(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)

Size: px
Start display at page:

Download "(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)"

Transcription

1 ディジタル PLL 理論と実践 有限会社 SP システム

2 目次 - 目次 1. はじめに アナログ PLL PLL の系 位相比較器 ループフィルタ 電圧制御発振器 (VCO) 分周器 ループフィルタ抜きの PLL 伝達関数 ループフィルタ ラグフィルタの伝達関数と周波数特性 ラグリードフィルタの伝達関数と周波数特性 PLL 全体の周波数特性 ラグフィルタを使った PLL 全体の伝達関数と周波数特性 ラグリードフィルタを使った PLL 全体の伝達関数と周波数特性 PLL の過渡応答特性 ディジタル PLL PLL の系のディジタルディジタルでのでの扱い 位相比較器 ディジタルループフィルタ 電圧制御発振器 (VCO) 分周器 ディジタルループフィルタ ラグフィルタの z 変換と周波数特性 ラグリードフィルタの z 変換と周波数特性 ディジタルループフィルタの係数導出 PLL 全体の特性 ζ=0.05 での特性 ζ=0.317 での特性 ディジタル PLL の C 言語によるプログラムでの実現 PLL の各系各系の実現 位相比較器 ディジタルループフィルタ 電圧制御発振器 (VCO) 分周器 入力信号の生成 PLL の実現 分周比 =1(ζ=0.05) 分周比 =1(ζ=0.317) 分周比 =

3 1. はじめに 1. はじめに PLL とは phase-locked loop の略で 出力波と入力波の位相を比較し その位相差を使って出力波を制御する事により 入力波に同期した安定した出力波を生成する仕組みであり 負帰還技術を応用した回路である 本書では まずアナログ PLL を使って PLL の動作の仕組みを説明し それをディジタルで扱う方法を 数学的観点に基づいて理論的に説明している 本書の特徴として 理論を数学的観点に基づいて説明している事から PLL の動作を理解できると共に その動作の理論も理解できる内容となっている また ディジタルでの PLL を C 言語プログラムで実現する方法を記載しているので これから PLL を学ぶ方は勿論の事 実践で PLL を使用しようとする方にも即効性のある内容となっている 3

4 2. アナログ PLL 2. アナログ PLL 2.1 PLL の系 PLL の一般的なブロック図を図 に示す.. d (V/rad) F(t) v (rad/sec/v) fi(hz) 位相比較器 ループフィルタ VCO fo(hz) 1/N 図 PLL ブロック図 d : 位相比較器 (V/rad) v : 電圧制御発振器 (rad/sec/v) F(t) : ループフィルタ N : 分周器 位相比較器 fi と fo の位相を比較し 位相差に応じた電圧を出力する ある時点での fi と fo の位相を θi, θo とすると 位相比較器から出力される電圧は d[v/rad] を使い d(θi - θo) [V] となり これが位相比較器からの出力である ループフィルタローパスフィルタであり 位相比較器の出力を このフィルタに通して 電圧を出力する 位相比較器の出力を x(t), フィルタからの出力を y(t) と y(t)=f(t) x(t) [V] となる 電圧制御発振器 (VCO) 電圧に応じた発振波形 ( 角周波数 [rad/s]) を出力する ループフィルタからの出力 y(t) を使って電圧制御発振器から出力される角周波数は v[rad/s/v] を使い v y(t) [rad/s] となり これを Hz に直した値が PLL から出力される周波数 [fo] となる 4

5 2. アナログ PLL 2.4 PLL 全体の周波数特性前章迄で PLL の各系毎の特性を記載したので ここでは PLL 全体の周波数特性を記載する PLL は 負帰還回路であるので 負帰還回路と同じように伝達関数を求める PLL の系とループフィルタを総合した伝達関数 ( 開ループ利得 ) を Ao とすると v d 1 Ao( s) = ( s) F ( s) ( s) =, F ( s) = ループフィルタ伝達関数 N s よって 負帰還を考慮した PLL 全体の伝達関数 Ac は c A s となる F s s F s v = = = 1+ s F s s+ F s N ラグフィルタを使った PLL 全体の伝達関数と周波数特性 F ( s) 1 = なので PLL 全体の伝達関数 Ac は src + 1 A s = RCs + s+ c 2 となり s=jω とすると d となる c ( ω) A j = ( ω RC) ω e 1 ω j tan 2 ω RC 1 d =, v = 2 π 60, N = 1, R = 154 k Ω, C = 1 μ F とした周波数特性を図 π に示す 10

6 2. アナログ PLL db/ 位相 Hz 振幅位相 図 ラグフィルタを使った PLL 全体の周波数特性 11

7 3. ディジタル PLL 3.2 ディジタルループフィルタ ディジタルループフィルタは主にアナログローパスフィルタの差分方程式を採用するが 主に使われるフィルタについて説明する ラグフィルタの z 変換と周波数特性 微分方程式は より dvo t Vi( t) =RC + Vo t dt これを差分方程式にすると o( 1) Vo n V n Vi( n) =RC +Vo( n) T 1 1 Vo n Vo n Vi n T RC RC T 1 1 a=, b= として T RC RC T V n av n = ( 1) + = ( 1) + bv ( n) o o i ブロック図を図 に示す 20

8 3. ディジタル PLL V i [n] b + V o [n] Z -1 a 図 ラグフィルタブロック図 さらに z 変換して 1 = + o b = 1 i 1 az V z az V z bv z o o i V z V z となり z=e jωt とすると jωt b = jωt ( 1 cos( ω )) + ( sin( ω )) V e o Vi e a T a T 2 2 e 1 a sin j tan 1 a cos ( ωt) ( ωt) となる R=154kΩ, C=1μF, T=20.8μs(48kHz) とした周波数特性を図 に示す db/ 位相 Hz 振幅位相 図 ディジタルラグフィルタの周波数特性 グラフからも判るように 周波数特性はアナログとほぼ一致している 位相特性は高域で位相が進んでいるが これはディジタル化に伴う特徴であり 高域では振幅が十分に減衰しているので アナログのディジタル化として使用しても問題無い事がわかる 21

オペアンプの容量負荷による発振について

オペアンプの容量負荷による発振について Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

PLL アン ドゥ トロア 3 部作の構成 1. PLL( 位相ロック ループ ) 回路の基本と各部動作 2. 設計ツール ADIsimPLL(ADIsimCLK) を用いた PLL 回路構成方法 3. PLL( 位相ロック ループ ) 回路でのトラブルとその解決技法 2

PLL アン ドゥ トロア 3 部作の構成 1. PLL( 位相ロック ループ ) 回路の基本と各部動作 2. 設計ツール ADIsimPLL(ADIsimCLK) を用いた PLL 回路構成方法 3. PLL( 位相ロック ループ ) 回路でのトラブルとその解決技法 2 The World Leader in High Performance Signal Processing Solutions PLL アン ドゥ トロア ( その 1) PLL( 位相ロック ループ ) 回路の基本と各部動作 アナログ デバイセズ株式会社石井聡 PLL アン ドゥ トロア 3 部作の構成 1. PLL( 位相ロック ループ ) 回路の基本と各部動作 2. 設計ツール ADIsimPLL(ADIsimCLK)

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R 第 回,, で構成される回路その + SPIE 演習 目標 : SPIE シミュレーションを使ってみる 回路の特性 と の両方を含む回路 共振回路 今回は講義中に SPIE シミュレーションの演習を併せて行う これまでの, 回路に加え, と を組み合わせた回路, と の両方を含む回路について, 周波数応答の式を導出し, シミュレーションにより動作を確認する 直列回路 演習問題 [] インダクタと抵抗による

More information

アクティブフィルタ テスト容易化設計

アクティブフィルタ テスト容易化設計 発振を利用したアナログフィルタの テスト 調整 群馬大学工学部電気電子工学科高橋洋介林海軍小林春夫小室貴紀高井伸和 発表内容. 研究背景と目的. 提案回路 3. 題材に利用したアクティブフィルタ 4. 提案する発振によるテスト方法 AG( 自動利得制御 ) バンドパス出力の帰還による発振 3ローパス出力の帰還による発振 4ハイパス出力の帰還による発振. 結果 6. まとめ 発表内容. 研究背景と目的.

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

スライド 1

スライド 1 作成 : 群馬大学電気電子教員 電子回路設計 OP アンプ (2) 小林春夫 桑名杏奈 Email: koba@gunma-u.ac.jp Tel: 277-3-788 オフィスアワー : AM9:~AM:( 平日 ) 電気電子棟 (3 号館 )4F 44 室 電子回路設計 授業の内容 第 回講義内容の説明と電子回路設計の基礎知識 第 2 回キルヒホッフ則を用いた回路解析と演習 第 3 回集積回路のデバイス

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 第 5 章周波数特性 回路が扱える信号の周波数範囲の解析 1 5.1 周波数特性の解析方法 2 周波数特性解析の必要性 利得の周波数特性 増幅回路 ( アナログ回路 ) は 信号の周波数が高くなるほど増幅率が下がり 最後には 増幅しなくなる ディジタル回路は 高い周波数 ( クロック周波数 ) では論理振幅が小さくなり 最後には 不定値しか出力できなくなる 回路がどの周波数まで動作するかによって 回路のスループット

More information

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

Microsoft PowerPoint - chap8.ppt

Microsoft PowerPoint - chap8.ppt 第 8 章 : フィードバック制御系の設計法 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価 キーワード : 設計手順, 性能評価 8. 補償による制御系設計 キーワード : ( 比例 ),( 積分 ),( 微分 ) 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. 学習目標 : 補償の有効性について理解し, その設計手順を習得する. 第 8 章

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

周波数特性解析

周波数特性解析 周波数特性解析 株式会社スマートエナジー研究所 Version 1.0.0, 2018-08-03 目次 1. アナログ / デジタルの周波数特性解析................................... 1 2. 一巡周波数特性 ( 電圧フィードバック )................................... 4 2.1. 部分周波数特性解析..........................................

More information

アジェンダ 1. イントロダクション 2. アナログ回路での単位 db などの見方 考え方 3. SPICEツールNI Multisim の基本機能 4. 周波数特性の検討 5. 異常発振してしまう原理 6. まとめ 2 Analog Devices Proprietary Information

アジェンダ 1. イントロダクション 2. アナログ回路での単位 db などの見方 考え方 3. SPICEツールNI Multisim の基本機能 4. 周波数特性の検討 5. 異常発振してしまう原理 6. まとめ 2 Analog Devices Proprietary Information The World Leader in High Performance Signal Processing Solutions SPICE ツールで適切な周波数特性と異常発振しない OP アンプ回路を実現する 基礎編 アナログ デバイセズ株式会社石井聡 1 アジェンダ 1. イントロダクション 2. アナログ回路での単位 db などの見方 考え方 3. SPICEツールNI Multisim の基本機能

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht 第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

自主問学会通信技術基礎講座 (OsI) 位相同期ループ (PLL) 概論 市吉修 2006/4/21 目次 1. 位相同期とは 2.PLL の構成 3.PLL の同期過程 3.1 一次 PLL の同期過程 3.2 二次 PLL の同期過程 4. 定常状態におけるPLLの動作 4.1 小信号動作 4.

自主問学会通信技術基礎講座 (OsI) 位相同期ループ (PLL) 概論 市吉修 2006/4/21 目次 1. 位相同期とは 2.PLL の構成 3.PLL の同期過程 3.1 一次 PLL の同期過程 3.2 二次 PLL の同期過程 4. 定常状態におけるPLLの動作 4.1 小信号動作 4. 位相同期ループ (PLL) 概論 市吉修 2006/4/21 目次 1. 位相同期とは 2.PLL の構成 3.PLL の同期過程 3.1 一次 PLL の同期過程 3.2 二次 PLL の同期過程 4. 定常状態におけるPLLの動作 4.1 小信号動作 4.2 伝達特性 4.3 等価雑音帯域幅 5.VCOの内部雑音の影響 5.1 位相雑音とは 5.2 位相電力スペクトル密度とτ 秒間安定度 5.3

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

(Microsoft Word - \216\374\224g\220\224\212g\222\243\203A\203_\203v\203^QEX.doc)

(Microsoft Word - \216\374\224g\220\224\212g\222\243\203A\203_\203v\203^QEX.doc) QEX 11 月掲載記事低価格スペアナの周波数拡張アダプタ ワンチップの GHz 帯シンセサイザ IC を応用して ローカル信号源とミキサーを一体化させた周波数拡張アダプタを試作しました RIGOL DSA815TG などの低価格スペアナで 6.5GHz までのフィルタやアンプの通過特性 スペクトルの測定を可能にします 周波数拡張アダプタの設計 製作 評価のレポートをいたします 1. ブロック図と主な仕様

More information

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E >

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E > 目次 参考文献安達著 : 通信システム工学, 朝倉書店,7 年. ディジタル変調. ディジタル伝送系モデル 3. 符号判定誤り確率 4. 元対称通信路 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 変調とは?. ディジタル変調 基底帯域 ( ベースバンド ) 伝送の信号波形は零周波数付近のスペクトルを持っている. しかし, 現実の大部分の通信路は零周波数付近を殆ど伝送することができない帯域通信路とみなされる.

More information

スライド 1

スライド 1 かなり意地悪な問題である 電池の電圧や抵抗値が3 本とも対称性に並んでいることを見抜けば この回路には電流が流れないことが判る だから 全ての抵抗の端子間には電圧が発生しない P 点とアース間の電位差は 電池の電圧と同じ 1V 答 3) 負帰還 (NFB; Negative Feedback) 増幅回路 増幅回路の周波数特性を改善させる回路 負帰還回路 ( NFB : Negative Feedback

More information

Microsoft PowerPoint - spe1_handout10.ppt

Microsoft PowerPoint - spe1_handout10.ppt 目次 信号処理工学 Ⅰ 第 回 : ディジタルフィルタ 電気通信大学電子工学専攻電子知能システム学講座 問題は何か? フィルタとは? 離散時間システムとディジタルフィルタ ディジタルフィルタの種類 FIRフィルタの設計 長井隆行 問題は何か? 初心に戻る o.4 のスライド 重要なことは? 所望の信号を得るためにどのようなシステムにすれば良いか? 安定性を保つ必要もある ノイズ除去の例 周波数領域で見る

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ 1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x, x1, x2, を入力すると, y 2, y 1, y, y1, y2, が出力される. 線形システム : 線形システムの例 x nxn 1 yn= 2 線形でないシステムの例 xn yn={ 2 xn xn othewise なぜ線形システム?

More information

電子回路I_8.ppt

電子回路I_8.ppt 電子回路 Ⅰ 第 8 回 電子回路 Ⅰ 9 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 小信号増幅回路 (1) 結合増幅回路 電子回路 Ⅰ 9 2 増幅の原理 増幅度 ( 利得 ) 信号源 増幅回路 負荷 電源 電子回路 Ⅰ 9 3 増幅度と利得 ii io vi 増幅回路 vo 増幅度 v P o o o A v =,Ai =,Ap = = vi

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2017 年度 v1 1 機械工学実験実習 オペアンプの基礎と応用 オペアンプは, 世の中の様々な装置の信号処理に利用されています本実験は, 回路構築 信号計測を通し, オペアンプの理解をめざします オペアンプの回路 ( 音楽との関連 ) 入力信号 機能 - 振幅の増幅 / 低減 ( 音量調整 ) - 特定周波数の抽出 ( 音質の改善 ) - 信号の合成 ( 音の合成 ) - 信号の強化 ( マイクに入力される微弱な音信号の強化

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

1 2 2 4 4 6 8 20 51 60 61 64 65 65 67 69 69 70 72 12 104,007 13.9 40.7 34.6 2030 16 1 21 1 16 1 1 1979 1979 25 30 12 25 2 60 2 2 3 16 1 1 1/2500 1979 16 9 4 5 16 11 16 12 6 7 3,214 146,390 977 30.4% 39,658

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

Microsoft PowerPoint - ce07-13b.ppt

Microsoft PowerPoint - ce07-13b.ppt 制御工学 3 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価キーワード : 設計手順, 性能評価 8. ID 補償による制御系設計キーワード : ( 比例 ),I( 積分 ),D( 微分 ) 8.3 進み 遅れ補償による制御系設計キーワード : 遅れ補償, 進み補償 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. ループ整形の考え方を用いて, 遅れ補償,

More information

Microsoft PowerPoint - spe1_handout11.ppt

Microsoft PowerPoint - spe1_handout11.ppt 目次 信号処理工学 Ⅰ 第 回 : ディジタルフィルタ 電気通信大学電子工学専攻電子知能システム学講座 ディジタルフィルタ ( 復習 ) FIR フィルタの補足 IIR フィルタの設計 IIR フィルタの実現 FIR フィルタと IIR フィルタの比較 最後の課題 長井隆行 ディジタルフィルタ ( 復習 ) 線形位相 FIR フィルタの補足 FIR フィルタ フィードバックがない インパルス応答が有限

More information

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力を用意 密着取付可能 アプリケーション例 容積式流量計のパルス信号を単位パルスに変換 機械の回転による無接点信号を単位パルスに変換

More information

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

インターリーブADCでのタイミングスキュー影響のデジタル補正技術 1 インターリーブADCでのタイミングスキュー影響のデジタル補正技術 浅見幸司 黒沢烈士 立岩武徳 宮島広行 小林春夫 ( 株 ) アドバンテスト 群馬大学 2 目次 1. 研究背景 目的 2. インターリーブADCの原理 3. チャネル間ミスマッチの影響 3.1. オフセットミスマッチの影響 3.2. ゲインミスマッチの影響 3.3. タイミングスキューの影響 4. 提案手法 4.1. インターリーブタイミングミスマッチ補正フィルタ

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft PowerPoint - ch3

Microsoft PowerPoint - ch3 第 3 章トランジスタと応用 トランジスタは基本的には電流を増幅することができる部品である. アナログ回路では非常に多くの種類のトランジスタが使われる. 1 トランジスタの発明 トランジスタは,1948 年 6 月 30 日に AT&T ベル研究所のウォルター ブラッテン ジョン バーディーン ウィリアム ショックレーらのグループによりその発明が報告され, この功績により 1956 年にノーベル物理学賞受賞.

More information

Microsoft PowerPoint - ce07-12c.ppt

Microsoft PowerPoint - ce07-12c.ppt 制御工学 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価キーワード : 設計手順, 性能評価 8. 補償による制御系設計キーワード : ( 比例 ),( 積分 ),( 微分 ) 8.3 進み 遅れ補償による制御系設計キーワード : 遅れ補償, 進み補償 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. ループ整形の考え方を用いて, 遅れ補償, 進み補償による制御系設計を習得する.

More information

Microsoft Word - QEX_2014_feb.doc

Microsoft Word - QEX_2014_feb.doc QEX2 月掲載記事 GPS 同期の 10MHz-OCXO 1. はじめに様々な場面で周波数精度の高い 10MHz 基準信号が必要とされます たとえば ダブルオーブン式の OCXO を使用して ppb 級 (10 の -9 乗 ) の精度を実現することができます OCXO 以上の精度を要求する場合には ルビジウム発振器や GPS 同期の OCXO を使用します ルビジウム発振器や GPS 同期の OCXO

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

通信理論

通信理論 情報通信 振幅変調 (1) 情報信号を搬送波に載せて送信する方式情報信号 : 変調信号 変調 信号に応じて搬送波のパラメータの一つを変化させる操作 変調信号 + 搬送波 被変調波変調 復調 : 元の情報信号を抽出 情報を表す変調信号搬送波変調 ( 被 ) 変調波復調 変調の種類 振幅変調 AM(Amplitude Modulation) 周波数変調 FM (Frequency Modulation)

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt 応用電力変換工学舟木剛 第 5 回本日のテーマ交流 - 直流変換半端整流回路 平成 6 年 月 7 日 整流器 (cfr) とは 交流を直流に変換する 半波整流器は 交直変換半波整流回路 小電力用途 入力電源側の平均電流が零にならない あんまり使われていない 全波整流回路の基本回路 変圧器が直流偏磁しやすい 変圧器の負荷電流に直流分を含むと その直流分により 鉄心が一方向に磁化する これにより 鉄心の磁束密度の増大

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

Microsoft Word - 知能機械実験・実習プリント_ docx

Microsoft Word - 知能機械実験・実習プリント_ docx 018 年 5 月 1 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく制御理論を理解した上に 物体の運動を正しく解析し モデル化する技術や 制御を行うためのパラメータの同定方法を身につける必要がある

More information

モータ HILS の概要 1 はじめに モータ HILS の需要 自動車の電子化及び 電気自動車やハイブリッド車の実用化に伴い モータの使用数が増大しています 従来行われていた駆動用モータ単体のシミュレーション レシプロエンジンとモータの駆動力分配制御シミュレーションの利用に加え パワーウインドやサ

モータ HILS の概要 1 はじめに モータ HILS の需要 自動車の電子化及び 電気自動車やハイブリッド車の実用化に伴い モータの使用数が増大しています 従来行われていた駆動用モータ単体のシミュレーション レシプロエンジンとモータの駆動力分配制御シミュレーションの利用に加え パワーウインドやサ モータ HILS の概要 1 はじめに モータ HILS の需要 自動車の電子化及び 電気自動車やハイブリッド車の実用化に伴い モータの使用数が増大しています 従来行われていた駆動用モータ単体のシミュレーション レシプロエンジンとモータの駆動力分配制御シミュレーションの利用に加え パワーウインドやサンルーフなどのボディー系 電動パワーステアリングやそのアシスト機能など 高度な制御 大電流の制御などが要求されています

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく

2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく 2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく制御理論を理解した上に 物体の運動を正しく解析し モデル化する技術や 制御を行うためのパラメータの同定方法を身につける必要がある

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

<4D F736F F D D834F B835E5F8FDA8DD C E646F63>

<4D F736F F D D834F B835E5F8FDA8DD C E646F63> 情報電子実験 Ⅲ 2008.04 アナログフィルタ 1.MultiSIM の起動デスクトップのアイコンをクリックまたは [ スタート ]-[ すべてのプログラム ] より [National Instruments]-[Circuit Design Suite 10.0]-[Multisim] を選択して起動する 図 1 起動時の画面 2. パッシブフィルタ (RC 回路 ) の実験 2-1. 以下の式を用いて

More information

アジェンダ ミックスド シグナルのクロッキングの問題点 クロック ジッタの考え方と時間ドメインと周波数ドメイン ミックスド シグナルでのシステム クロッキングに対する適切な設計アプローチ 2

アジェンダ ミックスド シグナルのクロッキングの問題点 クロック ジッタの考え方と時間ドメインと周波数ドメイン ミックスド シグナルでのシステム クロッキングに対する適切な設計アプローチ 2 The World Leader in High Performance Signal Processing Solutions FPGA 時代の高速データ コンバータのクロッキング アナログ デバイセズ株式会社 アナログ デバイセズ株式会社石井聡 アジェンダ ミックスド シグナルのクロッキングの問題点 クロック ジッタの考え方と時間ドメインと周波数ドメイン ミックスド シグナルでのシステム クロッキングに対する適切な設計アプローチ

More information

Microsoft PowerPoint - 3.3タイミング制御.pptx

Microsoft PowerPoint - 3.3タイミング制御.pptx 3.3 タイミング制御 ハザードの回避 同期式回路と非同期式回路 1. 同期式回路 : 回路全体で共通なクロックに合わせてデータの受け渡しをする 通信における例 :I 2 C(1 対 N 通信 ) 2. 非同期式回路 : 同一のクロックを使用せず データを受け渡す回路間の制御信号を用いてデータの受け渡しをす 通信における例 :UART(1 対 1 通信 ) 2 3.3.1 ハザード 3 1 出力回路のハザード

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Microsoft PowerPoint - クロックジッタ_Handsout.ppt

Microsoft PowerPoint - クロックジッタ_Handsout.ppt クロックジッタの ADC 性能への影響 ヴェリジー株式会社プリンシパル アプリケーション コンサルタント 前田明徳 内容 アナログ デジタル変換器のテストジッタについてジッタと SNR 位相雑音クロック ノイズのスペクトラムへの影響クロックの生成ジッタを低減するにはまとめ 研究の背景 アナログ ディジタル変換器 (ADC) の性能が向上してきた サンプル周波数 : >100MHz 分解能 : > 14ビット

More information

Microsoft Word - NJM2718_DataJ_v1.doc

Microsoft Word - NJM2718_DataJ_v1.doc 2 回路入り高耐圧単電源オペアンプ 概要 NJM2718 は 2 回路入り単電源高速オペアンプです 動作電圧は 3V~36V と広範囲でスルーレート 9V/µs の高速性と入力オフセット電圧 4mV の特徴をもっており ローサイド電流検出に適しております また 容量性負荷に対して安定しておりますので FET 駆動等のプリドライバ用途やバッファ用途等に適しております 外形 NJM2718E NJM2718V

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

Microsoft Word - 簡単な計算と作図.doc

Microsoft Word - 簡単な計算と作図.doc エクセルを用いた簡単な技術計算と作図について 画像処理 Ⅰ 配付資料 ( 岡山理科大学澤見英男 2006 年作成 ) 表計算ソフト エクセル を用いた簡単な技術計算と作図について紹介します 例として正弦波の標本化と周波数特性の計算を取り上げることにします (1) 正弦波の描画先ず表計算ソフト エクセル を立ち上げます 以下の様な表示が現れます この中のA 列を横座標軸 ( 工学単位 ; 度 ) に割り当てます

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

CMOS RF 回路(アーキテクチャ)とサンプリング回路の研究

CMOS RF 回路(アーキテクチャ)とサンプリング回路の研究 CMOS RF 回路 ( アーキテクチャ ) と サンプリング回路の研究 群馬大学工学部電気電子工学科通信処理システム工学第二研究室 974516 滝上征弥 指導教官小林春夫教授 発表内容 1.CMOS RF 回路 (a) 復調部アーキテクチャ (b) VCO 回路 ( 発振器 ) 2. サンプリング回路 (a) オシロスコープ トリガ回路 (b) CMOS コンパレータ回路 目的 無線通信システムの

More information

Microsoft Word - 第2章 ブロック線図.doc

Microsoft Word - 第2章 ブロック線図.doc NAOSIE: Nagaaki Univriy' Ac il ディジタル制御システム Auhor() 辻, 峰男 Ciaion ディジタル制御システム ; 06 Iu Da 06 URL hp://hdl.handl.n/0069/3686 Righ hi documn i downloadd hp://naoi.lb.nagaaki-u.ac.jp 第 章ブロック線図. インパルス列を用いた z

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H 3 ( ) 208 2 3 7.5 A-D/D-A D-A/A-D A-D/D-A CCD D () ( ) A-D (ADC) D-A (DAC) LSI 7.5. - 7.4(a) n 2 n V S 2 n R ( ),, 2 n i i i V S /2 n MOS i V S /2 n 8 256 MOS 7.4(b) DA n R n 2 2R n MOS 2R R 2R 2R OP OP

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

出力 V [V], 出力抵抗 [Ω] の回路が [Ω] の負荷抵抗に供給できる電力は, V = のとき最大 4 となる 有能電力は, 出力電圧が高いほど, 出力抵抗が小さいほど大きくなることがわかる 同様の関係は, 等価回路が出力インピーダンスを持つ場合も成立する 出力電圧が ˆ j t V e ω

出力 V [V], 出力抵抗 [Ω] の回路が [Ω] の負荷抵抗に供給できる電力は, V = のとき最大 4 となる 有能電力は, 出力電圧が高いほど, 出力抵抗が小さいほど大きくなることがわかる 同様の関係は, 等価回路が出力インピーダンスを持つ場合も成立する 出力電圧が ˆ j t V e ω 第 9 回,C, で構成される回路 目標 : 回路から取り出せる最大電力に関する補足説明回路の周波数特性 -C 一次遅れ回路 中間試験前までの講義と演習により, 素子の性質, 回路の動作を規定している法則, 複素関数による正弦波の表現とインピーダンスの概念など, 回路の動作を理解するための最低限の知識が得られた 今回は, 基礎的な概念の修得を優先して後回しにした項目の つである 回路から取り出せる最大電力

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部 当社 SPICE モデルを用いたいたシミュレーションシミュレーション例 この資料は 当社 日本ケミコン ( 株 ) がご提供する SPICE モデルのシミュレーション例をご紹介しています この資料は OrCAD Capture 6.( 日本語化 ) に基づいて作成しています 当社 SPICE モデルの取り扱いに関するご注意 当社 SPICE モデルは OrCAD Capture/PSpice 及び

More information