1) } = e t (3.10)

43 3. 39 ρ n (t) (ϕ n,i (t) 1) + t Eξ n,i = 0 V (ξ n,i ) = 1 ρ n (t) = E(e itξ n,i 1 itξ n,i + t ξ n,i ) ρ n (t) E(e itξ n,i 1 itξ n,i + t ξ n,i ; ξ n,i τ) + E(e itξ n,i 1 itξ n,i + t ξ n,i ; ξ n,i > τ) (3.7) (3.6) E( tξ n,i 3 6 ; ξ n,i τ) t 3 6 τ Eξ n,i = E(t ξ n,i ; ξ n,i > τ) = t L n (τ) t 3 6 τ ε > 0 τ = 3ε/ t 3 ε t R 1 n (L) t L n (τ) < ε lim ρ n(t) = 0 { e ρn(t) = exp (ϕ n,i (t) 1) (3.10) lim eρn(t) = 1 } e t t R 1 (3.9) (3.10) t R 1 (3.4) S n N(0, 1) ξ n,i ξ n,i (L) S n 3.1 ξ i, i = 1,,... V (ξ 1 ) v E ξ 1 ξ i Eξ i < N(0, 1) nv ξ n,i ξ i Eξ i, S n ξ n,i ξ i, i = 1,,... nv n ξ n,i, i = 1,..., n Eξ n,i = 0

44 3. 40 V (ξ n,i ) = 1 (L) n ξ n,i, i = 1,, n S n ξ n,i n ξ i, i = 1,, ξ n,i ξ i n, S n ξ n,i S n n δ {Eξ1 } S n 0 (infinitely divisible distribution) µ R 1 ϕ µ n = 1,,... ϕ(t) = ( n ϕ(t) ) n, t R 1 (3.11) nϕ ϕ µ µ Y 1,..., Y n Y i µ

45 n ξ n,i, i = 1,..., n S n ξ n,i n ϕ α R 1 ν ϕ { ϕ(t) = exp itα + ( e itx 1 itx ) 1 + x 1 + x x } ν(dx) α Eξ 1 ν ν = 0 α = 0 ν δ {0} 3.15 f R 1 f(0) = 1 [ T, T ] f 0 t [ T, T ] λ(0) = 0 f(t) = e λ(t) (3.1) λ(t) f (, ) 0 (3.1) (, ) z = 1 0 L { z ; z 1 1/ } L(z) j=1 ( 1) j 1 (z 1) j (3.13) j L L(1) = 0 e L(z) = z (3.14) L L L(1) = 0 1 z c c 0 1/z c dz z L(z) z dζ ζ c 1

46 3. 4 c L(z) = log z + iargz 1 ζ = ( (ζ 1)) k k=0 L(z) = = = z ( 1) k (ζ 1) k dζ k=0 j=1 1 k (z 1)k+1 ( 1) k + 1 k=0 j 1 (z 1)j ( 1) = L(z) j e L(z) = e L(z) e log z +iargz = e = z L (3.14), δ > 0 [ δ, δ] (3.1) λ f [ T, T ] ρ inf f(t) > 0 t, s [ T, T ] t T ( ρ t s δ f(t) f(s) min, 1 δ > 0 ) λ(t) L(f(t)), t < δ f(t) f(0) 1/ λ [ δ, δ] (3.1), [δ, δ] (3.1) λ g(s) f(s + δ)/f(δ) g(0) = 1 s δ g(s) g(0) = f(s + δ)/f(δ) 1 f(s + δ) f(δ) = f(δ) ( ρ min, 1 ) f(δ) ( ρ min, 1 ρ ) 1 λ(s) L(g(s)) g(s) = e λ(s) λ(s + δ) λ(δ) + λ(s), 0 s δ λ e λ(s+δ) = e λ(δ)+ λ(s) = e λ(δ) e λ(s) = f(δ)g(s) = f(s + δ) [δ, δ] (3.1)

47 3. 43 [ δ, kδ] λ 0 s δ [ δ, T ] λ g(s) f(s + kδ)/f(kδ) λ(s) L(g(s)) λ(s + kδ) λ(kδ) + λ(s) δ δ λ [ T, T ] (3.1) λ (3.1) λ ˆλ (3.1) exp( ˆλ(t) λ(t) ) = 1 m(t) ˆλ(t) λ(t) = πi m(t) ˆλ λ m(t) m(0) = ˆλ(0) λ(0) = 0 m(t) = 0 ˆλ = λ (3.1) λ f (, ) 0 (3.1) λ (, ) f (, ) 0 [ T, T ] (3.1) λ T T < T λ T (t) = λe T (t) t T (, ) λ λ(t) = λ T (t), t T 3.15 λ log f 3.16 R 1 f f k, k = 1,,... f(0) = f k (0) = 1 [ T, T ] 0 f k f [ T, T ] log f k log f [ T, T ] log f k f = log f k log f (3.15)

48 3. 44 [ T, T ] f k /f 0 (f k /f)(0) = f k f = elog fk e log f = e log f k log f (3.15) log(f k /f) 0 [ T, T ] f k /f 1 [ T, T ] ε > 0 k k 0 sup (f k /f)(t) 1 < ε 1 t T k 0 k k 0 (3.13) sup L((f k /f)(t)) 0 sup t T t T < j=1 j=1 j=1 1 j 1 j (f k/f)(t) 1 j sup (f k /f)(t) 1 j t T 1 j εj ε j=1 ε j 1 = ε 1 ε ε log(f k /f) 0 [ T, T ] (3.15) log f k log f [ T, T ] Φ 3.17 (i) (ii) (iii) (iv) ϕ Φ ϕ Φ ϕ i Φ i = 1, ϕ 1 ϕ Φ ϕ Φ ϕ 0 ϕ k Φ ϕ ϕ ϕ Φ ( ) ϕ Φ ϕ = ( n ϕ) n ϕ = ( n ϕ) n nϕ ϕ ϕ Φ ( ) ϕ i Φ i = 1, ϕ i = ( n ϕ i ) n i = 1, ϕ 1 ϕ = ( n ϕ 1 n ϕ ) n nϕ 1 n ϕ.3 ϕ 1 ϕ Φ ( ) ϕ Φ ϕ = ( n ϕ) n nϕ f ϕ, n f n ϕ ϕ = ϕ ϕ, n ϕ = n ϕ n ϕ 3.17 ( )( ) f, n f

49 3. 45 f, n f f = ϕ = ( n ϕ) n = ( n f) n nf(t) = (f(t)) 1/n 0 f(t) 1 h(t) lim nf(t) = lim (f(t)) 1/n = { 1, f(t) 0 0, f(t) = 0 h f(0) = ϕ(0) = 1 f t = 0 0 h t = 0 1 nf h h t = 0.15 h h R 1 t R 1 h(t) = 1 ϕ(t) = f(t) 0 ϕ 0 ( ) ϕ Φ (3.11) ϕ n ϕ 0 ϕ(0) = n ϕ(0) = n log n ϕ(t) = log ϕ(t) (3.11) nϕ ϕ 1/n ( 3.17 ( )) ϕ 0 f ϕ, f k ϕ k f, f k f k 1/n = ( ϕ k ) 1/n = ϕ k 1/n ϕ k 1/n f 1/n k k f 1/n k f 1/n f.15 f 1/n f = ( f 1/n ) n Φ 3.17 ( ) f 0 ϕ 0 ϕ log ϕ ϕ k Φ log ϕ k ϕ k ϕ ϕ.15 ϕ k ϕ 3.16 log ϕ k log ϕ 1 ) ( 1 ) ϕ 1/n k = exp( n log ϕ k exp n log ϕ 1 ) ( 1 ) exp( n log ϕ k exp n log ϕ ( 1 ).15 exp n log ϕ ( ( 1 )) n ϕ = e log ϕ = exp n log ϕ ϕ Φ

50 (3.16) 3.18 ϕ α R 1 ν ϕ { ϕ(t) = exp itα + ( e itx 1 itx ) 1 + x 1 + x x ( ) : ψ(t) ψ(t) itα + } ν(dx) (3.16) ( e itx 1 itx ) 1 + x ν(dx) (3.17) 1 + x x e ψ(t) Φ e itx ( e itx 1 itx ) 1 + x = it 1 + x x x + (eitx 1) 1 + x x = it x + = k= k=1 (it) k k! (it) k (1 + x ) k! x k 1 + x x x k x 1 t e itx 1 itx 1 + x e itx x x ( x < 1 e itx 1 itx tx / e itx 1 itx e itx 1 itx 1 + x tx + itx t itx 1 + x e itx 1 + tx 1 + x ) ( + t ) + x 1 + x itx itx 1 + x e itx 1 itx 1 + x t (1 + x ) + tx t + t 1 + x x

51 3. 47 t ψ(t) itα ( e itx 1 itx ) 1 + x ν ε > x x M > 0 ( e itx 1 itx ) 1 + x ν(dx) < ε (3.18) 1 + x x { x >M} ( e itx 1 itx ) 1 + x 1 + x x { x M} ν(dx) l k = (x k, x k+1 ] = [ M, M] k=1 k ( f(x) e itx 1 itx ) 1 + x 1 + x x h l (x) x [ M, M] l 0 l k=1 f(x k )I k (x) ε > 0 l l 0 h l (x) f(x) < ε f l l 0 h l (x) ν(dx) f(x) ν(dx) < ε [ M,M] [ M,M] ε l 0 l l 0 l ( e itx k 1 itx ) k 1 + xk ν( 1 + x k x k ) k k=1 ( e itx 1 itx ) 1 + x ν(dx) < ε (3.19) 1 + x x { x M} (3.18) (3.19) l l 0 ( e itx 1 { x >M} itx ) 1 + x 1 + x x ( + ν(dx) l ( e itx k 1 itx k 1 + x k ν(dx) k=1 e itx 1 itx ) 1 + x 1 + x x ( e itx 1 { x M} l ( e itx k 1 k=1 itx ) 1 + x 1 + x x itx k 1 + x k ν(dx) ) 1 + xk ) 1 + xk x k ν( k ) x k ν( k ) < ε

52 3. 48 l t R 1 ψ(t) itα k=1 ( e itx k 1 itx k 1 + x k ) 1 + xk x k ν( k ) l ( e itx k 1 itx k 1 + x k k=1 ( l = it ) 1 + xk k=1 { ( l e ψ(t) itα exp it k=1 x k ν( k ) ν( k ) x k ) + ν( k ) x k ) + l {( 1 + xk ) } ν( x k ) (e itx k 1) k k=1 l {( 1 + xk ) }} ν( x k ) (e itx k 1) k t R 1 { ( l exp it = k=1 l ( { exp k=1 ν( k ) x k ) + k=1 l {( 1 + xk ) }} ν( x k ) (e itx k 1) k k=1 it ν( k) x k } exp {( 1 + xk ) }) ν( x k ) (e itx k 1) (3.0) k { exp it ν( } k).4 δ ν( x { k ) } k x k {( 1 + xk ) }.5 exp ν( x k ) (e itx k 1) Φ( 1+x k x k ν( k ), x k ) k 3.17 ( ) (3.0) Φ (3.17) lim ψ(t) = 0 t 0 e ψ(t) itα l ( { exp it ν( } {( k) 1 + xk ) } ) exp ν( x k x k ) (e itx k 1) Φ k k=1 e ψ(t) itα e ψ(t) itα.15 e ψ(t) itα 3.17 ( ) e ψ(t) itα Φ e itα e ψ(t) Φ ( ) : ϕ α R 1 ν log ϕ(t) = itα + ( e itx 1 itx ) 1 + x ν(dx) (3.1) 1 + x x ϕ n ϕ 1/n λ log ϕ t R 1 t < T T T > 0 lim sup n(ϕ n (t) 1) λ(t) = 0 (3.) t T

53 3. 49 n(ϕ n (t) 1) = n(e λ(t) n 1) C > 0 sup t T e λ(t) λ(t) n 1 n sup t T n C λ(t) n sup n(e λ(t) n 1) λ(t) sup t T t T C λ(t) n n lim sup n(e λ(t) n 1) λ(t) = 0 t T (3.) sup n sup n ϕ n (t) 1 < (3.3) t T µ n ϕ n ε > 0 A > 0 sup n nµ n ([ A, A] { ) < ε (3.4)..16  > 0 1/  µ n ([ 4Â, 4Â]{ )  ϕ n (t) dt 1/ =  =  =  =  =  1/  1/  0 1/  1/ 1/  1/ 1/  0 dt  n nµ n ([ 4Â, 4Â]{ )  0 e itx µ n (dx) dt (cos tx + i sin tx) dt µ n (dx) cos tx dt µ n (dx) 1/  Re (1 ϕ n (t)) dt 1/  0 0 cos tx µ n (dx) dt Re {n(1 ϕ n (t))} dt

54 3. 50 n (3.) Re {n(1 ϕ n (t))} Re λ(t) [0, 1/Â] lim nµ n([ 4Â, 4Â]{ ) lim  1/  =  0 1/  0 1/  Re {n(1 ϕ n (t))} dt Re λ(t) dt   Re λ(t) dt Re λ(0) lim  0 lim nµ n([ 4Â, 4Â]{ ) Re λ(0) = 0 ε > 0 Â(ε ) > 0  Â(ε ) n 0 lim nµ n([ 4Â, 4Â]{ ) < ε n n 0 nµ n ([ 4Â, 4Â]{ ) < ε n < n 0 µ n à nµ n ([ Ã, Ã]{ ) < ε n = 1,,..., n 0 1 4 à A ε > 0 A > 0 (3.4) ν n (dx) x /(1 + x ) nµ n (dx) sup ν n (R 1 ) < (3.5) n ( sin tx ) 1 + x L(t) t inf 1 x R 1 tx x sin tx x x tx x < 1 sin tx tx tx 3 4. x sin tx 1 3! tx sin tx 1 tx 1 + x t (1 + x ) x 6 t x 6 < t 3 t 0 0 < L(t) < t t n(1 Re ϕ n (s)) ds = (1 cos sx) nµ n (dx) ds 0 = t 0 ( 1 L(t)ν n (R 1 ) sin tx tx ) 1 + x x ν n (dx)

55 3. 51 (3.3) n (3.5) g lim j g(x) ν nj (dx) = g(x) ν(dx) (3.6) n n j ν (3.5) a n ν n (R 1 ) a {n} {n } ν n (3.4) n ν n ([ A, A] { ) = [ A,A]{ x 1 + x nµ n(dx) nµ n ([ A, A] { ) < ε ν n ([ A, A] { ) < ε ν n ν n (B) ν n (B) ν n (R 1 ), B B 1 ν n ([ A, A] { ) < ε ν n (R 1 ) ε inf n ν n (R 1 ) (i) inf ν n (R 1 ) 0 n ε > 0 (3.4) ε ε < ε inf n ν n (R 1 ) ν n ([ A, A] { ) inf n ε ν n (R 1 ) < ε.11 ν n ν n ν n ν ν n (R 1 ) a g g(x) ν n (dx) = = g(x)ν n (R 1 ) ν n (dx) g(x)(ν n (R 1 ) a) ν n (dx) + a g(x) ν n (dx) lim n g(x) ν n (dx) = a g(x) ν(dx) ν = a ν ν n = ν nj g (3.6) n j ν

56 3. 5 (ii) inf ν n (R 1 ) = 0 n ν n (R 1 ) 0 {n } {n } ν 0 n j ν x lim j R 1 + x n jµ 1 nj (dx) α t R 1 ( lim n j(ϕ nj (t) 1) = itα + e itx 1 itx ) 1 + x ν(dx) (3.7) j 1 + x x ϕ n (t) t R 1 lim n(ϕ n(t) 1) = lim (e itx 1) 1 + x ν x nj (dx) = = j = lim = lim (e itx 1) nµ n (dx) (e itx 1) 1 + x x ν n (dx) (e itx 1) 1 + x ν x nj (dx) (3.8) {( e itx 1 ( e itx 1 itx ) 1 + x } + itx 1 + x x x itx ) 1 + x ν 1 + x x nj (dx) + it ν n j (dx) x 1 + x n jµ nj (dx) ( e itx 1 itx ) 1 + x 1 + x x (3.6) (3.8) x it lim j 1 + x n jµ nj (dx) = lim j (e itx 1) 1 + x lim j = lim n(ϕ n (t) 1) ( x ν nj (dx) ( e itx 1 e itx 1 itx ) 1 + x 1 + x x itx ) 1 + x 1 + x x ν nj (dx) ν(dx) (3.) ν x α lim j 1 + x n jµ nj (dx) t R 1 (3.7) lim n(ϕ n(t) 1) = lim n j (ϕ nj (t) 1) (3.7) j t R 1 (3.) t R 1 (3.1)

57 ϕ ϕ n n (ϕ n ) n ϕ ϕ δ > 0 ϕ(t) ϕ n (t) [ δ, δ] 0 ϕ n.3 (ϕ n ) n (ϕ n (t)) n ϕ n n (t) ϕ n n ϕ ϕ.15 ϕ n n ϕ δ > 0 n n 0 sup ϕ n n (t) ϕ(t) < 1 4 t δ (3.9) n 0 ϕ R 1 ϕ(0) = 1 δ (3.9) t δ ϕ(t) 1 < 1 4 (3.30) 1 ϕ(t) 1 ϕ(t) t δ ϕ(t) 3/4 inf ϕ(t) > 0 (3.31) t δ ϕ n n (t) 1 ϕ n n (t) ϕ(t) + ϕ(t) 1 t δ (3.9) (3.30) n n 0 sup ϕ n n (t) t δ 1 ϕ n n (t) 1 ϕ n n (t) t δ ϕ n n (t) 1/ n n 0 inf ϕ n n (t) 1/ t δ inf ϕ n n (t) = ( inf ϕ n(t) ) n t δ t δ n n 0 inf ϕ n (t) t δ ( 1 ) 1 n inf ϕ n(t) > 0 (3.3) t δ (3.31) (3.3) ϕ(t) ϕ n (t) [ δ, δ] 0

58 3. 54 ϕ(0) = 1 ϕ n n (0) = log ϕ(t) log ϕ n n (t) ϕ n n (t) ϕ(t) [ δ, δ] 3.16 log ϕ n n (t) log ϕ(t) [ δ, δ] log ϕ n n (t) = n log ϕ n (t) lim sup n log ϕ n (t) log ϕ(t) = 0 (3.33) t δ lim sup n(ϕ n (t) 1) n log ϕ n (t) = 0 (3.34) t δ C > 0 sup e log ϕn(t) 1 log ϕ n (t) sup C log ϕ n (t) t δ t δ n sup n(e log ϕn(t) 1) n log ϕ n (t) sup C n log ϕ n (t) t δ t δ = sup t δ C n log ϕ n (t) n (3.33) lim sup t δ n(e log ϕn(t) C n log ϕ n (t) 1) n log ϕ n (t) lim sup t δ n (3.34) (3.33) (3.34) n C log ϕ(t) = lim sup t δ n = 0 lim sup n(ϕ n (t) 1) log ϕ(t) = 0 (3.35) t δ µ n ϕ n ν n (dx) x /(1 + x ) nµ n (dx) t < δ t 3.18 ( ) g (3.6) n n j ν (3.35) 3.18 ( ) x lim j R 1 + x n jµ 1 nj (dx) α t R 1 ( lim n j(ϕ nj (t) 1) = itα + e itx 1 itx ) 1 + x ν(dx) (3.36) j 1 + x x

59 3. 55 ϕ R 1 0 ( c(t) itα + e itx 1 itx ) 1 + x ν(dx) x x R 1 (3.36) ϕ nj (t) 1 < c(t) n j ϕ nj (t) > n j 1 c(t) n j ϕ(t) = lim j ϕ nj (t) n j ( lim 1 c(t) ) nj = e c(t) j n j ϕ R 1 0 (3.35) δ (3.36) t R 1 log ϕ(t) = lim n(ϕ n (t) 1) = lim n j (ϕ nj (t) 1) j ( = itα + e itx 1 itx ) 1 + x 1 + x x 3.18 ( ) ϕ Φ ν(dx) ( 3.14) 3.18 ξ n,i, i = 1,..., n n n ξ n,i, i = 1,..., n ϕ n.3 S n (ϕ n ) n ϕ ϕ (ϕ n ) n ϕ.15 (ϕ n ) n ϕ S n n 3.19 ϕ ϕ 3.14 ξ n,i

60 [1],,, 1976 [],,, 1963 [3],,, 1997 [4],,, 1973 [5],,, 1980 [6],,,

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information