Microsoft Word - テキスト2008課題編.doc

Size: px
Start display at page:

Download "Microsoft Word - テキスト2008課題編.doc"

Transcription

1 . 演習課題 演習課題 ( 必修 ) 台形公式とシンプソンの公式を用いて次の定積分の値を求めよ S = + ( a 4 + b 3 + c + d + e) d なお, +, a, b, c, d, e は各自で設定せよ 教科書第 章を参照のこと y S は右図の + の面積に等しい この区間を 個の Δ に分割し を順に,,..., + それに対応する y を y, y,..., y + とおくと 面積 S は以下の公式により求めることができる y = f () 台形公式 0 + Δ Δ S = {( y + y ) + ( y + y3 ) + + ( y + y+ )} シンプソンの公式 Δ S = {( y + 4y + y3 ) + ( y3 + 4y4 + y5 ) + + ( y y + y + )} 3 シンプソンの公式を使用する場合は 分割数は偶数であることに注意する [ 教科書のプログラムの変更 ] () 基本的には被積分関数が異なるだけで 教科書 章のプログラムを使用できる () これまでに扱っていない内容は Fucto プロシージャ ( 教科書 5-3) の使用である Fucto プロシージャを使う利点は メイン プログラムが汎用性を持ち Fucto プロシージャを変更するだけであらゆる関数に関する計算が可能になることである (3) できれば 教科書にある二つのプログラムを一つにまとめよう (4) a~e は Fucto プロシージャで直接指定するか またはセルから読み込むようにする セルから読み込む場合は a~e は次ページのように Fucto プロシージャに渡す必要がある (5) プログラムが文法上間違っていないのに結果がおかしい場合には 教科書にあるデバックの方法 (p.55) を利用してプログラムの修正を行う () プログラムリスト フローチャート 出力結果 公式や分割数の違いに関する考察をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 3

2 いくつかの引数を持つ Fucto プロシージャの形式 Fucto マクロ名 ( 引数 As データ型, 引数 As データ型, ) As データ型マクロ名 = 処理内容 ( 引数を使った計算式 ) Ed Fucto [ 使用例 ] BMI( ボディ マス インデックス ) の計算 解説 BMIcalc が Fucto プロシージャのマクロ名 IputBo で入力した身長と体重を (Double 型変数である ) Heght や Weght に格納した後 それを引数として BMI を計算する Fucto プロシージャに渡す Fucto プロシージャでは BMI 値の計算結果を (Double 型変数である )BMIcalc に格納し 呼び出し元の Sub プロシージャに戻り値として返す Sub プロシージャでは 戻り値を ( 変数 )BMI に格納し その内容を MsgBo で表示する Sub Prog() Heght# = IputBo(" 身長 (cm) を入力してください ") Heght# = Heght*0.0 Weght# = IputBo(" 体重 (kg) を入力してください ") BMI# = BMIcalc(Heght, Weght) If BMI < 8.5 The MsgBo "BMI は " & BMI & " やせすぎです " ElseIf BMI < 5 The MsgBo "BMI は " & BMI & " 適正体重です " ElseIf BMI < 30 The MsgBo "BMI は " & BMI & " 肥満です " Else MsgBo "BMI は " & BMI & " 高度肥満です " Ed If Ed sub Fucto BMIcalc ( Heght As Double, Weght As Double ) As Double '************************************************************************** ' 身長 (Heght(cm)) 体重(Weght(kg)) から BMI を計算する ' 引数 : Heght(Double), Weght(Double) ' 戻り値 : BMIcalc(Double) '************************************************************************** BMIcalc = Weght / (Heght*Heght) Ed Fucto 4

3 演習課題 ( 必修 ) 非線形方程式の二分法による解法 f()=e - という式で,f()=0 となる を求めよ ただし a = -0 b = 0 解の収束判定値(eps) = とする 教科書第 章を参照のこと [ 教科書のプログラムの変更 ] これまでに扱っていない内容は 複数の Sub プロシージャの使用 ( 教科書 5 章 5-) Et Sub(p.53) や Et For(p.40) の使用 である 課題との違い教科書では反復回数 (ma) を終えた時点の値を解としているが 課題では 解の候補 ( と 下図では a と b) の差の絶対値が十分小さく ( 以下 ) なったときに解とする は大きめの値 ( 例えば 00) にしておこう または を更新した後に収束判定のための f 文を入れ 条件を満たしたときに解を出力し solve プロシージャから抜ければ (Et Sub) 良い Net の後の MsgBo では ma 回繰り返しても条件を満足しないことを出力しよう 注 ) p.97 Net の後の MsgBo にある Chr(3) & Chr(0) は vbcrlf( 課題集 p.7) と同じで改行を行うもの f() f() 新しい a f(b) f(a) a c f(c) c b f(a) f(b)<0 より a~b の間に f()=0 の点がある. c=(a+b)/ を計算し, f(c) を求めると f(a) f(c)>0, f(b) f(c)<0 より,c~b の間に解がある. そこで,c を a にして,[ 新しい a~b] 区間で同様に繰り返す. () プログラムリスト フローチャート 出力結果をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 5

4 演習課題 3 Naper の常数 e は 次式において として得ることができる e = ( ) k = k! () k を入力データで与えて a k = = を計算せよ k! 3 ( k ) k () 上の結果を利用して e の値を求めよ (<50) は入力データとして与えよ フローチャートは以下のようになる ( スペースの関係で () は A とおいている ) () () 初め 初め k = 入力データ = 入力データ A b = s = 0 j = ~k の反復 = ~ の反復 b = b * j j の反復 A s = s + a 但し () の k は にする a = /b の反復 a を出力 e = + s 終わり e を出力 終わり () プログラムリスト 入力データ (k, の値 ) 出力結果 (a k, e の値 ) の値と e の精度の関係に関する考察をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 6

5 演習課題 4 地上から角度 a, 初速度 v 0 で発射された質点は 放物線を描いて再び地上に落下する この運動の軌跡を y 平面上に描け なお 角度 a, 初速度 v 0 は任意に設定してよいが 最大到達高度 移動距離等を計算して考察に加え プログラムの確認を行うこと 質点が発射されてから地上に到達するまでの時間 T をあらかじめ求めておく 時刻 t における質点の 座標と y 座標をそれぞれ t の関数として与える T を適当な数 で分割して Δ t とし Δ t 毎の質点の座標を求める これらの座標データをワークシートに書き出す これらのデータを読み込んで グラフを描かせるプログラムは以下のようになる Wth ActveSheet.ChartObjects.Add(50, 0, 00, 00).Chart.ChartType = lxyscatterlesnomarkers.setsourcedata Source:=ActveSheet. _ Rage(Cells(, ), Cells( +, )), _ PlotBy:=lColums.Aes(lCategory).MmumScale = 0.Aes(lCategory).MamumScale =.Aes(lValue).MmumScale = 0.Aes(lValue).MamumScale =.HasLeged = False Ed Wth * 注 : 上記について.Add(50, 0, 00, 00) の括弧内数字は グラフエリアの画面上における左上と右下の座標であり.SetSourceData Source:=ActveSheet.Rage(Cells(,), Cells(+,)) は プロットを行うデータが格納されているセルの範囲である ( 結果を出力したセル範囲に合わせて変更が必要 ) また.Aes(lCategory).MmumScale = 0 等はグラフの, y 軸の表示範囲で 任意に設定された角度 a, 初速度 v 0 に対して 計算結果がすべて表示されるよう変更する必要がある 座標 y 座標 () プログラムリスト フローチャート 質点の軌跡の座標データ 軌跡の図をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 7

6 演習課題 5 ある学級で行ったテストの結果が下表のように得られている () この表をエクセルで作成し ファイル名を test.ls として保存せよ () test.ls のデータを読み込み 各科目の平均値と標準偏差を計算するプログラムを作成せよ プログラムは test.ls とは異なるファイル名で保存せよ (3) 英語と数学の成績の関係式 ( 次式 ) を最小 乗法により求めよ () 平均値は次式を用いる = = ( = データ数 = 点数 ) 合計は次の反復式より得られる sum = sum + () 標準偏差は次式を用いる σ = = ( ) (3) 最小 乗法 ( 教科書 5.) による解法は以下の通りである 回帰式を y = a + b とおくと f ( a, b) = = { y ( a + b)} が最小となるように a, b を決定する ここでは が英語 y が数学の成績である f = { y ( a + b)} = 0 a = f = { y ( a + b)} = 0 b = 上式をa, b について整理すると σ y a + b = y a = r, b = y a = = = σ = r = a + b = = y = y ( )( y y) σ σ ( 相関係数 ) () プログラムリスト フローチャート 計算結果をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル (3) データファイル (test.ls) テスト結果 出席番号 英語 数学

7 演習問題 6 ある生物種の世代ごとの個体数が, 以下の式で与えられている. { ( ) } (0 4) ( + ) = a ( ) a () ここで, (+) は + 世代目の個体数 ( 子供の数 ), () は 世代目の個体数 ( 親の数 )- () は食料の量を表し,a はその生物の繁殖力を意味している. の第 世代の個体数を 0.5( 億個体 ) として, 繁殖力 a を様々に変えた場合の,30 世代までの個体数の変化をグラフ化して考察せよ. 個体数の変数 を配列変数として扱い,For ~ Net ループを使って計算を行うと良い. すなわち, Dm a, (30) As Double 配列変数 ( 倍精度型 ) の定義 () = 0.5 For = To 30 () =.. 式 () For ~ Net ループ Net なお a は以下の解説に基づき 6 種類以上の値を設定すること 作図については, 作図プログラム例を参考にする ( 例は, データが A3 から G3 の範囲にある場合 ) か あるいはエクセルのグラフウイザードを用いて作成すること 作図プログラム例 Rage("A3:G3").Select Charts.Add ActveChart.ChartType = lxyscatterles ActveChart.SetSourceData Source:=Sheets("Sheet").Rage("A3:G3"), PlotBy _ :=lcolums ActveChart.Locato Where:=lLocatoAsObject, Name:="Sheet" ActveChart.ApplyDataLabels Type:=lDataLabelsShowNoe, LegedKey:=False ActveChart.SeresCollecto().Select ActveChart.Aes(lCategory).Select Wth ActveChart.Aes(lCategory).MmumScaleIsAuto = True.MamumScale = 30.MorUtIsAuto = True.MajorUtIsAuto = True.Crosses = lautomatc.reverseplotorder = False.ScaleType = llear.dsplayut = lnoe Ed Wth 一般に, 式 () はロジスティック写像と呼ばれ, 最も簡単なカオス現象の例として知られている. 繁殖力 a と個体数の関係は以下のようになっている. 入力条件 :0 (),0<a 4 のとき, 0<a< :() は 0 になる. a :() は単調に -/a になる. <a 3 :() は振動しながら -/a になる. 3<a + 6( ):() は周期振動になる. + 6<a :() は多重周期振動になる <a 4 :() はカオス現象になる. () プログラムリスト フローチャート 入力データ ( 入力した a の値 ) 30 世代までの個体数の変化の図とその考察をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 9

8 演習課題 7 常微分方程式の差分解法 ( オイラー法 ) 微生物の増殖速度は以下の式で表現される dx C = X K d X dt μ K c C + ここで X: 微生物濃度 [mg/l] t: 時間 [h] μ: 増殖速度定数 [/h] C: 餌濃度 [mg/l] K c : 定数 [mg/l] K d : 死滅速度定数 [/h] で 右辺第 項が増殖 第 項が死滅を表す また 餌の濃度変化は K Y を定数として C X dc μ K c C + = - dt KY 微生物の初期濃度 (X=0[mg/L]) 増殖速度定数(μ=[/h]) 餌の初期濃度(C=5000[mg/L]) 死滅速度定数 (K d =0.[/h]) 定数 K c =0000[mg/L] K Y =0.9 として 4 時間後の微生物濃度と餌濃度を求めよ 時間刻み (Δt) は 0.5[h] とする C dx μ' = μ とおくと = μ' X K d X となる この式を差分化すると K c + C dt X t+δt X t = μ' X t Δt 従って 時間 t において X t の濃度を有する微生物の t+δt 時間後の濃度 X t+δt は として予測できる X t+ Δt = X t + μ ' X tδt 初期値と各定数をワークシートのセルに記入し 各変数に初期値と定数値を取り込む 微生物と餌の初期濃度および各定数を用いて微生物増殖速度 (μ'x) を求める 3 増殖速度 (μ'x) から餌の消費速度を求める K s = μ' X/ 4 計算した微生物増殖速度を用いて時間ステップ後の微生物濃度を次式で算出する X 0+ Δt = X + μ ' KY ( X K X ) Δt 5 餌の消費速度は 3 から求まるので 時間ステップ後の餌濃度は d C 0 +Δt = C K Δt s から 5 までを ( 出力を行いながら )t が 4 時間になるまで繰り返す 6 エクセルのグラフウイザードを用いて 結果を図にする () プログラムリストと出力結果図をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 30

9 演習課題 8 ランダムウォークある場所 ( 原点 ) にいる 50 人の酔っ払いが 縦横同じ長さの碁盤状の街路を歩く 酔っ払いは勝手な方向 ( 東西南北 ) に進む * 50 人の酔っ払いが 60 回十字路を進む軌跡を図で示せ * 各方向に進む確率を与える ( 最初は各方向に同じ確率としよう ) 原点 (=0, y=0) の座標を与え (60) 回一様乱数 (0 ~ の間で平均的に一様に出現する変数 ) を生成して進む方向を決め 座標をワークシートに出力する VBA で一様乱数を発生するには 次のステートメントを用いる ( 教科書 p.34) Radomze = Rd ' 乱数系列の初期化 ' に 0~ までの乱数が代入される この手順を c (50) 人分繰り返して座標を ( 行 *c 列 ) 出力した後 c (50) 系列の散布図を作成する 散布図を表示させるプログラムは以下の通りである ActveSheet.ChartObjects.Add(00, 0, 300, 300).Actvate ActveChart.ChartType = lxyscatterlesnomarkers ActveChart.HasLeged = False For j = To c ActveChart.SeresCollecto.NewSeres Wth ActveChart.SeresCollecto(j).XValues = _ Rage(ActveSheet.Cells(, + (j - ) * ), _ ActveSheet.Cells( +, + (j - ) * )).SeresCollecto(j).Values = _ Rage(ActveSheet.Cells(, + (j - ) * ), _ ActveSheet.Cells( +, + (j - ) * )).Aes(lValue).HasMajorGrdles = False Ed Wth Net ここで ( 出力開始行番号 ) c はプログラムに合わせて変更すること () プログラムリスト フローチャート 酔っ払いの軌跡図 考察 ( 何度か計算を繰り返し 結果の違いを観察する 上下左右に進む確率を変更して実験を行ってみるなど ) をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 3

10 演習課題 9 ガウス ザイデル法による連立 次方程式の解法ガウス ザイデル法により 以下の 3 元連立 次方程式を解くプログラムを作りなさい 繰り返しは 0 回とし 初期値によって解がどのように収束していくのか確認すること そして 初期値による収束の様子の違いをレポートにまとめよ = = 7 () = 99 3 [ 解説 ] ガウス ザイデル (Gauss-Sedel) 法は 連立一次方程式の解法のひとつで 適当な初期値から解を収束させていく方法である 教科書にある 掃き出し法 ( 教科書 第 4 章 ) のような代数的な解法ではなく またいつでも収束するわけではないが 演算が速く 多変数の場合にも向いている 以下の連立方程式を例にアルゴリズムを説明する = = = 7 まず これらを = ~, = ~, 3 = ~ という形に変形する = ( ) / 3 = ( ) / 6 3 = (7 - - ) / 4 ここで適当な解 ( 値は何でも良い ) を設定する 仮に (,, 3 ) = (,,) とすると = (8--)/3 = となり さらに第二式より = (3-4-3)/6 = = ( )/4 =.4667 となる これを繰り返すと 3 回目 回目 回目 回目 回目 回目 回目 回目 回目 回目 3 となり 解が求まる この課題では 0 回繰り返すことになっているが 通常のプログラムでは 許容誤差を前もって与え 繰り返しによる解の変化がそれよりも小さければ収束したとして終了する 3

11 以下の連立一次方程式を考える a +a + +a = b a +a + +a = b a +a + +a = b ガウス ザイデル法の漸化式は次のように与えられる ( k+ ) ( k+ ) ( k ) = b aj j aj j / a j= j= + (k+) ここで a j および a b : 繰り返し回数 k+ 回目における ( =,,3) の解 : 式 () 左辺の係数項 : 右辺定数項 である ( 参考 ) ガウス ザイデル法が収束するための十分条件は 以下の式で与えられる a a j j= ガウス ザイデル法の計算ステップ : パラメータとデータの入力 : 方程式の数 ( = 3) 反復回数 kc (kc = 0) 方程式の係数項を入力する 方程式の係数項は配列で取り扱う : 番目の方程式を対角要素 a (a 0) で割る a j =a j / a ( =~;j = ~+) 3: 初期近似解 を任意の数 (0) に設定する 4: 上記の漸化式を使って 逐次近似解 k+ を kc 回反復計算する 5: 解を出力する = k+ ( =~; = 3) 考察は, 初期値によってどの程度の繰り返し回数で理論解に達するか検討すること 初期値は 3 種類以上について比較を行い 図を用いて説明を加えてもよい () プログラムリスト フローチャート 出力結果 初期値と収束の様子との関係についての考察をまとめた Word ファイル () 作成したプログラムを含む Ecel ファイル 33

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ

4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ 4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は

More information

Microsoft Word - VBA基礎(3).docx

Microsoft Word - VBA基礎(3).docx 上に中和滴定のフローチャートを示しました この中で溶液の色を判断する部分があります このような判断はプログラムではどのように行うのでしょうか 判断に使う命令は IF 文を使います IF は英語で もし何々なら という意味になります 条件判断条件判断には次の命令を使います If 条件式 1 Then ElseIf 条件式 2 Then ElseIf 条件式 3 Then 実行文群 1 実行文群 2 実行文群

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

連立方程式の解法

連立方程式の解法 連立方程式の解法連立方程式をエクセルを用いて解く方法は以下の 2 種類が考えられます 1) エクセルの行列関数を用いる 2) VBA でヤコビ法やガウスザイデル法を用いる ここでは両方について説明します 1) エクセルの行列関数を用いる方法エクセルは表計算ですから行と列に並んだ数値を扱うのは得意です 連立方程式は次のように行列を用いて表すことができます 連立方程式が行列形式で表されることを考慮して解法を考えてみます

More information

方程式の解法

方程式の解法 方程式の解法 方程式 (f(x)) の解を求めるということはf(x)=0を意味し グラフ上では y=f(x) で X 軸との交点を求めることである ここではエクセルを用いて方程式の解を求める方法を3つ紹介する もちろん 前回教わったニュートンラフソン法も行う 1. グラフを確認しながら求める方法エクセルの便利な点は数値を簡単にグラフ化できる点である 中学校の数学でも教わったように方程式の解は X 軸と交差する点である

More information

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので,

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので, If(A) Vx(V) 1 最小 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M) y = f ( x ) の関係から, 任意の x のときの y が求まるので, 未測定点の予測ができること. また (M3) 現象が比較的単純であれば, 現象を支配 する原理の式が分かることである.

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅱ 演習 2-1(a) BMI による判定 文字列, 身長 height(double 型 ), 体重 weight (double 型 ) をメンバとする構造体 Data を定義し, それぞれのメンバの値をキーボードから入力した後, BMI を計算するプログラムを作成しなさい BMI の計算は関数化すること ( ) [ ] [ ] [ ] BMI = 体重 kg 身長 m 身長

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Excelを用いた行列演算

Excelを用いた行列演算 を用いた行列演算 ( 統計専門課程国民 県民経済計算の受講に向けて ) 総務省統計研究研修所 この教材の内容について計量経済学における多くの経済モデルは連立方程式を用いて記述されています この教材は こうした科目の演習においてそうした連立方程式の計算をExcelで行う際の技能を補足するものです 冒頭 そもそもどういう場面で連立方程式が登場するのかについて概括的に触れ なぜ この教材で連立方程式の解法について事前に学んでおく必要があるのか理解していただこうと思います

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

Microsoft PowerPoint - VBA解説1.ppt [互換モード]

Microsoft PowerPoint - VBA解説1.ppt [互換モード] 九州大学工学部地球環境工学科船舶海洋システム工学コース 計算工学演習第一 演習資料担当 : 木村 Excel 上のマクロを利用してプログラムを組む Visual Basic for Applications (VBA) のテクニック Excel のマクロとは? 一連の操作を自動的に行う機能 例 ) セル ( マス目 ) に数字を 1 から順番に埋めていく Excel のマクロでどんなプログラムが作れるのか?

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

スライド 1

スライド 1 Keal H. Sahn A R. Crc: A dual teperature sulated annealng approach for solvng blevel prograng probles Coputers and Checal Engneerng Vol. 23 pp. 11-251998. 第 12 回論文ゼミ 2013/07/12( 金 ) #4 M1 今泉孝章 2 段階計画問題とは

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft PowerPoint - mp11-06.pptx

Microsoft PowerPoint - mp11-06.pptx 数理計画法第 6 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

情報実習Ⅱ

情報実習Ⅱ 情報実習 Ⅱ 第 7 回 ( これまでの復習 ) 課題資料 Java のクラスの概形 クラス フィールドコンストラクタメソッド main メソッドローカル変数宣言オブジェクト生成オブジェクトへのメッセージ ( メソッド呼び出し ) 変数 : 基本型, 参照型 これまでの 習得事項 まだ初歩的な内容だけだが これらを利用するだけでも多くの実用的なプログラムが記述できる キーボード入力 : Scanner

More information

§6

§6 6. 代数方程式 [ 第 回 ] 6. ベアストウ法 3 の代数方程式の数値解を求める方法の一つにベアストウ法がある. fz () z + az +! + a z+ a 0 この式を 次式 : z + pz +q で割ると一般に, 3 fz () ( z + pz+ q)( "###############$# z + bz +! ############## + b 3z+ b ) + #%# Rz

More information

(1) プログラムの開始場所はいつでも main( ) メソッドから始まる 順番に実行され add( a,b) が実行される これは メソッドを呼び出す ともいう (2)add( ) メソッドに実行が移る この際 add( ) メソッド呼び出し時の a と b の値がそれぞれ add( ) メソッド

(1) プログラムの開始場所はいつでも main( ) メソッドから始まる 順番に実行され add( a,b) が実行される これは メソッドを呼び出す ともいう (2)add( ) メソッドに実行が移る この際 add( ) メソッド呼び出し時の a と b の値がそれぞれ add( ) メソッド メソッド ( 教科書第 7 章 p.221~p.239) ここまでには文字列を表示する System.out.print() やキーボードから整数を入力する stdin.nextint() などを用いてプログラムを作成してきた これらはメソッドと呼ばれるプログラムを構成する部品である メソッドとは Java や C++ などのオブジェクト指向プログラミング言語で利用されている概念であり 他の言語での関数やサブルーチンに相当するが

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 次のステップによって 徐々に難易度の高いプログラムを作成する ( 参照用の番号は よくわかる C 言語 のページ番号 ) 1. キーボード入力された整数 10 個の中から最大のものを答える 2. 整数を要素とする配列 (p.57-59) に初期値を与えておき

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

Microsoft Word - VBA基礎(2).docx

Microsoft Word - VBA基礎(2).docx 変数 test1 を実行してみてください 結果はメッセージボックスに 100 と表示されるはずです Sub test1() a = 10 このプルグラムでは a という文字がつかわれています MsgBox の機能はこの命令に続くものを画面に表示することで MsgBox a * a す つまり a*a を表示しています プログラムでは * は掛け算を意味しますの で画面に 100 が表示されたということは

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 7 回目 switch 文と論理演算子課題 1. 複数の選択肢から 1 つを選択するコードを switch 文で作りなさい 質問と解説は各自で設定しましょう ヒント : 選択肢の番号 1~4 で分岐するように switch 文を用いましょう あなたの好みの色は何色ですか? 1. 赤. 青. 黄 4. 緑 青の好きなあなたは沈着冷静な方です あなたの好みの色は何色ですか?

More information

2018年度 岡山大・理系数学

2018年度 岡山大・理系数学 08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 1

7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 1 7 ポインタ (P.61) ポインタを使うと, メモリ上のデータを直接操作することができる. 例えばデータの変更 やコピーなどが簡単にできる. また処理が高速になる. 7.1 ポインタの概念 変数を次のように宣言すると, int num; メモリにその領域が確保される. 仮にその開始のアドレスを 10001 番地とすると, そこから int 型のサイズ, つまり 4 バイト分の領域が確保される.1

More information

ボルツマンマシンの高速化

ボルツマンマシンの高速化 1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

0.0 Excelファイルの読み取り専用での立ち上げ手順 1) 開示 Excelファイルの知的所有権について開示する数値解析の説明用の Excel ファイルには 改変ができないようにパスワードが設定してあります しかし 読者の方には読み取り用のパスワードを開示しますので Excel ファイルを読み取

0.0 Excelファイルの読み取り専用での立ち上げ手順 1) 開示 Excelファイルの知的所有権について開示する数値解析の説明用の Excel ファイルには 改変ができないようにパスワードが設定してあります しかし 読者の方には読み取り用のパスワードを開示しますので Excel ファイルを読み取 第 1 回分 Excel ファイルの操作手順書 目次 Eexcel による数値解析準備事項 0.0 Excel ファイルの読み取り専用での立ち上げ手順 0.1 アドインのソルバーとデータ分析の有効化 ( 使えるようにする ) 第 1 回線形方程式 - 線形方程式 ( 実験式のつくり方 : 最小 2 乗法と多重回帰 )- 1.1 荷重とバネの長さの実験式 (Excelファイルのファイル名に同じ 以下同様)

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

都道府県名

都道府県名 大分県版 数学の入試対策の勉強を どうすればよいのか どこをやればよいのか 同様の問題 苦手な単元を克服して点数を上げたい そのような受験生のために分析表を用意しました 黄色の部分は過去に出題された問題です 繰り返し出題されています 白い部分からは出題されていません 中学 3 年間の数学の全範囲から白い部分を取り除けば半分以上の内容からは出題されていません ( ゆとりのある生徒は白い部分にも手を広げて取り組んでみて下さい

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま 二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -

More information

都道府県名

都道府県名 宮城県版 数学の入試対策の勉強を どうすればよいのか どこをやればよいのか 同様の問題 苦手な単元を克服して点数を上げたい そのような受験生のために分析表を用意しました 黄色の部分は過去に出題された問題です 繰り返し出題されています 白い部分からは出題されていません 中学 3 年間の数学の全範囲から白い部分を取り除けば半分以上の内容からは出題されていません ( ゆとりのある生徒は白い部分にも手を広げて取り組んでみて下さい

More information

Microsoft PowerPoint - C4(反復for).ppt

Microsoft PowerPoint - C4(反復for).ppt C 言語プログラミング 繰返し ( for 文と while 文 ) 例題 (10 個のデータの平均を求める ) 手順 入力データをx1,x2,,x10 として, (x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/10 を計算する データ数が,1000 個,10000 個, となったらどうする? データ数個分の 変数の宣言, scanf 関数の呼出し, 加算式の記述 が必要 1 総和を求めること

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

ToDo: 今回のタイトル

ToDo: 今回のタイトル グラフの描画 プログラミング演習 I L03 今週の目標 キャンバスを使って思ったような図 ( 指定された線 = グラフ ) を描いてみる 今週は発展問題が三つあります 2 グラフの準備 値の算出 3 値の表示 これまでは 文字列や値を表示するのには 主に JOptionPane.showMessageDialog() を使っていましたが ちょっとしたものを表示するのには System.out.println()

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile "data.txt" #define OutFile "sorted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile data.txt #define OutFile sorted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "sorted.txt"

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

mt1-slides-03.pptx

mt1-slides-03.pptx 計測工学 I 第 3 回 Excel による回帰式の計算 今日の内容 第 3 回 Excel による回帰式の計算 シラバスより 第 3 回 回帰式の計算 Excel を用いて測定データから最小二乗法によって 回帰式の計算を行う この計算方法を学び 実際のデータに適用して回帰直線をグラフ化する 最小二乗法によって 計測データが満たしている関数式を推定する方法を学びます 回帰式とは何か? 教科書 P255

More information

Microsoft PowerPoint - Eigen.ppt [互換モード]

Microsoft PowerPoint - Eigen.ppt [互換モード] 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 58) 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige Eige A 行列の固有値問題 標準固有値問題 (Stdrd Eigevle Problem を満足する と を求める : 固有値 (eigevle) : 固有ベクトル (eigevetor) 一般固有値問題 (Geerl

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc (1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

情報基礎A

情報基礎A 情報基礎 A 第 10 週 プログラミング入門 マクロ基本文法 4 1 配列 FOR~NEXT 全眞嬉 東北大学情報科学研究科システム情報科学専攻情報システム評価学分野 http://www.dais.is.tohoku.ac.jp/~jinhee/jyoho-19.html 6 人分の合計を計算 2 socre(0) socre(1) socre(2) socre(3) socre(4) socre(5)

More information

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx ベイズの定理から AI の数理 ベイズ更新とロジステック曲線について 松本睦郎 ( 札幌啓成高等学校講師 ) Episode ロジステック曲線 菌やウイルスの増殖数や 人口増加等を表現する曲線の一つにロジステック曲線があります 例 シャーレの中で培養された大腸菌の数について考察する シャーレ内に栄養が十分に存在するとき 菌は栄養を吸収しながら 一定時間ごとに細胞分裂をして増 殖する 菌の数 u u(t)

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

Microsoft PowerPoint - 03NonlinearEq.ppt

Microsoft PowerPoint - 03NonlinearEq.ppt 方程式を解く 知的情報処理 3 非線形方程式を解く 一変数 代数方程式を解くことは昔から重要な問題であった 算木にもたくさんある 数学競技会(例: 30題を40 50日で解く)で出された 3次 4次代数方程式が一般的に解けた Scipione del Ferro (465-56), Niccoló Fontana Tartaglia(499547), Girolamo Cardano (50-576)

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

Microsoft PowerPoint - prog08.ppt

Microsoft PowerPoint - prog08.ppt プログラミング言語 2 第 07 回 (2007 年 06 月 25 日 ) 1 今日の配布物 片面の用紙 1 枚 今日の課題が書かれています 本日の出欠を兼ねています 2/27 1 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/language/ にアクセスすると 教材があります 2007 年 06 月 25 日分と書いてある部分が 本日の教材です

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

Microsoft PowerPoint - info1-8.ppt [互換モード]

Microsoft PowerPoint - info1-8.ppt [互換モード] 平成 29 年度 情報基礎演習 Ⅰ 第 8 回演習 担当光武雄一 授業の Website: http://web.me.saga-u.ac.jp/~mitutake/info1/info1.html メールアドレス : mitutake@me.saga-u.ac.jp 第 8 回目演習内容 先週の課題解答と説明 合計値の計算法 マクローリン級数の計算 (57 ページ ) Report0523 の解答例

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

数学○ 学習指導案

数学○ 学習指導案 第 1 学年数学科数学 Ⅰ 学習指導案 1 単元名 二次方等式 二次不等式 2 単元の目標 二次方程式を因数分解や解の公式で導くことができるようにする 二次関数のグラフと 軸との共有点の個数を判別する方法を理解する 一次不等式や二次不等式の解法を 一次関数や二次関数のグラフを利用して理解する 二次不等式を含んだ連立不等式の解法を理解する 判別式をさまざまな事象の考察に応用することができるようにする

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile "data.txt" #define OutFile "surted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile data.txt #define OutFile surted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "surted.txt"

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information