ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

Size: px
Start display at page:

Download "ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University"

Transcription

1 ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University hsuzuki@icu.ac.jp 0 0

2 1 1.1 G G1 G a, b, c (a b) c = a (b c) G2 G e e a = a e = a G a G3 G a a b = b a = e G b G4 G a, b a b = b a G1 (semigroup) G1 G2 (monoid) G1 G2 G3 (group) G4 (abelian group) G f : G G G ((a, b) a b) 1.1 (Z, +) (Q, +) (R, +) (C, +) (Z, ) (Q, ) (R, ) (C, ) 0 # 0 (Q #, ) (R #, ) (C #, ) 1.2 Mat(n, R) n GL(n, R) n (Mat(n, R), +) (Mat(n, R), ) (GL(n, R), ) 1. (G, ) a 1, a 2,..., a n G a 1 a 2 a n = ( ((a 1 a 2 ) a 3 ) ) a n ((a 1 a 2 ) a 3 ) a 4 = (a 1 a 2 ) (a 3 a 4 ) = a 1 (a 2 (a 3 a 4 )) = a 1 ((a 2 a 3 ) a 4 ) = (a 1 (a 2 a 3 )) a

3 2. (G, ) e, e G a e = e a = a a e = e a = a a G e = e e = e. 3. (G, ) u G u v = v u = 1 v G u v u u v w u v = v e = v (u w) = (v u) w = e w = w.. a b ab e 1 u u 1 x n x x x = x n x 1 n x 1 x 1 x 1 = x n n x n 1.1 G x x 2 = 1 G a, b G G G4 ab = ab(ba) 2 = abbaba = ba. 1.2 G U(G) G G U(G) a, b U(G) abb 1 a 1 = 1 ab ab U(G) 1 1 = 1 1 U(G) a 1 a = aa 1 = 1 a 1 a a 1 U(G) U(G) G 1.3 Z U(Z) = {±1} U(Q) = Q # U(R) = R # U(C) = C # U(Mat(n, R)) = GL(n, R) 1 2

4 2 2.1 G H G H G H G 2.1 G (1) H G (2) (i) = H G (ii) a, b H ab H (iii) a H a 1 H (1) (2) (2) (1) (ii) (i) a H (iii) (ii) a 1 H 1 = aa 1 HG H H G A, B G AB = {ab a A, b B}, A 1 = {a 1 a A} B = {b} AB = Ab BA = ba H G = H G, HH H, H 1 H. G G {1} G {1} 1 S G < S >= {a n 1 1 a n 2 2 a n r r a 1, a 2,..., a r S, n 1, n 2,..., n r Z} S G a < a >= {a n n Z} a a G (order) G o(a) = < a > a 2.2 < a > S = {n N a n = 1} (1) S = min S = n o(a) = < a > = n (i) a m = 1 n m (ii) < a >= {1, a, a 2,..., a n 1 } 2 1

5 (2) S < a >..., a 2, a 1, 1, a, a 2,... (1) m = nq + r q, r Z 0 r < n a n = 1 a m = a nq+r = (a n ) q a r = a r r < n a m = 1 r = 0 n m. < a > {1, a, a 2,..., a n 1 } < a > a i = a j a i j = 1 n i j, 0 i, j n 1 i = j 1, a,..., a n 1 o(a) = n (2) a i = a j i > j a i j = 1 i j N S = a i < a > 2.1 (Z, +) a i ia (Z n, +) Z n = { 0, 1,..., n 1} ī + j = i + j n Z n n 2.2 X X X X X σ X X a X σ a σ σ, τ X X σ τ : a (a σ ) τ σ τ X X X X S X = U(X X ) X X X X = {1, 2,..., n} S X S n n σ S n σ = ( ) ( i = i σ 1 2 n 1 σ 2 σ n σ (i 1, i 2,..., i r ) i σ j = i j+1 (j = 1,..., r 1) i σ r = i 1 i i σ = i r ) 2 2

6 3 3.1 A (i) a a (ii) a b b a (iii) a b, b c a c (equiavelence relation) C a = {b A a b} a a 3.1 (1) a C a (2) b C a C a = C b (3) C a C b C a C b = (1) (i) (2) (ii) b C a a C b C a C b c C a a c, a b b c c C b (3) c C a C b (2) C a = C c = C b (3) {C λ λ Λ} A = λ Λ C λ (disjoint union) a λ C λ {a λ λ Λ} H G r a, b G a r b (modh) ab 1 H. r a {b G a r b (modh)} = Ha Ha = Hb ab 1 H G H {Ha i i I} H\G G G H G = i I Ha i = Ha 1 + Ha Ha n {a i i I} H\G H\G H G (index) G : H 3 1

7 l a, b G a l b (modh) a 1 b H. l a {b G a l (modh)} = Ha H\G = {Ha i i I} Ha a 1 H {a 1 i H i I} = G/H H\G = G/H = G : H. 3.2 (Lagrange ) G H G G = G : H H. H G a G H = Ha r a : H Ha (h ha) G = n Ha i i=1 H G n = G : H Ha i Ha j = (i j) n n n G = Ha i = Ha i = H = n H = G : H H. i=1 i=1 3.3 G a G o(a) G a G = 1 i=1 o(a) = < a > o(a) G 3.4 G G G = 1 1 a G o(a) 1 o(a) G o(a) = G < a > = G G =< a > 3 2

8 3.1 S 3 = {1, (12), (13), (23), (123), (132)} 1, 2, 2, 2, 3, 3 S 3 = 6 S 3 1, 2, 3, S < (123) >=< (132) >= {1, (123), (132)} < (12) >, < (13) >, < (23) > 3 < (123) > S 3 H K G a, b G a b (mod(h, K)) b = hak for some h H, k K a HaK (H, K) G G (H, K) {Ha i K i I} H\G/K G = i I Ha i K G (H, K) 3.5 H, K G a G K K a 1 Ha K = j J (K a 1 Ha)k j {Hak j j J} HaK H G HaK = H K : K a 1 Ha. G = i I Ha ik {a i i I} G : H = i I K : K a 1 Ha i. k, k K Hak = Hak akk 1 a 1 H kk 1 K a 1 Ha (K a 1 Ha)k = (K a 1 Ha)k 3.6 HK = H K : K H = H K / K H. a = 1 3 3

9 4 G (cyclic group) G a G =< a >= {a n n bz} a G 4.1 G =< a > (1) 1 H G h = min{i N a i H} H =< a h > (2) G = n = ml < a l > G m (1) 1 a i H a i = (a i ) 1 H {i N a i H} = h = min{i N a i H} a h H < a h >= {(a h ) i i Z} H. a i H i = hq + r, q, r Z, 0 r < h a r = a i hq = (a i )(a h ) q HH H. h r = 0 a i = a hq < a h > (2) G =< a >= {1, a, a 2,..., a n 1 } 2.2 n n = ml m (a l ) m = < a l >= {1, a l, a 2l,..., a (m 1)l }, (a ml = 1) G m H G H = m h (1) H =< a h > a n = 1 H n h (1) H = n/h = mh = l 4.2 (Z, +) 1 a 1, a 2,..., a r Z d < a 1, a 2,..., a r >=< d >. a 1 x 1 +a 2 x 2 + +a r x r = d x 1, x 2,..., x r x 1, x 2,..., x r H =< a 1, a 2,..., a r >= {a 1 x 1 + a 2 x a r x r x 1, x 2,..., x r Z} Z 4.1 H =< c >= {cx x Z} a i H c a i c d c = a 1 x 1 + a 2 x a r x r d c c = ±d < c >=< d > m, n (m, n) 4 1

10 4.3 G =< a > n < a r >=< a (n,r) >, o(a r ) = n/(n, r). d = (n, r) d r < a r > < a d > 4.2 d = nx + ry x, y Z a d = (a n ) x (a r ) y = (a r ) y < a r >. < a d > < a r > 4.1 o(a d ) = n/d 4.1 (Z n, +) Z n = { 0, 1,..., n 1} ā + b = a + b n Z 6 < 0 >= {0}, < 1 >=< 5 >= Z 6, < 2 >=< 4 >= { 0, 2, 4}, < 3 >= { 0, 3}. 4.2 (Z n, ) ā b = a b n. Z n = U(Z n, ) Z n φ(n) φ (Euler function) ā Z n ā b = 1 for some b Z n ab + qn = 1 for some b, q Z (a, n) = 1 Z 6 = { 1, 5} φ(6) = 2 Z 5 = { 1, 2, 3, 4} φ(5) = 4 p φ(p) = p 1 Z p Z n 3.3 (a, 6) = 1 a 2 1 (mod6) (a, 5) = 1 a 4 1 (mod5) (a, n) = 1 a φ(n) 1 (modn) n 4 2

11 5 5.1 G N G a G a 1 Na = N N G N G Na = an G a N an Na 5.1 G N N G (an)(bn) = abn for all a, b G. ( ) anbn = abnn = abn H G HH = H ( ) a 1 a a b a a a 1 b a 1 Na a 1 NaN = a 1 an = N = a 1 ana 1 a a 1 ana 1 Na = a 1 Na N G an, bn G/N 5.1 anbn = abn G/N. G/N G/N G N (factor group) 1 G/N = N = 1N, (an) 1 = a 1 N. 5.1 Z nz Z a r b (mod nz) a b (mod n). Z/nZ = {nz, 1 + nz,..., n 1 + nz} (a + nz) + (b + bz) = (a + b) + nz = a + b + nz Z/nZ Z n 5.2 G 2 a H Ha = H = ah a H ah H Ha G : H = 2 G H G = H + Ha = H + ah ah = G H = Ha G a ah = Ha H G 5 1

12 5.2 S n : A n = 2 Exercise 3.5 ) A n S n S n /A n = {A n, (12)A n } 2 Z 2 ({±1}, ) 5.2 G S G 1. N G (S) = {x G x 1 Sx = S} S (normalizer) 2. C G (S) = {x G x 1 sx = s, for all s S} S (centralizer) 3. Z(G) = C G (G) G 4. S = {a} N G (S) = C G (S) C G (a) H G H G N G (H) = G. 5.3 G = S 3 H =< (123) >= {1, (123), (132)} = A 3 C G (H) = H N G (H) = G (12) 1 (123)(12) = (132) S G x G x 1 Sx = {x 1 sx s S} S x S x (conjugate) S, T G T = S x x G T S T G S G P(G) = 2 G G a G b ( {a} G {b}) a b a G b b = g 1 ag for some g G. N G a N g 1 ag g 1 Ng = N N G 5.4 S 3 {1}, {(12), (13), (23)}, {(123), (132)} S 3 1, A 3, S 3 τ = ( ( i τ = i τ ) ( ) i, σ = i σ ( ) i τ 1 τ = i ( )( )( ) ( ) i τ 1 τ i i i τ στ = =. i i σ i τ i στ ), σ = (123)(45) τ 1 στ = (512)(43). (Exersise 5.8 ) 5 2

13 6 G G f : G G f(ab) = f(a)f(b) (for all a, b G) G G G G f G G 6.1 ω = ( 1 + 3)/2 ω 1 3 Z Z/3Z + 3Z 1 + 3Z 2 + 3Z 3Z 3Z 1 + 3Z 2 + 3Z 1 + 3Z 1 + 3Z 2 + 3Z 3Z 2 + 3Z 2 + 3Z 3Z 1 + 3Z ({1, ω, ω 2 }, ) + 1 ω ω ω ω 2 ω ω ω 2 1 ω 2 ω 2 1 ω 6.2 G =< a >= {a n n Z} Z f : Z < a >= {a n n Z} (n a n ) 2.2 f(i + j) = a i+j = a i a j = f(i)f(j) Z + G 6.3 G =< a >= {1, a, a 2,..., a n 1 } n f : Z/nZ < a >= {1, a, a 2,..., a n 1 } (i + nz a i ) f i + nz = j + nz i j nz n i j a i = a j. i + nz j + nz a i = a j Z/nZ < a > f f ( ) well-defined f((i + nz) + (j + nz)) = f(i + j + nz) = a i+j = a i a j = f(i + nz)f(j + nz) f G n Z/nZ f(i+j +nz) = a i+j i+nz a i well-defined i + nz i 0, 1,..., n 1 f(i + j + nz) = a i+j 6 1

14 6.4 R R + f : R R + (a e a ). f(a + b) = e a+b = e a e b = f(a)f(b) f g : R + R (a log a) fg = id R + gf = id R f : X Y g : Y X gf = id X f g 6.1 G G f : G G f(ab) = f(a)f(b) (for all a, b G) f (homomorphism) 6.1 f : G G (1) f(1 G ) = 1 G (2) G a f(a 1 ) = f(a) 1 (3) Imf = {f(a) G} G f G (4) Kerf = f 1 (1 G ) = {a G f(a) = 1 G } G f G (1) f(1) = f(1 1) = f(1)f(1) f(1) 1 1 = f(1) (2) 1 = f(1) = f(aa 1 ) = f(a)f(a 1 ) f(a) 1 f(a) 1 = f(a 1 ) (3) f(a)f(b) = f(ab) Imf f(a) 1 = f(a 1 ) Imf Im G (4) a, b Kerf f(a) = f(b) = 1 f(ab) = f(a)f(b) = 1 f(a 1 ) = f(a) 1 = 1 ab Kerf a 1 Kerf Kerf G x G f(x 1 ax) = f(x 1 )f(a)f(x) = f(x 1 )f(x) = f(1) = 1 x 1 ax Kerf Kerf G 6.5 N G f : G G/N (a an) (cannonical homomorphism) f f(ab) = abn = anbn = f(a)f(b) 6 2

15 7 7.1 G G f : G G G/Kerf Imf. K = Kerf 6.1 K G a, b G f(a) = f(b) f(a)f(b) 1 = f(ab 1 ) = 1 ab 1 K Ka = Kb f(ka) = f(a) f well-defined Ka a f f(ka) = f(kb) Ka = Kb f f(kakb) = f(kab) = f(ab) = f(a)f(b) = f(ka) f(kb). Im f = Imf f : G/K Imf G/K Imf 7.2 (1) H G, N G NH/N H/H N. (2) f : G G H G H = f 1 (H ) H G G/H G /H (1) f : H G/N (h Nh) f Imf = f(h) = NH/N, Kerf = H N 7.1 H/H N NH/N (2) g : G f G G /H, a f(a) H f(a) Kerg = {a G H f(a) = H } = {a G f(a) H } = f 1 (H ) 7.1 G/H G /H 7.3 H, N G N H G/H (G/N)/(H/N) f : G G/N f 1 (H/N) = H 7.2 (2) 7 1

16 7.1 G =< a > f : Z G =< a >= {a n n Z} (i a i ) f(i + j) = a i+j = a i a j = f(i)f(j). 7.1 Z/Kerf < a > Kerf Z 4.1 Kerf Kerf nz n = 0 G < a > Z/{0} Z n 0 G n Z/nZ 7.2 f : R C (a e 2πai ) Imf = {z C z = 1} Kerf = {a R e 2πai = 1} = Z R/Z S GL(n, R) n n {( ) } (( ) ) A O A O f : G = A GL(r, R), C GL(s, R) GL(r, R) A. B C B C {( Kerf = I B ) } O C GL(s, R) G. C I r 7.1 G/Kerf GL(r, R) G N G H N f : G G/N (a an) f(h) = {hn h N} = HN/N G/N H G/N H = f 1 ( H) = {h G hn H} N H G f(h) = H/N = H S(G, N) = {H G N H} G N S(G/N, 1) = { H H G/N} G/N S(G, N) H f(h) = H/N S(G/N, 1) S(G/N, 1) H f 1 ( H) S(G, N) 7.4 Z Z/12Z S(Z, 12Z) = {nz 12Z nz, n 12} = {12Z, 6Z, 4Z, 3Z, 2Z, Z} S(Z/12Z, 0) = {mz/12z n 12} = {0, 6Z/12Z, 4Z/12Z, 3Z/12Z, 2Z/12Z, Z/12Z} 7 2

17 8 8.1 G X f : X G X, ((α, a) X G f(α, a) = α a ) α 1 = α, α ab = (α a ) b G X X G- X G-α, β X α G β α a = β for some a G G G- (G-orbit) α G- {α a a G} α G α G G- X = α G transitive G α = {a G α a = α} G α G β = α a x G α G β = a 1 G α a β a 1 xa = α aa 1 xa = α xa = α a = β G β a 1 G α a α = β a 1 G α ag β a 1 a 1 G α a G β G α α G 8.1 α G = G : G α a, b G α a = α b α ab 1 = α ab 1 G α G α a = G α b φ : G α \G α G (G α a α a ) X G-a G σ(a) : X X (α α a ) σ(a) X σ : G S X (a σ(a)) σ Kerσ Ker(X, G) G X σ : G S X X G X ((α, a) α σ(a) ) X G- G G GL(n, C) G 1 8 1

18 8.1 H S X σ : H S X X H X, ((α, h) α h ) X H S n {1, 2,..., n} H S X X H S n n 8.2 H G G H\G f : H\G G H\G, ((Hx, a) Hxa) (Hx) 1 = Hx1 = Hx, (Hx) ab = Hxab = (Hxa) b = (Hxa) b = ((Hx) a ) b Ker(H\G, G) = {a G Hxa = Hx for all x G} = x G x x Hx G H = 1 Ker(G, G) = 1 σ : G S G G S G 8.3 X = G G G G ((x, a) a 1 xa = x a ) G G- G x = {a G x a = x = {a G a 1 xa = x} = C G (x) x G x 8.1 x G = G : C G (x) G Ker(G, G) = {a G x a = x, x G for all x G} = Z(G) G x G = 1 G : C G (a) = 1 x Z(G). 8 2

19 9 9.1 G G = E 1 E 2 E m I 1 I 2 I r, E i Z ei e i > 1 i = 1, 2,..., m e i e i+1 i = 1, 2,..., m 1 I j Z j = 1, 2,..., r 1 (e 1, e 2,..., e m ; r) G 9.2 G =< x 1, x 2,..., x n > y 1 = x a 1 x a2 x a n a i Z (i = 1, 2,..., n) (a 1, a 2,..., a n ) = 1 G =< y 1, y 2,..., y n > y 2,..., y n m = a 1 + a a n m = 1 i a i = ±1 y 1 = x ±1 i m > 1 (a 1, a 2,..., a n ) = 1 a i a j > 0 a i, a j a i ɛa j < a i ɛ = ±1 y 1 = x a 1 1 x a i ɛa j i (x j x ɛ i) aj x a n n b k = a k (k i) b i = a i ɛa j z l = x l (l j) z j = x j x ɛ i (b 1, b 2,..., b n ) = (a 1,..., a i 1, a i ɛa j, a i+1,..., a n ) = (a 1,..., a n ) = 1 G =< x 1,..., x n >=< x 1,..., x j 1, x j x ɛ i, x j+1,..., x n >=< z 1, z 2,..., z n >. y 1 = z b 1 1 z b n n b b n < m y 2,..., y n G =< y 1,..., y n > Proof of Theorem 9.1 G x 1,..., x n 1. G =< x 1,..., x n > n 2. G =< x 1,..., x i 1, y i,..., y n > x i y i 9 1

20 (x 1 1 x i 1 x i x 1,..., x i 1 y i ) < x i >= E i E i = e i G = E 1 E n e i e i+1 φ : E 1 E n G, ((x a 1 1,..., x an n ) xx a 1 1 x an n ) x a i i x a j j = 1 0 < a k e k d = (a i,..., a j ) a k = db k (b i,..., b j ) = y i = x b i i x b j j, y i+1,..., y n < x i,..., x n >=< y i,..., y n > y i y d i = x db i i x db j j = x a i i x a j j = 1. y i d x i e i o(y i ) d a i e i. e i = d = a i x a i i = 1 φ x e i i xe i+1 i+1 = 1 d = (e i, e i+1 ) e i = d e i e i+1 e 1,..., e m e m+1 G = E 1 E m I 1 I r E i Z ei I j Z e i e i+1 1 < e i G = E 1 E m I 1 I r = E 1 E m I 1 I r E i =< x i > I j =< z j > I j =< w j > E i =< y i > e i = E i e i = E i T (G) G T (G) = E 1 E m = E 1 E m p e 1 p e i+1 T (G) p = {x T (G) x p = 1} =< x e 1/p 1,..., x em/p m >=< y e i+1 /p i+1,..., y e m /p m > T (G) p = p m = p m i m m m m m = m p e 1 T (G) p = {x p x T (G)} =< x p 1,..., x p m >=< y p 1,..., y p m > 9 2

21 e 1 /p,..., e m /p e 1/p,..., e m/p e i = e i e = e m G e = {x e x G} =< z e 1,..., z e r >=< w e 1,..., w e r > G 2e = {x 2e x G} =< z1 2e,..., zr 2e >=< w1 2e,..., wr 2e > G e /G 2e 2 r = 2 r r = r 9.1 G = e 1 e 2 e r e 1 e 2, e 2 e 3... e r 1 e r e r 12(12), (2, 6) G Z Z 2 Z 6 9 3

22 10 G 10.1 p G p G p ( G = p r ) G = p n g, (p, g ) = 1 p n G P G p- (Sylow-p-group) P G P = p n 1. p p 2. p p 10.1 p G G p G p G 1 G p G : H p Z(G) Z(G) 1 Exercise p p r G G p r G p G G 1 Case 1. G H ( G : H, p) = 1 p r G = G : H H p r H H P p r P G Case 2. G p G : H 10.2 p Z(G) Z(G) 10.1 Z(G) p x A =< x > A = < x > = o(x) = p A Z(G) A G G/A p r G = G : A A = p G/A p r 1 G/A G/A p r 1 P 1 π : G G/A P = π 1 (P 1 ) A P P/A P 1 P = p r Syl p (G) G p 10 1

23 10.4 G p (1) H G p G p P H (2) P, Q G p Q = g 1 P g G g (3) Syl p (G) 1 (mod p) p kp + 1 (k Z) (1) P Syl p (G) H G p (P, H) G G = P a 1 H + P a 2 H + + P a r H 3.5 G : P = r i=1 H : H a 1 i P a i P G p p p ( H : H a 1 i P a i, p) = 1 H p H = H : H a 1 i P a i H a 1 i P a i H : H a 1 i a 1 i P a i = 1 H = H a 1 i P a i P G a 1 i P a i H a 1 i P a i P a i G p H G p (2) Q = H (1) G g = a i Q g 1 P g Q = P = g 1 P g Q = g 1 P g (3) Syl p (G) G Syl p (G), ((P, a) a 1 P a) a 1 P a Syl p (G) Syl p (G) G-(2) P Syl p (G) N 8.1 N = {a G P a = P } = {a G a 1 P a = P } = N G (P ) Syl p (G) = P G = G : N = G : N G (P ) G (N, P ) b 1 = G = Nb 1 P + Nb 2 P + + Nb r P G : N = r i=1 P : P b 1 i Nb i 10 2

24 P N G (P ) = N G : N G : P G : N p p P : P b 1 i Nb i = 1 P = P b 1 i Nb i P b 1 i Nb i b i P b 1 i N b i P b 1 i Syl p (N) b i P b 1 i = n 1 P n = P n N b i N = N G (P ) Nb i P = N1P (= N) b i = b 1 b i P : P b 1 i Nb i p P : P b 1 1 Nb 1 = P : P N = P : P = 1 Syl p (G) = G : N G (P ) = kp

2011 (2011/02/08) 1 7 1.1.................................... 7 1.2..................................... 8 1.3.................................. 9 1.4.................................. 10 1.5..................................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z 95 5,,,,,,,, ( ) S 3, f1 2 3g f1 2 3g,,, 5.1,,, 1 1 16 G H ' : G! H, '(ab) ='(a)'(b) for 8a b 2 G (5.1), (,, )., 1 1,, ' e 2 G e 0 2 H '(e) =e 0., g 2 G, '(g ;1 )='(g) ;1 : (5.2) 2, 5.1 2 G, H, G H, '

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

線形空間の入門編 Part3

線形空間の入門編 Part3 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, 2013 1 / 46 table of contents 1 2 3 (j1701) Part3 March 15, 2013 2 / 46 f : R 2 R 2 ( ) x f = y ( 1 1 1 1 ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! (

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information