9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

Size: px
Start display at page:

Download "9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33"

Transcription

1 9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

2

3

4 1 NOGUCHI (UT) HDVT 9 Feb / 33

5 1 Green-Griffiths (1972) NOGUCHI (UT) HDVT 9 Feb / 33

6 1 Green-Griffiths (1972) X f : C X f (C) X NOGUCHI (UT) HDVT 9 Feb / 33

7 1 Green-Griffiths (1972) X f : C X f (C) X (1970) NOGUCHI (UT) HDVT 9 Feb / 33

8 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) NOGUCHI (UT) HDVT 9 Feb / 33

9 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) NOGUCHI (UT) HDVT 9 Feb / 33

10 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X NOGUCHI (UT) HDVT 9 Feb / 33

11 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X NOGUCHI (UT) HDVT 9 Feb / 33

12 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X f : C X NOGUCHI (UT) HDVT 9 Feb / 33

13 1 Green-Griffiths (1972) X f : C X f (C) X (1970) P n (C) 2n 1 (n 3) ( GCA95 ) X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

14 Griffihts NOGUCHI (UT) HDVT 9 Feb / 33

15 Griffihts 1.1 (Griffiths et al., 1972 ) NOGUCHI (UT) HDVT 9 Feb / 33

16 Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X NOGUCHI (UT) HDVT 9 Feb / 33

17 Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

18 Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. S f (r) = O(δ log r + log + T f (r)) δ, δ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

19 Griffihts 1.1 (Griffiths et al., 1972 ) X n D = i D i X f : C n X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + S f (r) ϵ, ϵ > 0. S f (r) = O(δ log r + log + T f (r)) δ, δ > 0. Green-Griffiths NOGUCHI (UT) HDVT 9 Feb / 33

20 NOGUCHI (UT) HDVT 9 Feb / 33

21 1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X NOGUCHI (UT) HDVT 9 Feb / 33

22 1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X 2 NOGUCHI (UT) HDVT 9 Feb / 33

23 1.2 (Ein 88 91, Xu 94, Voisin 96) X P n (C) 2n 1(n 3) X 2 E = µ=1 ν µz µ C z µ C. { ν µ, z = z µ, ord z E = 0, z {z µ }. E l( ) NOGUCHI (UT) HDVT 9 Feb / 33

24 n l (t; E) = min{ν µ, l}, N l (r; E) = { z µ <t} r 1 n l (t; E) dt. t l = n(t; E) = n (t; E), N(r; E) = N (r; E). NOGUCHI (UT) HDVT 9 Feb / 33

25 n l (t; E) = min{ν µ, l}, N l (r; E) = { z µ <t} r 1 n l (t; E) dt. t l = n(t; E) = n (t; E), N(r; E) = N (r; E). X O X I O X f : C X, f (C) Supp O X /I NOGUCHI (UT) HDVT 9 Feb / 33

26 X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } NOGUCHI (UT) HDVT 9 Feb / 33

27 X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } ρ I (x) = ( j c j(x) k σ jk(x) 2 ) 1/2 C Cρ I (x) 1, x M. X log ρ I ( Weil {U j }, {c j } NOGUCHI (UT) HDVT 9 Feb / 33

28 X {U j } (i) U j σ jk Γ(U j, I), k = 1, 2,..., U j I (ii) {U j } {c j } ρ I (x) = ( j c j(x) k σ jk(x) 2 ) 1/2 C Cρ I (x) 1, x M. X log ρ I ( Weil {U j }, {c j } f I Y = (Supp O X /I, O/I) m f (r; I) = m f (r; Y ) 1 dθ = log Cρ I (f (z)) 2π z =r ( 0) NOGUCHI (UT) HDVT 9 Feb / 33

29 ρ I f (z) C \ f 1 (Supp Y ) NOGUCHI (UT) HDVT 9 Feb / 33

30 ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. NOGUCHI (UT) HDVT 9 Feb / 33

31 ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν NOGUCHI (UT) HDVT 9 Feb / 33

32 ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν ω I,f = ω Y,f = dd c ψ(z) = i 2π ψ(z) = dd c 1 log (z U), ρ I f (z) C (1,1) NOGUCHI (UT) HDVT 9 Feb / 33

33 ρ I f (z) C \ f 1 (Supp Y ) z 0 f 1 (Supp Y ) U f I = ((z z 0 ) ν ), ν N U ψ(z) log ρ I f (z) = ν log z z 0 + ψ(z), z U. N(r; f I) N l (r; f I) ν ω I,f = ω Y,f = dd c ψ(z) = i 2π ψ(z) = dd c 1 log (z U), ρ I f (z) C (1,1) f I Y r dt T (r; ω I,f ) = T (r; ω Y,f ) = t 1 ω I,f z <t NOGUCHI (UT) HDVT 9 Feb / 33

34 I X Cartier D m f (r; I) = m f (r; D) + O(1), T (r; ω I,f ) = T f (r; [D]) + O(1). NOGUCHI (UT) HDVT 9 Feb / 33

35 I X Cartier D m f (r; I) = m f (r; D) + O(1), T (r; ω I,f ) = T f (r; [D]) + O(1). X ω X r dt (1) T f (r) = T (r; ω X ) = f ω X. t 1 z <t NOGUCHI (UT) HDVT 9 Feb / 33

36 2 f : C X I NOGUCHI (UT) HDVT 9 Feb / 33

37 2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) NOGUCHI (UT) HDVT 9 Feb / 33

38 2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) (ii) X T (r; ω I,f ) = O(T f (r)) NOGUCHI (UT) HDVT 9 Feb / 33

39 2 f : C X I (i) ( ) T (r; ω I,f ) = N(r; f I) + m f (r; I) m f (1; I) (ii) X T (r; ω I,f ) = O(T f (r)) (iii) ϕ : X 1 X 2 Y i X i (i = 1, 2) ϕ(y 1 ) Y 2 m f (r; Y 1 ) m ϕ f (r; Y 2 ) + O(1) NOGUCHI (UT) HDVT 9 Feb / 33

40 3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study NOGUCHI (UT) HDVT 9 Feb / 33

41 3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f NOGUCHI (UT) HDVT 9 Feb / 33

42 3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f H j, 1 j q (q n 1)T f (r) q N n (r; f H i ) + S f (r) j=1 NOGUCHI (UT) HDVT 9 Feb / 33

43 3 Cartan f : C P n (C) f = (f 0 : : f n ) T f (r) = T (r; f (F.-S.)) Fubini-Study 3 (Cartan 1933) f H j, 1 j q (q n 1)T f (r) q N n (r; f H i ) + S f (r) j=1 S f (r) = O(δ log + r + log + T f (r)) δ, δ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

44 Cartan n + 1 W (f 0,, f n ) NOGUCHI (UT) HDVT 9 Feb / 33

45 Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n + 1. NOGUCHI (UT) HDVT 9 Feb / 33

46 Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n (Cartan Nochka 1982) f (C) P n (C) l NOGUCHI (UT) HDVT 9 Feb / 33

47 Cartan n + 1 W (f 0,, f n ) Riesz j Q log Ĥj f W ( f ) j R = log Ĥj f + log Ĥj f W ( f ) j Q\R Q = {1,..., q}, R Q, R = n (Cartan Nochka 1982) f (C) P n (C) l H j, 1 j q (q 2n + l 1)T f (r) q N n (r; f H i ) + S f (r). j=1 NOGUCHI (UT) HDVT 9 Feb / 33

48 4 P n (C) NOGUCHI (UT) HDVT 9 Feb / 33

49 4 P n (C) Eremenko-Sodin(1992) P n (C) D j, 1 j q, NOGUCHI (UT) HDVT 9 Feb / 33

50 4 P n (C) Eremenko-Sodin(1992) P n (C) D j, 1 j q, D j, 1 j q R {1,..., q} R n codim j R D j = R R > n j R D j = 5 (Eremenko-Sodin 1992) D j 1 j q P n (C) f : C P n (C) (q 2n)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

51 Cartan Weyls-Ahlfors NOGUCHI (UT) HDVT 9 Feb / 33

52 Cartan Weyls-Ahlfors N(r; f D j ) NOGUCHI (UT) HDVT 9 Feb / 33

53 Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman 1979 NOGUCHI (UT) HDVT 9 Feb / 33

54 Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman (M. Ru, 2004) D j P n (C), 1 j q, f : C P n (C) (q n 1)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

55 Cartan Weyls-Ahlfors N(r; f D j ) Corvaja Zannier Schmidt Min Ru B. Shiffman (M. Ru, 2004) D j P n (C), 1 j q, f : C P n (C) (q n 1)T f (r) q j=1 1 deg D j N(r; f D j ) + ϵt f (r) ϵ. N(r; f D j ) NOGUCHI (UT) HDVT 9 Feb / 33

56 5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) NOGUCHI (UT) HDVT 9 Feb / 33

57 5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) Γ γ αβ Γ γ αβ T(X ) F t H 0 (X, F ) tγ γ αβ NOGUCHI (UT) HDVT 9 Feb / 33

58 5 Siu X n L > 0 D j L, 1 j q, s j H 0 (X, L) Γ γ αβ Γ γ αβ T(X ) F t H 0 (X, F ) tγ γ αβ f : C X 1 (i) α, β td α β s j α s j, β s j and s j C α (1, 0) D α Γ γ αβ (1, 0) 2 (ii) f z td z f z (td z ) (n 1) f z K 1 X F n(n 1)/2, 0. NOGUCHI (UT) HDVT 9 Feb / 33

59 7 (Y. Siu, 1987) n(n 1) qt f (r; L) + T f (r; K X ) T f (r; F ) 2 q N(r; f D j ) + ϵt f (r) ϵ. j=1 NOGUCHI (UT) HDVT 9 Feb / 33

60 7 (Y. Siu, 1987) n(n 1) qt f (r; L) + T f (r; K X ) T f (r; F ) 2 q N(r; f D j ) + ϵt f (r) ϵ. j=1 P n (C) H j Cartan ( q n 1 ) n(n 1) T f (r; L) 2 q N(r; f H j ) + ϵt f (r) ϵ j=1 NOGUCHI (UT) HDVT 9 Feb / 33

61 6 Deligne X n D X σ 1 σ l = 0 σ i NOGUCHI (UT) HDVT 9 Feb / 33

62 6 Deligne X n D X σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k Ω 1 X (log D) D Deligne 1 NOGUCHI (UT) HDVT 9 Feb / 33

63 6 Deligne X n D X σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k Ω 1 X (log D) D Deligne 1 α : X \ D A X Albanese Zariski Y NOGUCHI (UT) HDVT 9 Feb / 33

64 8 ( 1977/81) (i) dim Y = n (ii) Y NOGUCHI (UT) HDVT 9 Feb / 33

65 8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). NOGUCHI (UT) HDVT 9 Feb / 33

66 8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). X \ D q(x \ D) = h 0 (X, Ω 1 X (log D)); D = q(x ) = q(x ) NOGUCHI (UT) HDVT 9 Feb / 33

67 8 ( 1977/81) (i) dim Y = n (ii) Y κ > 0 f : C X κt f (r) N 1 (r, f D) + S f (r). X \ D q(x \ D) = h 0 (X, Ω 1 X (log D)); D = q(x ) = q(x ) 9 Bloch- q(x \ D) > n f : C X \ D NOGUCHI (UT) HDVT 9 Feb / 33

68 10 Bloch- 1926/77;... q(x ) > n f : C X NOGUCHI (UT) HDVT 9 Feb / 33

69 10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) NOGUCHI (UT) HDVT 9 Feb / 33

70 10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) 11 Borel 1897 H j P n (C), 1 j n + 2, f : C P n (C) \ n+2 j=1 H j NOGUCHI (UT) HDVT 9 Feb / 33

71 10 Bloch- 1926/77;... q(x ) > n f : C X A. Bloch (1926) Nevanlinna (1977) 11 Borel 1897 H j P n (C), 1 j n + 2, f : C P n (C) \ n+2 j=1 H j ( q P n (C) \ ) n+2 j=1 H j = n + 1 > n Bloch- Borel Bloch- NOGUCHI (UT) HDVT 9 Feb / 33

72 7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M NOGUCHI (UT) HDVT 9 Feb / 33

73 7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M k f (ζ) f (0) + 1 1! f (1) (0)ζ k! f (k) (0)ζ k, NOGUCHI (UT) HDVT 9 Feb / 33

74 7 Bloch- M f : (C, 0) (M, x) (f (0)) = x) f (1) (0) T (M) x x M k f (ζ) f (0) + 1 1! f (1) (0)ζ k! f (k) (0)ζ k, (f (1) (0),..., f (k) (0)) J k (M) x x J k (M) M k NOGUCHI (UT) HDVT 9 Feb / 33

75 f : C M J k (f ) : C J k (M) NOGUCHI (UT) HDVT 9 Feb / 33

76 f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k NOGUCHI (UT) HDVT 9 Feb / 33

77 f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k D M σ 1 σ l = 0 σ i NOGUCHI (UT) HDVT 9 Feb / 33

78 f : C M J k (f ) : C J k (M) J k (M) Ψ : J k (M) C { } k D M σ 1 σ l = 0 σ i ( d j ) ν σ i, 1 j k, σ i k NOGUCHI (UT) HDVT 9 Feb / 33

79 12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). NOGUCHI (UT) HDVT 9 Feb / 33

80 12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 NOGUCHI (UT) HDVT 9 Feb / 33

81 12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A NOGUCHI (UT) HDVT 9 Feb / 33

82 12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A 0 (C ) t A A 0 0, A 0 NOGUCHI (UT) HDVT 9 Feb / 33

83 12 M Ψ : J k (M) C { } k m Ψ Jk (f )(r; ) = S f (r). 8 A 0 (C ) t A A 0 0, A 0 J k (A) A k f : C A J k (f ) : C J k (A) k X k (f ) J k (f )(C) J k (A) Zariski NOGUCHI (UT) HDVT 9 Feb / 33

84 13 ( -Winkelmann to appear in Forum Math.) f : C A NOGUCHI (UT) HDVT 9 Feb / 33

85 13 ( -Winkelmann to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z NOGUCHI (UT) HDVT 9 Feb / 33

86 13 ( -Winkelmann to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z (ii) codim Xk (f )Z 2 T (r; ω Z,J k (f ) ) ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

87 13 ( -Winkelmann to appear in Forum Math.) f : C A (i) Z X k (f ) (k 0) X k (f ) T (r; ω Z,Jk (f ) ) N 1(r; J k (f ) Z) + ϵt f (r) ϵ, ϵ > 0, Z X k (f ) Z (ii) codim Xk (f )Z 2 T (r; ω Z,J k (f ) ) ϵt f (r) ϵ, ϵ > 0. (iii) k = 0 Z A D A Ā A f T f (r; L( D)) N 1 (r; f D) + ϵt f (r; L( D)) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

88 (iii) Lang NOGUCHI (UT) HDVT 9 Feb / 33

89 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D NOGUCHI (UT) HDVT 9 Feb / 33

90 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D 9 NOGUCHI (UT) HDVT 9 Feb / 33

91 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D 9 Bloch- NOGUCHI (UT) HDVT 9 Feb / 33

92 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A NOGUCHI (UT) HDVT 9 Feb / 33

93 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A 15 ( -Winkelmann- 2007) (i) π : X A (ii) κ(x ) > 0. NOGUCHI (UT) HDVT 9 Feb / 33

94 (iii) Lang 14 (Y.T. Siu-Z.K. Yeung M. McQuillan 2001) A D f : C A \ D 9 Bloch- X κ(x ) A 15 ( -Winkelmann- 2007) (i) π : X A (ii) κ(x ) > 0. f : C X NOGUCHI (UT) HDVT 9 Feb / 33

95 κ(x ) > 0 X Bloch- 15 X Green-Griffiths NOGUCHI (UT) HDVT 9 Feb / 33

96 κ(x ) > 0 X Bloch- 15 X Green-Griffiths 16 X Albanese κ(x ) > 0 q(x ) dim X f : C X NOGUCHI (UT) HDVT 9 Feb / 33

97 κ(x ) > 0 X Bloch- 15 X Green-Griffiths 16 X Albanese κ(x ) > 0 q(x ) dim X f : C X 17 D = q i=1 D i P n (C) q n + 1 deg D n + 2 f : C P n (C) \ D NOGUCHI (UT) HDVT 9 Feb / 33

98 1987 Borel NOGUCHI (UT) HDVT 9 Feb / 33

99 1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z z z 2 2 = 0} M. Green (1974) 10 NOGUCHI (UT) HDVT 9 Feb / 33

100 1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z z z 2 2 = 0} M. Green (1974) 10 Acta(2004) Nevannlinna Ahlfors P 1 D. Drasin Math. Review This outstanding paper... NOGUCHI (UT) HDVT 9 Feb / 33

101 1987 Borel P 2 (C), f : C P 2 (C) \ {z 0 = 0} {z 1 = 0} {z z z 2 2 = 0} M. Green (1974) 10 Acta(2004) Nevannlinna Ahlfors P 1 D. Drasin Math. Review This outstanding paper... p : X S K X /S NOGUCHI (UT) HDVT 9 Feb / 33

102 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

103 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. f : C X s-dim(f ) Y X f (C) C(Y ) Y transc-deg C C(Y ) = dim Y dim X. NOGUCHI (UT) HDVT 9 Feb / 33

104 dim X /S = 1 D X f : C X g = p f : C S ϵ > 0 C(ϵ) > 0 T f (r; [D]) + T f (r; K X /S ) N 1 (r; f D) + ϵt f (r) + C(ϵ)T g (r) ϵ. f : C X s-dim(f ) Y X f (C) C(Y ) Y transc-deg C C(Y ) = dim Y dim X. S(f ) = {ϕ C(Y ); T (r; f ϕ) ϵt f (r) ϵ, ϵ > 0}. NOGUCHI (UT) HDVT 9 Feb / 33

105 S(f ) C(Y ) NOGUCHI (UT) HDVT 9 Feb / 33

106 S(f ) C(Y ) s-dim(f ) = transc-deg C S(f ) NOGUCHI (UT) HDVT 9 Feb / 33

107 S(f ) C(Y ) 19 s-dim(f ) = transc-deg C S(f ) f : C X s-dim(f ) < dim X 9 ( Bloch- ) 14 (Lang ) f J k (f )(k >> 1) s-dim(j k (f )) = dim J k (f )(C) Zar NOGUCHI (UT) HDVT 9 Feb / 33

108 20 f : C X κ(x ) = dim X = 2, s-dim(f ) = 1. f f NOGUCHI (UT) HDVT 9 Feb / 33

109 20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

110 20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S NOGUCHI (UT) HDVT 9 Feb / 33

111 20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S T f (r; K X /S ) T f (r). NOGUCHI (UT) HDVT 9 Feb / 33

112 20 f : C X f κ(x ) = dim X = 2, s-dim(f ) = 1. f S p : X S g = p f : C S T g (r) ϵt f (r) ϵ. S K X /S T f (r; K X /S ) T f (r). T f (r) ϵt f (r) ϵ. (q.e.d) NOGUCHI (UT) HDVT 9 Feb / 33

113 11 NOGUCHI (UT) HDVT 9 Feb / 33

114 11 X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

115 11 X D = i D i X f : C X T f (r; [D]) + T f (r; K X ) i N 1 (r; f D i ) + ϵt f (r) ϵ, ϵ > 0. D NOGUCHI (UT) HDVT 9 Feb / 33

116 X n X P N (C) π : X P n (C) D X E = π D P n (C) NOGUCHI (UT) HDVT 9 Feb / 33

117 X n X P N (C) π : X P n (C) D X E = π D P n (C) π π NOGUCHI (UT) HDVT 9 Feb / 33

118 X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, NOGUCHI (UT) HDVT 9 Feb / 33

119 X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, NOGUCHI (UT) HDVT 9 Feb / 33

120 X n X P N (C) π : X P n (C) D X E = π D P n (C) π π f : C P n (C) {deg E n 1}T f (r) N 1 (r; f E) + ϵt f (r) ϵ, ϵ > 0, f : C X T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ, ϵ > 0. X NOGUCHI (UT) HDVT 9 Feb / 33

121 Green-Griffits NOGUCHI (UT) HDVT 9 Feb / 33

122 Green-Griffits f : C X π : X P n (C), D X E P n (C) NOGUCHI (UT) HDVT 9 Feb / 33

123 Green-Griffits f : C X π : X P n (C), D X E P n (C) (deg E n 1)T g (r) N 1 (r; g E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

124 Green-Griffits f : C X π : X P n (C), D X E P n (C) (deg E n 1)T g (r) N 1 (r; g E) + ϵt g (r) ϵ. N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

125 N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

126 N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ NOGUCHI (UT) HDVT 9 Feb / 33

127 N 1 (r; f D) N(r; g E) N 1 (r; g E) (n + 1)T g (r) m g (r; E) + ϵt g (r) ϵ. T f (r; [D]) N 1 (r; f D) + m f (r, D) + ϵt f (r) ϵ m f (r; D) m g (r; E) T f (r; [D]) (n + 1)T g (r) m g (r; D) + ϵt g (r) + m f (r; D) (n + 1)T g (r) + ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

128 K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). NOGUCHI (UT) HDVT 9 Feb / 33

129 K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. NOGUCHI (UT) HDVT 9 Feb / 33

130 K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) NOGUCHI (UT) HDVT 9 Feb / 33

131 K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) T g (r) ϵt g (r) ϵ, ϵ > 0. NOGUCHI (UT) HDVT 9 Feb / 33

132 K X = π K P n (C) + D T f (r; K X ) = (n + 1)T g (r) + T f (r; [D]). T f (r; K X ) ϵt g (r) ϵ. K X T f (r; K X ) T g (r) T g (r) ϵt g (r) ϵ, ϵ > 0. P n (C) ( 13) NOGUCHI (UT) HDVT 9 Feb / 33

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

支持力計算法.PDF

支持力計算法.PDF . (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

成長機構

成長機構 j im πmkt jin jim π mkt j q out j q im π mkt jin j j q out out π mkt π mkt dn dt πmkt dn v( ) Rmax bf dt πmkt R v ( J J ), J J, J J + + T T, J J m + Q+ / kt Q / kt + ( Q Q+ )/ ktm l / ktm J / J, l Q Q

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information