スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 基礎無機化学第 回 分子構造と結合 (IV) 原子価結合法 (II): 昇位と混成

2 本日のポイント 昇位と混成 s 軌道と p 軌道を混ぜて, 新しい軌道を作る sp 3 混成 : 正四面体型 sp 混成 : 三角形 (p 軌道が つ残る ) sp 混成 : 直線形 (p 軌道が つ残る ) 多重結合との関係炭素などでは以下が基本 ( たまに違う ) 二重結合 sp 混成三重結合 sp 混成 逆に, 分子の形から混成を予想することも出来るルイス構造 VSEPR で構造予想 軌道を予想

3 原子価結合法の限界

4 前回に説明した, 原子価結合法の限界 ハイトラーとロンドンが開発した 原子価結合法 は, 水素分子の結合を見事に説明する事が出来た. しかし, より複雑な分子に適用しようとすると, すぐに壁にぶつかる事となった. 単純な原子価結合法では, アンモニアやメタンといった非常に単純な分子の結合が説明できない

5 . 単純な原子価結合法でのアンモニア (N 3 ) 分子 窒素原子の電子配置 :(s) (s) (p) 3 s 電子は, 内殻なので結合に関与しない s 軌道は埋まっており ( ) 結合を作れない p 軌道に電子 3 つ (p x ),(p y ),(p z ) 水素原子の電子配置 :(s) s 軌道の電子は結合に関与できる これらの電子で, 実際に結合を作ってみる. 原則 : 軌道が重なる & スピン逆向きの電子のペア

6 N 3 分子はできるけど s s p z p y N p x s

7 原始的な原子価結合法で作った N 3 分子 3 つの N- 結合は,p x,p y,p z 軌道で結合 -N- の結合角は,90 現実の N 3 分子 -N- の結合角は, 約 07 ( 非共有電子対を含めれば, ほぼ正四面体 ) この違いを修正できない限り, 原子価結合法は間違っている.

8 . 単純な原子価結合法でのメタン (C 4 ) 分子 メタンでは, アンモニア以上に致命的な事が起こる. 炭素原子の電子配置 :(s) (s) (p) s 電子は, 内殻なので結合に関与しない s 軌道は埋まっており ( ) 結合を作れない p 軌道に電子 つ (p x ),(py) 水素原子の電子配置 :(s) s 軌道の電子は結合に関与できる

9 単純に結合を作ってみると s s p z p y C p x s s 本しか結合が作れない! ( 実際には 4 本 )

10 ポーリングによる解決 : 昇位と混成 このポーリングは, 電気陰性度の定式化を行ったポーリングと同一人物である.

11 昇位

12 しかたがないので, 炭素の電子が一つ, 励起されていると仮定してしまおう (s p 軌道へ ). (s) (s) (p) (s) (s) (p) 3 電子を励起するとエネルギー的には損をするが, 結合が増えればトータルでは得をする ( 時もある ). Δ エネルギーの損 :Δ 作れる結合 : 本増える. 結合が Δ/ より強ければトータルでは得

13 これで炭素原子は 4 本の結合を作れるようになる! 問題は解決? まだ大きな問題が残っている

14 s 炭素の p 軌道と結合している水素 :3 個 s s C p z p y s p x 非等価 s 炭素の s 軌道と結合している水素 : 個

15 現実には,4 本の C- 結合は完全に等価で, メタン分子は正四面体構造を取る. 分子の結合を説明するには, 何か新しい考え方を導入する必要がある.

16 混成軌道

17 原子価結合法でメタンの 4 本の等価な結合を説明するには, 炭素の s 軌道 つ &p 軌道 3 つから, 等価な 4 本の軌道を生み出す必要がある. 混成軌道 量子論では, 複数個の軌道を組み合わせて, 新しい軌道に再構築しても良い. s,p 軌道を混ぜて, 新しい軌道を作ろう ただし, 出来上がる軌道は, 元の軌道の数と同じ数 軌道はきっちり使い切る

18 実際には, こうなる. 元になる軌道 :s,p x,p y,p z 新しい軌道 : 新しい軌道 : 新しい軌道 3: 新しい軌道 4: z y x p p p s z y x p p p s z y x p p p s z y x p p p s 二乗したものが電子密度なので, 全ての軌道を /4 ずつ混ぜ合わせている事になる (/ の二乗で /4).

19 一つ目の軌道を詳しく見てみよう. s p p p x /4 個 ( 二乗が電子密度である事に注意 ) の s 軌道に, /4 個の p x 軌道 + /4 個の p y 軌道 + /4 個の p z 軌道を足す. まず,p 軌道 3 つを先に足し合わせてみる. 電子は波なので, 同じ符号は強めあい, 逆符号は打ち消しあう. y z ( 斜め手前 ) + + = p x p y pz ( 画面に垂直 ) ( 斜め奥 )

20 そこにさらに s 軌道 ( の /4) を足す. (+x+y+z 方向 ) (+x+y+z 方向 ) + = (-x-y-z 方向 ) すると,{+x,+y,+z} 方向 ( 右上手前方向 ) に伸びた軌道になる.

21 他の軌道も同じように見てみよう s p p p x y z + p x - p y - pz ( 画面に垂直 ) 軌道を 引く のは, 符号を反転させた軌道を 足す のと同じ ( 引くのは, マイナスを足すのと同じ ).

22 s p p p x y z + p x + + p y pz ( 画面に垂直 ) = ( 奥方向に伸びる ) {+x,-y,-z} 方向 ( 右下奥方向 ) に伸びた軌道になる.

23 s p p p x y z + ( 奥方向に伸びる ) = p x + + p y pz ( 画面に垂直 ) {-x,+y,-z} 方向 ( 左上奥方向 ) に伸びた軌道になる.

24 s p p p x y z + p x + + p y pz ( 画面に垂直 ) = ( 手前方向に伸びる ) {-x,-y,+z} 方向 ( 左下手前方向 ) に伸びた軌道になる.

25 つまり,s 軌道 つと p 軌道 3 つを混ぜ合わせる事で 右上手前 に伸びる軌道 左下手前 に伸びる軌道 右下奥 に伸びる軌道 左上奥 に伸びる軌道 の 4 つの軌道へと再構築できる sp 3 混成軌道 s 軌道 つと p 軌道 3 つが混ざって出来る,4 本の軌道 この 4 つの方向は, 正四面体の頂点方向に等しい.

26 まとめると, こうなる. 炭素原子 つの時の価電子 :(s) (p) 電子一つを上の軌道に上げる ( 昇位 ):(s) (p) 3 s 軌道と p 軌道 3 つを混ぜて sp 3 混成軌道に :(sp 3 ) 4 出来た等価な 4 本の軌道と,4 つの水素原子の s 軌道の間で結合を作る. 四面体型の C 4

27 s 軌道,p x 軌道,p y 軌道,p z 軌道 sp 3 混成軌道 4 本 ごちゃ混ぜにして作り直し

28 p z p y C p x 約 09.5 s C sp 3 sp 3 C sp 3 sp 3

29 この sp 3 混成軌道を使う事で, メタン (C 4 ) やアンモニア (N 3 ) の結合角を説明しつつ, 原子価結合法で原子同士の結合を説明できるようになる. なお, アンモニアの場合は,4 つの sp 3 軌道のうち 3 つを結合に使い, 残り つに非共有電子対が詰まっている. N

30 混成は,sp 3 混成だけではない. 例えば,s 軌道 つと p 軌道 つを混ぜると, 別の混成を作る事が出来る. 3 (s) 3 ( p x ) 3 (s) 6 ( p x ) ( p y ) (s) 6 ( p x ) ( p y ) + +

31 混成は,sp 3 混成だけではない. 例えば,s 軌道 つと p 軌道 つを混ぜると, 別の混成を作る事が出来る. 3 (s) 3 ( p x ) 3 (s) 6 ( p x ) ( p y ) 3 (s) 6 ( p x ) ( p y )

32 この結果出来上がるのは, s 軌道 つと p 軌道 つ 3 方向に伸びる軌道残りの p 軌道 つ そのまま 0 上から見た図 横から見た図 という 4 つの軌道である. これを sp 混成と呼ぶ.

33 s 軌道,p x 軌道,p y 軌道 p z 軌道 混ぜて作り直し そのまま sp 混成軌道 3 本 p z 軌道

34 s 軌道 つと p 軌道 つの混成も可能 (s) ( p x ) + (s) ( p x ) +

35 この結果出来上がるのは, s 軌道 つと p 軌道 つ 方向に伸びる軌道残りの p 軌道 つ そのまま sp 混成 sp 混成 p y p z という 4 つの軌道である. これを sp 混成と呼ぶ.

36 s 軌道,p x 軌道 p y 軌道,p z 軌道 混ぜて作り直し そのまま sp 混成軌道 本 p y 軌道,p z 軌道

37 sp 3 混成軌道は 4 本の等価な結合をもつ場合に重要だったが,sp や sp 混成軌道は二重結合や三重結合を説明するのに重要な役割を果たす.

38 sp 混成軌道 : 二重結合例えばエチレン分子 炭素をsp 結合で考えると良い. C C sp 混成軌道 sp 混成軌道 そのまま残った p z 軌道 C=C の間は, 重なりが大きく強い σ 結合が つ, 重なりが小さく弱い π 結合が つ, の計 本 ( 二重結合 )

39 sp 混成軌道 : 三重結合例えばアセチレン分子 炭素をsp 結合で考えると良い. そのまま残った p y,p z 軌道 sp 混成軌道 sp 混成軌道 C C の間は, 重なりが大きく強い σ 結合が つ, 重なりが小さく弱い π 結合が つ, の計 3 本 ( 三重結合 )

40 原子のとる混成軌道は, ルイス構造と VSEPR 則からおおよそ予想できる. 例えばホルムアルデヒドの場合 : ルイス構造を書く VSEPR で形を予想 どちらも三角形 3 その形になる混成軌道を選ぶ 三角形 sp 混成 ( 四面体なら sp 3 混成, 直線なら sp 混成 )

41 4 実際の結合を考える = C O 炭素も酸素も sp 混成 C- は,sp 軌道と水素の s で σ 結合 C-O は, 両者の sp で σ 結合 + 両者の p 軌道で π 結合 ( 二重結合 ) O の非共有電子対 つは, 残りの sp 軌道に

42 もう一例だけやってみよう. 二酸化炭素の場合 : ルイス構造を書く VSEPR で形を予想 O-C-O: 直線,O 周りは三角形 3 その形になる混成軌道を選ぶ C: 直線 sp 混成,O: 三角形 sp 混成 4 実際の結合 ( 左右の π 結合は向きが 90 度違う )

43 p 軌道 (π 結合 ) だけ抜き出して書くと

44 単結合 4 本 sp 3 混成四面体 二重結合 sp 混成三角形 三重結合 sp 混成直線 全てがこの通りになるわけでは無いが, 大抵はこうなるので, この関係は必ず覚えておくこと.

45 本日のポイント 昇位と混成 s 軌道と p 軌道を混ぜて, 新しい軌道を作る sp 3 混成 : 正四面体型 sp 混成 : 三角形 (p 軌道が つ残る ) sp 混成 : 直線形 (p 軌道が つ残る ) 多重結合との関係炭素などでは以下が基本 ( たまに違う ) 二重結合 sp 混成三重結合 sp 混成 逆に, 分子の形から混成を予想することも出来るルイス構造 VSEPR で構造予想 軌道を予想

スライド 1

スライド 1 無機化学 II 第 3 回 化学結合 本日のポイント 分子軌道 原子が近づく 原子軌道が重なる 軌道が重なると, 原子軌道が組み合わさって 分子軌道 というものに変化 ( 分子に広がる ) 結合性軌道と反結合性軌道 軌道の重なりが大きい = エネルギー変化が大 分子軌道に電子が詰まった時に, 元の原子よりエネルギーが下がるなら結合を作る. 混成軌道と原子価結合法 ( もっと単純な考え方 ) わかりやすく,

More information

理工学部無機化学ノート

理工学部無機化学ノート 5 混成軌道と多重結合 分子軌道法 ) 混成軌道 様々な幾何構造の分子の結合を説明するために考え出された 例えば sp 混成軌道の場合 右図のように s 軌道と p 軌道二つが混じり合って三つで 組の混成軌道を作ると考える 混成軌道の例 sp 直線型チオシアン酸イオン sp 平面三角形型 三フッ化ホウ素 dsp 平面四配位型四フッ化キセノン sp 四面体型アンモニウムイオン dsp 三方両錐型五フッ化リン

More information

スライド 1

スライド 1 基礎無機化学第 10 回 分子構造と結合 (II) 結合長, 結合の強さ, ケテラーの三角形,VSEPR 本日のポイント 結合長と結合の強さ結合が強い方が結合が短い. 周期表の下の方ほど結合は弱い. 非共有電子対の反発があると結合は弱い. 分極した結合は強い. ケテラーの三角形結合している原子の電気陰性度を見て, 金属結合 共有結合 イオン結合を区別. VSEPR: 分子全体の形を単純な規則で予想結合の電子対同士は反発する.

More information

無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態

無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態 無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態を比較すると, どちらの分子がどの程度エネルギーが低いか (= 安定か ) を平均結合エンタルピーから計算して答えよ.

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

化学I

化学I 化学 I 第 4 章 分子の構造 ( その 2) http://acbio2.acbio.u-fukui.ac.jp/indphy/hisada/chemistryi/ 授業計画 1 回物質観の進歩と自然科学の発展 2 回原子の電子構造 - 電子, 陽子, 原子量 - 3 回水素原子の電子スペクトル 4 回 Bohr の水素原子模型 5 回物質の波動性 6 回量子数 7 回原子の電子配置と周期律表

More information

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 いやだ!! の強さ 電子親和力 = 原子が電子 1 個を受け取ったときに放出するエネルギー ( イメージ

More information

Microsoft Word - 化学系演習 aG.docx

Microsoft Word - 化学系演習 aG.docx 有機化学反応の基礎 () 芳香族化合物 ) 芳香族化合物の性質 ベンゼンに代表される芳香族化合物は 環構造を構成する原子すべてが p 軌道をもち 隣同士の原子間で p 軌道が重なり合うことができるので 電子が非局在化 ( 共鳴安定化 ) している 芳香族性をもつため 求電子付加反応ではなく求電子置換反応を起こしやすい 全ての炭素が sp ² 混成 π 結合 p 軌道 π 電子がドーナツ状に分布し 極めて安定

More information

<4D F736F F F696E74202D208AEE916289BB8A775F91E63989F18D758B A7790B A2E >

<4D F736F F F696E74202D208AEE916289BB8A775F91E63989F18D758B A7790B A2E > 基礎化学 第 9 回 分 構造の予測 担当 : 学院 学理 学部化学 命科学科阿部 朗 1 校化学の教科書に記述されている内容 原 価殻電 対反発理論 (VSEPR 理論 ) 2 メタンの分 構造 3 (a) 正四 体は 4 個の等価な頂点と 4 個の等価な平 からなる対称的な 体である (b) 正四 体形は 体に基づく構造としてみることもできる すなわち 体の 8 個の頂点のうち 図のように 4

More information

2. 分子の形

2. 分子の形 基礎現代化学 ~ 第 4 回 ~ 分子の形と異性体 教養学部統合自然科学科 小島憲道 2014.04.30 第 1 章原子 1 元素の誕生 2 原子の電子構造と周期性第 2 章分子の形成 1 化学結合と分子の形成 2 分子の形と異性体第 3 章光と分子 1 分子の中の電子 2 物質の色の起源 3 分子を測る第 4 章化学反応 1 気相の反応 液相の反応 2 分子を創る第 5 章分子の集団 1 分子間に働く力

More information

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード] 化学結合と分 の形 Part 2 軌道を使った考え方を学ぶ 3 原 価結合法 (V 法 ) 共有結合の本質は軌道の重なり軌道を意識した結合を簡単に理解する 共有結合の本質は軌道の重なり 原子価結合法 (V 法 ) Valance ond Method 原子価結合法 V 法で用いる原子価軌道とその重なり方 原子価軌道 Valence Orbital 軌道の重なり方から見た共有結合の種類 原子価結合法

More information

8. 置換基の電子的性質 誘起効果と共鳴効果 誘起効果 Inductive Effect (I 効果 ) σ 結合を通じて伝わる極性結合と隣の結合との相互作用 電気陰性度の差が重要 1) 陰性の原子 ( 置換基 ) による場合 (-I 効果 ) δδδ+ C δδ+ C δ+ C

8. 置換基の電子的性質 誘起効果と共鳴効果 誘起効果 Inductive Effect (I 効果 ) σ 結合を通じて伝わる極性結合と隣の結合との相互作用 電気陰性度の差が重要 1) 陰性の原子 ( 置換基 ) による場合 (-I 効果 ) δδδ+ C δδ+ C δ+ C 8. 置換基の電子的性質 誘起効果と共鳴効果 8-1 8.1. 誘起効果 Inductive Effect (I 効果 ) σ 結合を通じて伝わる極性結合と隣の結合との相互作用 電気陰性度の差が重要 1) 陰性の原子 ( 置換基 ) による場合 (-I 効果 ) X X X: alogen,, R, R 2, R, 2... 電気陰性度大 :-I 効果大 2) 陽性の置換基による場合 (Li, B,

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 つの質量は? 水素原子は,0.167 10-23 g 酸素原子は,2.656 10-23 g 炭素原子は,1.993 10-23 g 原子の質量は,

More information

(Microsoft Word - 01\203\213\203C\203X\216\256\202\306\213\244\226\302.doc)

(Microsoft Word - 01\203\213\203C\203X\216\256\202\306\213\244\226\302.doc) 1. ルイス構造式 学習内容と目標 ルイス構造式の書き方 中心原子と周辺原子 形式電荷の求め方 ルイス構造式とケクレ構造式の相互の書き換え 省略された非共有電子対が表記できるようになること 2.1 はじめに ルイス構造式はアメリカ物理化学者のルイス (G..Lewis, 1916 年 ) によって考案された表記法である 化学結合の性 質や分子の形あるいは反応機構の記述をするために, きわめ て有用な表記法である

More information

Microsoft PowerPoint - 04_28OCT2016間帅è³⁄挎.pptx

Microsoft PowerPoint - 04_28OCT2016間帅è³⁄挎.pptx 無機化学 Ⅰa 06 年 0 月 ~07 年 月 0 月 8 日第 4 回 担当教員 : 回 ~8 回福井大学学術研究院工学系部門生物応用化学分野前田史郎 E-mail:smaeda@u-fukui.ac.j 章分子の構造と結合 分子の対称性 対称性と対称操作, 対称要素 4. 分子の構造と結合 本講義は 0 月 0 日の補講です 9 回 ~6 回福井大学産学官連携本部米沢晋教科書 : 基礎無機化学下井守著

More information

内容 1. 化学結合 2. 種類と特性 3. 反応の種類 4. 反応機構 5. 高分子材料の特性 6. 高分子合成 7. 有機構造解析

内容 1. 化学結合 2. 種類と特性 3. 反応の種類 4. 反応機構 5. 高分子材料の特性 6. 高分子合成 7. 有機構造解析 株式会社アイテス ( 株 ) アイテス 品質技術 清野智志 有機化学講義 http://www.ites.co.jp 内容 1. 化学結合 2. 種類と特性 3. 反応の種類 4. 反応機構 5. 高分子材料の特性 6. 高分子合成 7. 有機構造解析 1. 化学結合 1 イオン結合 Na + + Cl - Na + Cl - 2 金属結合 Al-Al Cu-Cu : Al -Al Cu - Cu

More information

2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 周期 Positive 1 H 電気陰性度 Electronegativity Negative

2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 周期 Positive 1 H 電気陰性度 Electronegativity Negative 2-1 [ 第 1 部 基礎および構造論 ] 2. 有機化合物を構成する原子と結合 2.1. 有機化合物を構成する主要な原子周期表 Periodic Table 族 1 2 13 14 15 16 17 周期 Positive 1 電気陰性度 Electronegativity egative 2 Li B F 3 a Mg Al Si P S l 4 K a Br 電気陰性度 5 I Positive

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

4_電子状態計算

4_電子状態計算 4. 分子の電子状態計算 4. 1 電子状態計算 1) について分子の電子状態を知るには, 各原子の原子軌道を組み合わせて1 電子分子軌道を作り, それを最適化して近似性が最も高い1 電子分子軌道を求める ついで, エネルギーの低い1 電子分子軌道から順に 2 個ずつ ( スピンを逆にして ) その分子が持つ全ての電子を収納する その上で, 電子の存在確率の空間分布を計算し, 電子が分子の周りにどのように広がっているかを明らかにする

More information

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最

2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最 //7 第 3 章 ükel 法 Shrödnger 方程式が提案された 96 年から 年を経た 936 年に ükel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である ükel 法は最も単純な分子軌道法だが それによって生まれた考え方は化学者の概念となって現在に生き続けている ükel 近似の前提 ükel 近似の前提となっている主要な近似を列挙する

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

スライド 1

スライド 1 基礎無機化学第 8 回 原子パラメーター (II) 電子親和力, 電気陰性度, 分極率 本日のポイント 電子親和力 : 追加の電子の受け取りやすさ基本的に周期表の右の方が大きいハロゲンあたりで最大, 希ガスでは負 電気陰性度 : 結合を作った時の電子を引っ張る強さ値が大きいと, 結合相手から電子を引っ張る値の差の大きい原子間での結合 イオン的イオン化エネルギーと電子親和力の平均に近い 分極率 : 電子の分布がどのくらい変化しやすいか周期表の左,

More information

木村の有機化学小ネタ 糖の構造 単糖類の鎖状構造と環状構造 1.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 1953 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が

木村の有機化学小ネタ   糖の構造 単糖類の鎖状構造と環状構造 1.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 1953 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が 糖の構造 単糖類の鎖状構造と環状構造.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 9 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が X 線回折実験により決定され, 次の約束に従い, 構造式が示された 最も酸化された基を上端にする 上下の原子または原子団は中心原子より紙面奥に位置する 左右の原子または原子団は中心原子より紙面手前に位置する

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード] 化学結合と分 の形 なぜ原 と原 はつながるのかなぜ分 はきまった形をしているのか化学結合の本質を理解しよう 分子の形と電子状態には強い相関がある! 原子 分子 基礎化学 ( 化学結合論 構造化学 量子化学 ) 電子配置分子の形強い相関関係 ( 電子状態 ) ( 立体構造 ) 分子の性質 ( 反応性 物性 ) 先端化学 ( 分子設計 機能化学 ) 機能 分子の形と電子配置の基礎的理解 基礎 ( 簡単

More information

4. 炭素 炭素多重結合 不飽和炭化水素 4.1. C=C 結合 2p 2p z 4-1 2p z 2s 2p z 混成 sp 2 混成軌道 σ 結合を作る C σ π Trigonal 正三角形 + C C π 軌道 2p z 2p z C: sp 2 sp 2 : C π 電子の非局在化 安定化

4. 炭素 炭素多重結合 不飽和炭化水素 4.1. C=C 結合 2p 2p z 4-1 2p z 2s 2p z 混成 sp 2 混成軌道 σ 結合を作る C σ π Trigonal 正三角形 + C C π 軌道 2p z 2p z C: sp 2 sp 2 : C π 電子の非局在化 安定化 4. 炭素 炭素多重結合 不飽和炭化水素 4.1. = 結合 2p 4-1 2s 混成 2 混成軌道 σ 結合を作る σ Trigonal 正三角形 + 軌道 : 2 2 : 電子の非局在化 安定化 (σ 軌道より小さい ) σ σ 結合 結合 例 )ethylene (ethene) 120 回転は困難 4.2. 結合 2s 2p 混成 混成軌道 σ 結合を作る Linear 直線 安定化 非局在化

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

0.1 (77 :21-25),,... VSEPR. (1) 2 ( ). (2), ( ). (3),. (4),. (5) 3,. (6),. *1 (7) *2. (8),Li,Be,B. 1:. VSEPR( ). VSEPR. (1),.. (2), >, > (3

0.1 (77 :21-25),,... VSEPR. (1) 2 ( ). (2), ( ). (3),. (4),. (5) 3,. (6),. *1 (7) *2. (8),Li,Be,B. 1:. VSEPR( ). VSEPR. (1),.. (2), >, > (3 0.1 (77 :21-25),,... VSEPR. (1) 2 ( ). (2), ( ). (3),. (4),. (5) 3,. (6),. *1 (7) *2. (8),Li,Be,B. 1:. VSEPR( ). VSEPR. (1),.. (2), >, >. 2 3 4 5 6 (3) 120. *1,,. *2 ( ) = ( ) ( ) 2 ( ) 1 2: 2 ( ).,,..

More information

Microsoft PowerPoint - 11JUN03

Microsoft PowerPoint - 11JUN03 基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:saea@u-fukui.a.p URL:http://abio.abio.u-fukui.a.p/phyhe/aea/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法

More information

2_分子軌道法解説

2_分子軌道法解説 2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約

More information

木村の理論化学小ネタ 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関

木村の理論化学小ネタ   熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関係を扱う化学の一部門を熱化学という 発熱反応反応前の物質のエネルギー 大ネルギ熱エネルギーー小エ反応後の物質のエネルギー 吸熱反応 反応後の物質のエネルギー 大ネルギー熱エネルギー小エ反応前の物質のエネルギー

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ガウシアンと群論 ( 名古屋工業大学 ) 川崎晋司 ガウシアンの特徴非経験的分子軌道計算 分子のシュレディンガー方程式をどう解くか HΨ = EΨ 電子だけでなく原子核も入る もちろん複数 一電子波動関数の形にして解こう = 分子軌道法 例えばハートリー法では多電子波動関数 Ψを一電子波動関数 φの積で近似 Ψ r 1, r, = ϕ r 1 ϕ r しかし この近似ではパウリの原理 ( 電子の入れ替えに反対称

More information

02 配付資料(原子と分子・アルカンとアルケンとアルキン).key

02 配付資料(原子と分子・アルカンとアルケンとアルキン).key 1 4 20 4 23 18:45~ 13 1322 18:45~ 1 113 TEL: 03-5841-4321 E-mail kagaku@chem.s.u-tokyo.ac.jp 2 / 3 / 1s/2s 2s 1s 2s 1s Wikipedia 1s 2s 4 / s, p, d 1, 3, 5 5 / 50 2 2 2 2 6 6 メチルアニオン 陽子 6 個 = 正電荷 6 1s 電子

More information

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦   正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

経済学 第1回 2010年4月7日

経済学 第1回 2010年4月7日 経済学 第 13 回 井上智弘 2010/7/7 経済学第 13 回 1 注意事項 次回 (7/14), 小テストを行う.» 企業の生産費用と完全競争市場における生産決定について 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/7/7 経済学第 13 回 2 前回の復習 固定費用の水準を決めたときに導くことができる平均費用曲線のことを,

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

Microsoft PowerPoint - presentation2007_04_ComplexFormation.ppt

Microsoft PowerPoint - presentation2007_04_ComplexFormation.ppt 錯生成平衡とその応用 金属イオン が配位子 (lignd) と反応し 錯体 (complex) を形成するときの平衡反応. 金属イオンは遷移金属の場合が多い. 遷移金属は d 軌道と その上の s 軌道や p 軌道の 電子を利用して混成軌道をつくる. 比較的容易に多様な酸化数をとれる [u(h ) テトラアンミン銅 (II) イオン [Fe() 6 ヘキサシアノ鉄 (III) イオン omplex

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

Chap. 1 NMR

Chap. 1   NMR β α β α ν γ π ν γ ν 23,500 47,000 ν = 100 Mz ν = 200 Mz ν δ δ 10 8 6 4 2 0 δ ppm) Br C C Br C C Cl Br C C Cl Br C C Br C 2 2 C C3 3 C 2 C C3 C C C C C δ δ 10 8 6 4 δ ppm) 2 0 ν 10 8 6 4 δ ppm) 2 0 (4)

More information

木村の理論化学小ネタ 体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1

木村の理論化学小ネタ   体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1 体心立方構造 面心立方構造 六方最密構造 剛球の並べ方と最密構造剛球を平面上に の向きに整列させるのに次の 2 つの方法がある 図より,B の方が A より密であることがわかる A B 1 体心立方構造 A を土台に剛球を積み重ねる 1 段目 2 2 段目 3 3 段目 他と色で区別した部分は上から見た最小繰り返し単位構造 ( 体心立方構造 ) 4 つまり,1 段目,2 段目,3 段目と順に重ねることにより,

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

1. マイピクチャの中に [ 講習用 ] フォルダーを作成し その中に上記の図のような階層構造のフォルダーを作成します (1) まず マイピクチャの中に [ 講習用 ] フォルダーを作成します [ コンピューター ] [ マイピクチャ ]1 [ マイピクチャ ] フォルダ内 ( 右枠 ) の空白部分

1. マイピクチャの中に [ 講習用 ] フォルダーを作成し その中に上記の図のような階層構造のフォルダーを作成します (1) まず マイピクチャの中に [ 講習用 ] フォルダーを作成します [ コンピューター ] [ マイピクチャ ]1 [ マイピクチャ ] フォルダ内 ( 右枠 ) の空白部分 H28.4.21 IT ふたば会 - 水島講座 [ 注 1 ] : [ 付属資料 ] フォルダーの中に [2015-01-01] 使用する主な操作 [2015-01-15] と [matuyama_jyou.jpg] と [program] が入っています 1. フォルダの作成 2. 縮専の使用法 ( ヘ ーシ 番号 ) は [ 速効! パソコン講 3.JTrimの使い方座 ] 教本ワート 2010

More information

<4D F736F F D CE38AFA92868AD48E8E8CB15F89F0939A97E15F8CF68A4A97702E646F6378>

<4D F736F F D CE38AFA92868AD48E8E8CB15F89F0939A97E15F8CF68A4A97702E646F6378> 平成 25 年度無機化学 2 期末試験 (11/13 実施 ) 解答例 (1) SnCl 2 の水溶液は Cu 2+ イオンの水溶液とどのような反応をするか また Pb 2+ イオンの水溶液とどのような反応をするか 反応しない場合は 反応せず 反応する場合は酸化還元反応式を書き Sn イオンの変化について 酸化 あるいは 還元 の言葉を用いて説明せよ 教科書 P380 を参照 Sn(II) 溶液は

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70 Math-quarium 練習問題 + 図形の性質 図形の性質 線分 に対して, 次の点を図示せよ () : に内分する点 () : に外分する点 Q () 7: に外分する点 R () 中点 M () M () Q () () R 右の図において, 線分の長さ を求めよ ただし,R//Q,R//,Q=,=6 とする Q R 6 Q から,:=:6=: より :=: これから,R:=: より :6=:

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

3Dプリンタ用CADソフト Autodesk Meshmixer入門編[日本語版]

3Dプリンタ用CADソフト Autodesk Meshmixer入門編[日本語版] ご購入はこちら. http://shop.cqpub.co.jp/hanbai 第 1 章操作メニュー ソフトウェアの立ち上げ時に表示されるトップ メニューと, 各メニューの役割について紹介します. ソフトウェアを使うにあたり, どこからスタートさせるのか確認しましょう. 最初に, 操作メニューから確認していきましょう. ソフトウェアを立ち上げると, 図 1-1 が現れます. この画面で, 大きく三つの操作メニュー

More information

2004 年度センター化学 ⅠB p1 第 1 問問 1 a 水素結合 X HLY X,Y= F,O,N ( ) この形をもつ分子は 5 NH 3 である 1 5 b 昇華性の物質 ドライアイス CO 2, ヨウ素 I 2, ナフタレン 2 3 c 総電子数 = ( 原子番号 ) d CH 4 :6

2004 年度センター化学 ⅠB p1 第 1 問問 1 a 水素結合 X HLY X,Y= F,O,N ( ) この形をもつ分子は 5 NH 3 である 1 5 b 昇華性の物質 ドライアイス CO 2, ヨウ素 I 2, ナフタレン 2 3 c 総電子数 = ( 原子番号 ) d CH 4 :6 004 年度センター化学 ⅠB p 第 問問 a 水素結合 X HLY X,Y= F,O,N ( ) この形をもつ分子は 5 NH である 5 b 昇華性の物質 ドライアイス CO, ヨウ素 I, ナフタレン c 総電子数 = ( 原子番号 ) d CH 4 :6+ 4 = 0個 6+ 8= 4個 7+ 8= 5個 + 7= 8個 4 + 8= 0個 5 8= 6個 4 構造式からアプローチして電子式を書くと次のようになる

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽

電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽 電子配置と価電子 P11 1 2 13 14 15 16 17 18 1H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 1 2 3 4 5 6 7 0 陽性元素陰性元素安定電子を失いやすい電子を受け取りやすい 原子番号と価電子の数 P16 元素の周期表 P17 最外殻の電子配置と周期表

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

Wordでアルバム作成

Wordでアルバム作成 Microsoft 2013 Word でアルバム作成 富良野の旅 kimie 2015/02/21 Word でアルバムの作成 今講座ではアルバム編集ソフトでデジカメ写真を加工 編集して その写真を Word に貼り付けてアルバムにしていきます たくさん撮影したデジカメ写真の中から お気に入りの写真を選ぶことにより アルバムが思い出深いものになります アルバム作成準 1. アルバムにする写真 (

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

相関係数と偏差ベクトル

相関係数と偏差ベクトル 相関係数と偏差ベクトル 経営統計演習の補足資料 07 年 月 9 日金沢学院大学経営情報学部藤本祥二 相関係数の復習 r = s xy s x s y = = n σ n i= σn i= n σ n i= n σ i= x i xҧ y i തy x i xҧ n σ n i= y i തy x i xҧ x i xҧ y i തy σn i= y i തy 式が長くなるので u, v の文字で偏差を表すことにする

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション シミュレーションの実行 2014 Yoshihiro Sato All rights reserved 2 章 問題解決と コンピュータの活用 1 2 3 基本的な考え方と手順 モデル化とシミュレーション 処理手順の明確化と自動化 P62 3 2 章 問題解決とコンピュータの活用 2 節モデル化とシミュレーション 1 2 問題のモデル化 シミュレーションの実行 2 章 2 節モデル化とシミュレーション

More information

Microsoft PowerPoint - 11JUL06

Microsoft PowerPoint - 11JUL06 無機化学 2011 年 4 月 ~2011 年 8 月 第 12 回 7 月 6 日分子の対称による分類 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 E-mail:smaeda@u-fukui.ac.jp URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人

More information

2019 年度大学入試センター試験解説 化学 第 1 問問 1 a 塩化カリウムは, カリウムイオン K + と塩化物イオン Cl - のイオン結合のみを含む物質であり, 共有結合を含まない ( 答 ) 1 1 b 黒鉛の結晶中では, 各炭素原子の 4 つの価電子のうち 3 つが隣り合う他の原子との

2019 年度大学入試センター試験解説 化学 第 1 問問 1 a 塩化カリウムは, カリウムイオン K + と塩化物イオン Cl - のイオン結合のみを含む物質であり, 共有結合を含まない ( 答 ) 1 1 b 黒鉛の結晶中では, 各炭素原子の 4 つの価電子のうち 3 つが隣り合う他の原子との 219 年度大学入試センター試験解説 化学 第 1 問問 1 a 塩化カリウムは, カリウムイオン K + と塩化物イオン Cl - のイオン結合のみを含む物質であり, 共有結合を含まない ( 答 ) 1 1 b 黒鉛の結晶中では, 各炭素原子の 4 つの価電子のうち 3 つが隣り合う他の原子との共有結合に使われ, 残りの 1 つは結晶を構成する層上を自由に移動している そのため, 黒鉛は固体の状態で電気をよく通す

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

ito.dvi

ito.dvi 1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

ï¼™æ¬¡å¼‘ã†®åł€æŁ°å‹ƒè§£

ï¼™æ¬¡å¼‘ã†®åł€æŁ°å‹ƒè§£ == 次式の因数分解 == [1]~[IV] の公式は中学校の復習となっているが, 高校では 置き換え による因数分解などやや高度なものも含まれている 共通因数でくくる [I] ma+mb=m(a+b) [I] の例 (1) () 5y+0y =5( y+4y )=5y(+4y) 注意途中経過として (1) のような式を書くのは自由である ( 解答者が思いついた順序によっては y(5+0y) など他の形となる場合もあり得る

More information

2014 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 H

2014 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 H 01 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 = 18 N = 8 3 6 = 30 Ne = 0 5 = 3 6 l = 71 となり,1 が解答 (

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft PowerPoint - 02_14OCT2015配付資料.ppt

Microsoft PowerPoint - 02_14OCT2015配付資料.ppt 化学 Ⅱ 2015 年 10 月 ~2016 年 2 月 水曜日 1 時間目 121M 講義室第 2 回 10 月 1 日イオン結晶, 共有結晶第 8 回目は中間試験ですが,11 月 25 日ではなく,11 月 20 日金曜日 時間目の補講枠を使ってK110 教室で試験を行います したがって 11 月 25 日 ( 水 )1 時間目は授業がありません 充填率 担当教員 : 福井大学大学院工学研究科生物応用化学専攻

More information

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく BET 法による表面積測定について 1. 理論編ここでは吸着等温線を利用した表面積の測定法 特に Brunauer,Emmett Teller による BET 吸着理論について述べる この方法での表面積測定は 気体を物質表面に吸着させた場合 表面を 1 層覆い尽くすのにどれほどの物質量が必要か を調べるものである 吸着させる気体分子が 1 個あたりに占める表面積をあらかじめ知っていれば これによって固体の表面積を求めることができる

More information

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19 数学 第 9 回方程式とシンメトリ - 010/1/01 数学 #9 010/1/01 1 前回紹介した 次方程式 の解法は どちらかというと ヒラメキ 的なもので 一般的と言えるものではありませんでした というのは 次方程式 の解法を知っても 5 次方程式 の問題に役立てることはできそうもないからです そこで より一般的な別解法はないものかと考えたのがラグランジュという人です ラグランジュの仕事によって

More information

NMR_wakate_ ppt

NMR_wakate_ ppt NMR 基礎講義 & 2 第 0 回若手 NMR 研究会 2009 年 9 月 4 日 ( 金 )-6 日 ( 日 ) IPC 生産性国際交流センター ( 湘南国際村 ) 大阪大学蛋白質研究所構造プロテオミクス研究系 池上貴久 化学シフトの直積演算子 (product-operator) I " I cos (#t) + I sin (#t) x x y ω : 角速度 (rad/s) z 一周の長さ

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

有機化合物の反応9(2018)講義用.ppt

有機化合物の反応9(2018)講義用.ppt 有機化合物の反応 ( 第 9 回 ) 創薬分子薬学講座薬化学部門 金光卓也 ハロゲン化アルキルの反応性 l S N 1 と S N 2 の特徴の復習 l S N 1=Unimolecular Nucleophilic Substitution 単分子求核置換反応 l S N 2=Bimolecular Nucleophilic Substitution 二分子求核置換反応 1 反応速度 l S N

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

Taro-1803 平行線と線分の比

Taro-1803 平行線と線分の比 平行線と線分の比 1 4 平行線と線分の比 ポイント : 平行な直線がある つの三角形の線分の比について考える 証明 右の図で で とする (1) は と相似である これを証明しなさい と において から 平行線の ( ) は等しいから 9c = ( ) 1 = ( ) 1, より ( ) がそれぞれ等しいので 相似な図形になるので相似比を利用して () : の相似比を求めなさい 対応する線分の長さを求めることができる

More information

ChemA 講義補足 (7 月 15 日 ) 第 13 回目は これまで学んできた軌道間相互作用によって新しい軌道ができる仕組みに基づいて 化学的反応性が何に支配されているか 化学的安定性の条件は何かなどについて学びました また 結合の組換えなど 化学反応がどのように進むのか 分子軌道の HOMO

ChemA 講義補足 (7 月 15 日 ) 第 13 回目は これまで学んできた軌道間相互作用によって新しい軌道ができる仕組みに基づいて 化学的反応性が何に支配されているか 化学的安定性の条件は何かなどについて学びました また 結合の組換えなど 化学反応がどのように進むのか 分子軌道の HOMO ChemA 講義補足 (7 月 15 日 ) 第 13 回目は これまで学んできた軌道間相互作用によって新しい軌道ができる仕組みに基づいて 化学的反応性が何に支配されているか 化学的安定性の条件は何かなどについて学びました また 結合の組換えなど 化学反応がどのように進むのか 分子軌道の HOMO や LUMO と関連付けて学びました 量子論に基づいて 化学反応の仕組みを理解できるようになると 実際に起こる反応を理解できるだけでなく

More information

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D> 幾何学と不変量 数学オリンピックの問題への応用 北海道大学 高等教育推進機構西森敏之 この講演では, 数学の長い歴史の中で見つけられた, 不変量 とよばれるものの考え方を, 実際に数学オリンピックの問題を解きながら, 紹介します 1. ウオーミング アップ まず, 少し脳細胞のウオーミング アップをします 定義 ( 分割合同 ) 平面上の 2 つの多角形 P と Q が分割合同とは, 多角形 P をいくつかの直線で切って小片に分けてから,

More information

( 表紙 )

( 表紙 ) ( 表紙 ) 1 次の各問いに答えなさい. 解答用紙には答えのみ記入すること. ( 48 点 ) (1) U108 -U8 %5U6 + 7 U を計算しなさい. () 15a 7 b 8 &0-5a b 1& - 8 9 ab を計算しなさい. () + y - -5y 6 を計算しなさい. (4) 1 4 5 の 5 枚のカードから 枚を選び, 横に並べて 桁の数を作 るとき, それが の倍数になる確率を求めなさい.

More information

経済学 第1回 2010年4月7日

経済学 第1回 2010年4月7日 経済学 第 11 回 井上智弘 2010/6/23 経済学第 11 回 1 注意事項 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/23 経済学第 11 回 2 前回の復習 企業の生産量は投入量に依存し, 投入量と生産量の関係は, 生産関数として表される. 投入量が固定される投入物のことを固定投入物と呼ぶ.

More information

取引手法 1 ナンピン ナンピン ( 難平 ) とは現在価格よりも 上がる ( 下がる ) と予想して 買い( 売り ) ポジションを持ったのに 逆に価格が下がってしまった ( 上がってしまった ) ときに 追加で 買い ( 売り ) ポジションを持つトレード手法です

取引手法 1 ナンピン ナンピン ( 難平 ) とは現在価格よりも 上がる ( 下がる ) と予想して 買い( 売り ) ポジションを持ったのに 逆に価格が下がってしまった ( 上がってしまった ) ときに 追加で 買い ( 売り ) ポジションを持つトレード手法です 第 3 回自動売買 4 つの取引手法と運用手順 取引手法 1 ナンピン ナンピン ( 難平 ) とは現在価格よりも 上がる ( 下がる ) と予想して 買い( 売り ) ポジションを持ったのに 逆に価格が下がってしまった ( 上がってしまった ) ときに 追加で 買い ( 売り ) ポジションを持つトレード手法です http://the-catcher-in-the-fx.com/nanpinma-tin/

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information