,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

Size: px
Start display at page:

Download ",., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c"

Transcription

1 ,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z).

2 :

3 31., U p(z), ᾱ., ᾱ p z = g., ( ).,. u = U + u, w = w p = p(z) + p, α = ᾱ(z) + α (2.2.2) (2.2.1), (2.2),., 2. ( p ᾱ ( u u t + U u x + ᾱ p x = 0 ( ) w δ 1 t + U w + ᾱ p x z a ᾱ g = 0 ) ( t + U p α gw + pγ x t + U α x ) ( ) x + w α ᾱ δ 2 z t + U α x + w ᾱ z w ᾱ z = 0 ) = 0 (2.2.3), δ 1, δ 2,, 1 0.

4 32 2.3, g = 0, δ 1 = δ 2 = 1, ᾱ, p., x, y, t. u = S exp [i(kx + mz σt)], p = P exp [i(kx + mz σt)], w = W exp [i(kx + mz σt)] α = A exp [i(kx + mz σt)] (2.3.4), x, z k, m, σ.. (2.2.3),.,. (2.3.4) (2.2.3), S, W, P, A (ku σ) 0 ᾱk 0 S 0 (ku σ) ᾱm 0 W 0 0 ᾱ(ku σ) pγ (ku σ) P = 0 (2.3.5) ᾱk ᾱm 0 (ku σ) A. S, W, P, A,.. ᾱ(ku σ) 2 [ (ku σ) 2 + γ pᾱ(k 2 + m 2 ) ] = 0 (2.3.6) , σ = ±ku,. 2, σ = ku ± (k 2 + m 2 ) 1/2 γr T.,., x U., (kx + mz = constant).. c = σλ/2π, λ. λ x = 2π/k, λ z = 2π/m, λ =

5 33 2π(k 2 + m 2 ) 1/2 *1. λ, c = σ(k 2 + m 2 ) 1/2 (2.3.7)., U = 0 (2.3). c = ± γr T (2.3.8). ( ). 2.4,., 0 = ᾱ p z g pᾱ = R T p ᾱ., p(z) = p(0)e z/h, ᾱ(z) = ᾱ(0)e z/h (2.4.9)., H = R T /g. U x U, U = 0. *1, k (k, m), k = (k 2 + m 2 ) 1/2.,. λ (λ x, λ z ), λ = 2π/(λ 2 x + λ 2 z)..

6 34 (2.2.3), u t + ᾱ p x = 0 w δ 1 t + ᾱ p z a ᾱ g = 0 ( ) ᾱ p α t ᾱ gw + pγ + w = 0 t z ( ) u x + w α ᾱ ᾱ δ 2 w z t z = 0.. (2.4.10) u = Sᾱ 1/2 e i(kx+mz σt), w = W ᾱ 1/2 e i(kx+mz σt) (2.4.11) p = Sᾱ 1/2 e i(kx+mz σt), α = W ᾱ 3/2 e i(kx+mz σt) (2.4.10), σ 0 k 0 0 δ 1 σ m + i ᾱ ig S ( ) 2α z W γr T ᾱ 0 g + i σ γr ᾱ z T σ P = 0 (2.4.12) k m + i ᾱ A 0 δ 2 σ 2α z.,. (2.4.9),. δ 1 δ 2 σ 4 {γr T (δ 1 k 2 + m 2 ) + g 4H [(2δ 2 1)γ + 2(1 δ 2 )] (2.4.13) + g(1 γ)(δ 2 1)im}σ 2 + k 2 g 2 (γ 1) = 0 2π/m 4πH, σ 2 g γr T m 2..,. δ 1 δ 2 σ 4 γr T (δ 1 k 2 + m 2 )σ 2 + γr T k 2 ḡ θ θ z = 0 (2.4.14) 4, 2 2. g = 0,., δ 2 = 0( ) δ 1 = 1. σ 2 = k 2 ḡ θ θ z (2.4.15) k 2 + m 2

7 35., c = σ k = ± k k 2 + m 2 ( ḡ θ θ ) 1/2 (2.4.16) z.,. ( θ/ z > 0),., ( θ/ z < 0),. (k 2 m 2 ), (2.4.15) ( ḡ σ ± θ ) 1/2 (2.4.17) θ z., - (Brunt- Vaisäla).,, (2.4.14) δ 1 = 0., σ 2 = k2 g θ (2.4.18) m 2 θ z., m 2 k 2 (2.4.15)., m m. e i(kx+mz σt) + e i(kx mz σt) = 2 cos mz e i(kx σt), σ m., c = σ k = ± 1 m ( ḡ θ ) 1/2 (2.4.19) θ z., k.,. (2.4.14), (δ 1 = 0) (δ 2 = 0),.,. (2.4.11) ᾱ 1/2,.,.

8 36 (2.2.3) (2.4.11).,., (2.2.3). u = Se (γ 1)z/γH e ik(x ct), w = 0, p = P e z/γh e ik(x ct), α = Ae (2γ 1)z/γH e ik(x ct). (2.4.20), c = ± γr T. (Lamb wave) *2., w = 0.,.,. 2.5.,., α = 0.,. (2.2.3). *2 w = 0, (2.4.20). w = 0 (2.2.3) ᾱ p t u t + ᾱ p x = 0, α + pγ t = 0, ᾱ p z a ᾱ g = 0 u x ᾱ α = 0 t 4, p 2 p z x 2 = g 2 p c 2 s x 2, 2 p t p c2 s x 2 = 0 2., c 2 s = γr T., H(= R T /g) p = P e z/γh e ik(x c st) (2.4.21). u, α, p.

9 37,. u t + U u ( x w δ t + U w ) x. p z + ρ p x = 0 + ρ p z = 0 u x + w z = 0 (2.5.22a) (2.5.22b) (2.5.22c) = ρg (2.5.23) z = 0 H, z = 0 p 0 = g ρh., (2.5.22a), u = ψ(z)e ik(x ct) w = Φ(z)e ik(x ct) (2.5.24) p/ ρ = P (z)e ik(x ct) (U c)ψ(z) + P (z) = 0 dp (z) ikδ(u c)φ(z) + dz ikψ(z) + dφ(z) = 0 dz = 0 (2.5.25). 2 P (z), ψ(z), d 2 Φ(z) dz 2 k 2 δφ(z) = 0 (2.5.26)., δ = 1 δ = 0., Φ(z) = a 1 e kz + a 2 e kz δ = 1, Φ(z) = a 1z + a 2 δ = 0.., a 1, a 2, a 1, a 2.,. (δ = 1) a 1 = a 2 = a, Φ(z) = a(e kz e kz ) δ = 1 (2.5.27)

10 38,. Φ(z) = 2akz +, (δ = 0) a 2 = 0, a 1 = a, Φ(z) = az. (2.5.28) 2, ( )., d( p + p) dt = 0., z = H., p t + U p x + w p z = 0 at z = H (2.5.29) (2.5.27) (2.5.28), (2.5.25). (δ = 1). Φ(z) = 2a sinh(kz), ψ(z) = 2ia cosh(kz), P (z) = 2ia(U c) cosh(kz). (2.5.29),. c = U ± [ ] 1/2 gλ 2π tanh(2πh λ ) (2.5.30) (δ = 0). Φ(z) = az, ψ(z) = ia k. (2.5.29),., P (z) = ia(u c) k c = U ± gh (2.5.31)

11 39 (2.5.31), (shallow water wave). (2.5.30) H/λ, gλ c U ± 2π. (deep-water wave),. H/λ, (2.5.30) (2.5.31),,. gh = p 0 /ρ = RT, (2.5.31) c = U ± RT (2.5.32). (2.3.8). (2.5.31),.,.,., g ρ(h z) = p (2.5.33)., h. u = U + u, h = H + h (x, t), p = p(z) + p (x, z, t)., 1 p ρ x = g h x (2.5.34)., (2.5.22a) 1. u t + U u x + g h x = 0 (2.5.35) u h 2. (2.5.35) h z, u z u., z = 0 w = 0. (2.5.22a) 3 z = 0 h, w z=h = u x h.

12 40, 2 w z=h = dh dt = h t + u h x ( ρh) t., + ( ρuh) x = 0 (2.5.36) h t + U h t + H u x = 0 (2.5.37). h u z,. u = u 0 e ik(x ct), h = h 0 e ik(x ct), u 0 h 0. (2.5.35) (2.5.37),,. c = U ± gh, (external gravity wave).,, (internal gravity wave).. Haltiner and Martin(1957), 2 0., c = ρu + [ ρ U ] gλ(ρ ρ ) ± ρ + ρ 2π(ρ + ρ ) ρρ (U U ) 2 1/2 (ρ + ρ ) 2.,,.,. ρ = 0,., U = U, ρ = ρ.,. (Kelvin-Helmholtz wave).

13 41 2.6,.,.,.,. u t + u u x + v u h fv + g y x = 0 v t + u v x + v v h + fu + g y y = 0 (2.6.38a) (2.6.38b),.,.,.,. u x + v y + w z = 0 (2.6.39) (2.5.36), u h h t + (hu) x + (hv) y = 0 (2.6.40). (2.6.38a), (2.6.38b), (2.6.40) 3 (u, v, h) 3. (shallow-water equation). (2.6.38b) x, (2.6.38a) y,. (2.6.40),, ζ t + u ζ x + v ζ y ( u + βv = (f + ζ) x + v ) = (f + ζ) 1 dh y h dt (2.6.41)., f y, β = f/ y., ( ) d ζ + f = 0 (2.6.42) dt h. (ζ + f)/h., (potential vorticity)

14 42., Ertel(1942). (2.6.42),,.,.,. (ζ + f)/2, (2.6.42). (2.6.38a), (2.6.38b), (2.6.40), h = H + h, u = U + u, v = v. U, H U., U = g f H y (2.6.43)., H, U y. f y,. ( u δ t + U u x ) fv + g h x = 0 v t + U v x + fu = 0 h t + U h x + H u x + v H y = 0 (2.6.44),., δ dd/dt (D = u/ x + v/ y). x, y x y. v y, u., H,. u = u 0 e ik(x ct), v = v 0 e ik(x ct), h = h 0 e ik(x ct), (2.6.44). δ(u c)iku 0 fv 0 + gikh 0 = 0 (2.6.45) fu 0 + ik(u c)v 0 = 0 (2.6.46) ikhu 0 + H/ y v 0 + ik(u c)h 0 = 0 (2.6.47)

15 43 u 0, v 0, h 0,., 3. δ(u c) 3 (gh + f 2 /k 2 )(U c) fg k 2 H y = 0 (2.6.48)., U = 0, δ = 1 c = ± gh + f 2 /k 2 (2.6.49) c = 0. (inertial gravity wave), f = 0 (2.6.49). 1 2,. σ = kc = ±f (2.6.50), (1/k), gh.,, du dt = fv, dv dt = fu 2, d 2 u dt 2 + f 2 u = 0. u = u 0 e ±ift,. 2π/f = 12/ sin φ hour.,.,.,.

16 44 (2.6.48), δ = 0 *3. c = U + (f/h) H/ y k 2 + (f 2 /gh), q = f/h. q y, q y = f H H 2 y = f 2 U (2.6.51) gh 2, H(z) y., y. (2.6.51), c = U H q/ y k 2 + (f 2 /gh) (2.6.52). (Rossby wave) *4,., f., ( q y = β f H ) H /H = β + (f 2 U/gH) y H (2.6.53)., β = df/dy., k q. f, (2.6.52) q/ y (2.6.53)., y,. (2.6.44) δ = 0, (2.6.48). v., *3 δ = 0 fv = g h x. (2.6.54) fv + g h x = 0 v t + U v x + fu = 0 h t + U h x + H u x + v H y = 0. *4,. (2.6.52),.,,,.

17 45 u *5,. x y, (2.6.38a) (2.6.38b).,,.,. 2,., y,. D ζ = u/ x v/ x (2.6.55) (U = 0),. (2.6.45) e ik(x ct), v = if kc u (2.6.56) c (2.6.49), (2.6.55) D ζ = 1 + k 2 ghf 2 (2.6.57) I G. 1.,. (δ = 0), h. (2.6.54). v x = g k2 h. (2.6.58) f, (2.6.44) u h. 2 u x f 2 2 gh u = U 2 h (2.6.59) H x 2 *5 δ = 0, u = g 2 f 2 (hu Hu) x2., (hu Hu).

18 46. x, u x = ikug gh + (f 2 /k 2 ) h (2.6.60). (2.6.58) (2.6.60) (2.6.55),. D (Uk/f) ζ = (2.6.61) R (k 2 gh/f 2 ) + 1 (Rossby number), ,..

19 47 2.7,. 2., (H = 10km ) 300 m/s., 10 m/s.,.,. (δ = 1),., (Hinkelmann,1951; Phillips, 1960)., (2 ) (1 ) 3. c j (j = 1, 2, 3). c j, (u j, v j ) (h j )., (2.6.44), 3 u j, v j, h j 1 j. u j = U c j, δ = 1 (2.6.44) 2., u j = U c j. k, 3 u = a j u j e ik(x c jt) v j = if/k h j = g [ (2.7.62) 1 f 2 /k 2 (U c j ) 2] v = h = j=1 3 a j v j e ik(x c jt) j=1 3 a j h j e ik(x c jt) j=1., a j. u, v, h. u(x, 0) = u 0 e ikx, v(x, 0) = v 0 e ikx, h(x, 0) = h 0 e ikx (2.7.63), u 0, v 0, h 0. (2.7.63), u 0 = j=1 a j u j, v 0 = j=1 a j v j, h 0 = j=1 a j h j

20 48.,. c 1 = U U 1 + (ghk 2 /f 2 ) c 2 = U + gh + (f 2 /k 2 ) c 3 = U gh + (f 2 /k 2 ) (2.7.64) (2.7.62) (2.7.64), (2.7) a j. a 1 = ikf 1 ghv 0 gh 0 U 2 f 4 k 4 α 2 α a 2,3 = (u 0 /2α 1/2 ) ifk 1 (1 ± Uα 1/2 )v 0 + gh 0 2(Uf 2 k 2 α 1/2 ± α) (2.7.65), α = gh + f 2 k 2.. u = g f, h y = 0, v = g f h x u 0 = 0, v 0 = ikf 1 gh 0 (2.7.66). (2.7.65), j k 2 f 2 gh 0 a 1 = 1 U 2 f 4 k 4 α 3 Uα 3/2 gh 0 a 2,3 = 2(1 ± Uf 2 k 2 α 3/2 ) (2.7.67).,. α 1/2 > fk 1 U (2.7.68) v (v 1 a 1 = ifk 1 a 1 ) v 0, v 0 *6., *6 v 0 (a 1 v 1 ) v 0, v 1 a 1 v 0 = (1 U 2 f 4 k 4 α 3 ) 1 (2.7.68), U 2 f 4 k 4 α 3 1., v 1 a 1 v U 2 f 4 k 4 α 3, v 0 a 1 v 1.

21 49. (2.7.66)., a 2,3 a 1 = U gh f 2 k 2 gh. (2.7.69), (2.7.68).,. u 0,. (2.7.65) a 2,3 = 0, v 0, u 0. Ugh 0 u 0 = (2.7.70) gh + f 2 k 2 (2.7.68), α U 2 f 4 k 4 α 2. u = u 0 e ikx, (2.6.60) ,.,, *7.,,,.,.,. *7 (2.6.44), x U u, y v. u, v,.,.,., (, ) 2.3.

22 50. u t fv + g h x = 0 v t + fu = 0 h t + H u x = 0 (2.8.71), (2.6.44) U = 0., 3., 2 (2.6.49) (2.6.52). H q/ y = 0,. Rossby(1938), Cahn(1945)., Schoenstadt(1977)., x u(x, t) x., ũ(k, t) = u(x, t) = u(x, t)e ikx dx (2.8.72) ũ(k, t)e ikx dk (2.8.73). v, h., (2.8.71) e ikx, x. x,., *8 dũ = fṽ ikg h dt dṽ dt = fũ d h dt = ikhũ (2.8.74), u ũ 0 = ū(k, 0) = u(x, 0)e ikx dx (2.8.75) *8, k., ũ(k, t)/ t dũ/dt.

23 51., v 0, h 0. ũ 0, ṽ 0, h 0 (2.8.74) *9, ( ) fṽ 0 ikg h 0 ũ(k, t) = ũ 0 cos νt + sin νt ν ( ) ṽ(k, t) = k2 ghṽ 0 + ikgf h 0 fũ 0 f 2 ṽ 0 ikgf h 0 sin νt + cos νt (2.8.76) ν 2 ν ν 2 h(k, t) = f 2 h0 ikhfṽ 0 ikhũ 0 sin νt + ν 2 ν., ( k 2 gh h 0 + ikhṽ 0 ν 2 ) cos νt ν = f 2 + k 2 gh (2.8.77)., ( ). U = 0, c 1 = 0, c 2,3 = ±ν/k., ( ) s ( ) T. ũ s (k) = 0 ( ) ṽ s (k) = ikg f 2 h0 ikfhṽ 0 f ν 2 ( ) f h 2 h0 ikfhṽ 0 s (k) = ν 2 (2.8.78) ũ T (k, t) = ũ 0 cos νt + f ν (ṽ 0 if 1 kg h 0 ) sin νt ṽ T (k, t) = f ν ũ0 + f 2 ν (ṽ 2 0 if 1 kg h 0 ) cos νt (2.8.79) h T (k, t) = ikh ν ũ0 sin νt + ikhf (ṽ ν 2 0 if 1 kg h 0 ). (2.8.78), ṽ s = ikgf 1 h s, ũ s = 0., (2.8.74) d/dt., (2.8.79), ((ṽ 0 ikgf 1 h 0 ) ũ 0 ). *9 : (2.8.74).

24 52,.,., u T (x, t) = 1 2π v T (x, t) = 1 2π h T (x, t) = i 2π, ũ 0 cos νt e ikx dk + 1 2π fũ 0 ν sin νt eikx dk + 1 2π khũ 0 ν sin νt e ikx dk + i 2π d(x, t) = v(x, t) g f f 2 h (x, t) x f ν d(k, 0) sin νt e ikx dk ν d(k, 0) cos νt e ikx dk 2 khf ν 2 d(k, 0) cos νt e ikx dk (2.8.80),. Schoenstadt(1977), (2.8.80). x, x L R ft = ght, *10. u T 1 2πα [ ũ(x/α, 0) cos(ft + φ) + d(x/α, 0) sin(ft + ψ)] v T 1 2πα [ ũ(x/α, 0) sin(ft + φ) + d(x/α, 0) cos(ft + ψ)] (2.8.81) h T 1 ( Hx) 2πα fα [ ũ(x/α, 0) sin(ft + φ) d(x/α, 0) cos(ft + ψ)], ψ φ., L R = gh/f, α = L 2 Rft. (2.8.81), u T, v T x t 1/2, h T t 3/2.,,., G. G = ν k = kgh f 2 + k 2 gh = gh f L 2 + L 2 R (2.8.82), 2πL = 2π/k., L R, c = gh,.,. (2.8.81), x *10 (2.8.80),.

25 53, x,., L 2 R /L2., (2.8.78). ( ) 1 L 2 ṽ s = R 1 + (L 2 R /L2 ) L 2 ṽ0 + ikf 1 g h 0 ( ) (2.8.83) 1 L 2 h s = R fṽ (L 2 R /L2 ) L 2 ikg + h 0,., ṽ 0 ikf 1 g h 0. L 2 L 2 R., (2.8.83) ṽ s = ṽ 0, hs = fṽ 0 ikg (2.8.84).,., L 2 L 2 R (2.8.83) ṽ s = ikf 1 g h 0, hs = h 0 (2.8.85).,.. L R,., L R,., 2., L R = c g /f(c g )., Okland(1970)., H 10 km, L R = 3000 km, 2πL R = km., 5000 km 2πL R., c g 100ms 1, L R 1000 km. 2πL R 6000 km,.,. f

26 54,.,.., h s (x) = h(x, 0) h T (x, 0), h T (x, 0) (2.8.79), h s (x) = h(x, 0) 1 2π Hfik ν 2 d0 e ikx dk (2.8.86)., d 0.,. 1 2π F (k) G(k) e ikx dk = F (x ) G(x x ) dx (2.8.87), F, G F, G., e x /L R e x /L R e ikx dx = 2L R = 2L Rf k 2 L 2 R ν 2., G(x) = e x /L R, F (x) = d(x, 0)/ x *11, (2.8.87), (2.8.86) h s (x) = h(x, 0) H e x x /L R d(x, 0) dx (2.8.88) 2L R f x., h s (x). h s (x) = h(x, 0) + H x x 2L 2 R f x x e x x /LR d(x, 0) dx (2.8.89), x L R., (2.8.89)., v s (x) = fg 1 h s / x, u s = 0 (2.8.90) 2,.,.,. *11 G(k) = 2L R f 2 /ν 2, F (k) = ik d(k).

27 55,,,. 2,,.,,.,,., L 2 /L 2 R., L R = c g /f, c g. L L R,. L L R,.,.

28 56 : (2.8.74) 3 s = (s 1, s 2, s 3 ) = (ũ, ṽ, h), (2.8.74) G ds = Gs (2.8.91) dt.,. 0 f ikg G = f 0 0 ikh 0 0 (2.8.92) G. G λ 1, λ 2, λ 3, p 1, p 2, p 3., G P = [p 1 p 2 p 3 ] *12. P 1 GP = diag(λ 1, λ 2, λ 3 ) (2.8.93) G, G 3., G. G, P P = 1 if/ν if/ν (2.8.94) if/(kg) kh/ν kh/ν., G. P 1 GP = diag(0, iν, iν) (2.8.95), P s = P s. (2.8.91) P 1, ds dt = P 1 GP s (2.8.96) *12 P,.

29 57. (2.8.95), ds dt = diag(0, iν, iν) s (2.8.97). s = (s 1, s 2, s 3), s 1 = C 1, s 2 = C 2 e iν, s 3 = C 3 e iν (2.8.98), C 1, C 2, C 3. s P, (2.8.91) s = C C 2 e iνt if/ν + C 3 e iνt if/ν (2.8.99) if/(kg) kh/ν kh/ν (2.8.76), (2.8.99) C 1, C 2, C 3 s (u 0, v 0, h 0 )., t = 0 (2.8.99) C 1, C 2, C 3.,. : (2.8.80) *13,. f(t) = g(k)e iθ(t,k) dk ( ), θ(k, t) k, g(k) k. e iθ k, g(k) k,., f(t)., θ/ k = 0 *13, ( yamasita/phys-math-approx.pdf).

30 58. k = k s, ε, f(t). f(t) ks +ε k s ε g(k)e iθ(t,k) dk ( ) θ(t, k) k = k s, 2 θ(k) θ(k s ) θ 2 k 2 (k k s ) 2 k=ks ( )., g(k) g(k s ), k, ks +ε [ ] f(t) g(k s ) e iθ(t,k s) i 2 θ exp 2 k 2 (k k s ) 2 dk ( ) k=ks k s ε., k = k s θ/ k = 0. g(k) = A(k)/2π, θ(k, t) = kx + νt, x t f(t)., ( ), t f(t) 1 2π A(k s) e i(k sx+ν(k s )t) ks+ε k s ε., θ ν ν = f 1 + L 2 R k2 [ exp i t ] 2 ν 2 k 2 (k k s ) 2 dk ( ) k=ks., L R = (gh) 1/2 /f. ν k 1 2, ν k = f fl 2 R k (1 + L 2 R k2 ), 2 ν 1/2 k = 2 fl 2 R (1 + L 2 R k2 ) 3/2, 0 = θ/ k = x + ( ν/ k)t k. t, x/l R k s = (L 2 R f ( ) 2 t 2 x 2 ) 1/2., k = k s 2 ν k 2 = [f 2 L 2 R t2 x 2 ] 3/2 > 0 k=ks f 2 L R t 3

31 59. ( ), { t p = (k k s ) 2 ν 2 k (k s)) 2 } 1/2. p, t. ( ), f(t) 2 A(k s) e i(k sx+ν(k s )t) [ ( )] ( ) t 2 ν 1/2 exp ip 2 2 ν sgn k 2 k (k s) dp ( ) 2., sgn(a) A 1, -1. Fresnel *14, f(t) 2π A(k [ s) e i(ksx+ν(ks)t) ( ) t 2 ν 1/2 exp i π ( )] 2 4 sgn ν k (k s) ( ) 2 k 2. k s θ(k s ), k = k s 2 ν/ k 2,. f(t) ( L 2 R 2π f ) 2 t 2 1/2 [ (L 2 [L 2 R f A(k 2 t 2 x 2 ] 3/2 s ) exp i R f 2 t 2 x 2 ) 1/2 + π ] ( ) 4 2 ν/ k 2, π/4 π/4. L 2 R (2.8.80) x L R ft(= ght) x, t (2.8.80). I(x, t) = 1 2π J(x, t) = 1 2π A(k) cos νt e ikx dk, A(k) sin νt e ikx dk. A(k)., 1. I(x, t) = 1 2π 1 { } A(k) e iθ1(k) dk + A(k) e iθ2(k) dk ( ) 2 *14 Fresnel. 0 cos x 2 dx = 0 sin x 2 dx = 1 2 π 2

32 60., θ 1,2 (k) = kx ± νt., ν = f(1 + L R k 2 ) 1/2. ( ), θ 1. θ 2., θ 2 / k = 0 k(= k 2s ), k 1s = k 2s, ν. θ 1 (k 1s ) = θ 2 (k 2s ), 2 ν k (k 1s) = 2 ν 2 k (k 2s) > 0 2 x L R ft, ( ) k 1s = k 2s x/α, ν(k 1s ) = ν(k 2 s) f ( )., α = L 2 Rft., ( ), θ 1 = kx + νt [ 2π f(t) α A(k 1s) exp i ft + π ( )] 2 4 sgn ν k (k s) 2 θ 2 = kx νt, [ 2π f(t) α A(k 2s) exp i ft π ( )] 2 4 sgn ν k (k s) 2., I(x, t) I(x, t) 1 2 2πα. ( ) ( ) { A(k1s )e i[ft+(π/4)] + A(k 2s )e i[ft+(π/4)]} ( ), A(k), A( k) = A (k).,., ( ), I(x, t) 1 { Re[A(k 2s )] cos(ft + π 2πα 4 ) + Im[A(k 2s)] sin(ft + π } 4 ) ( ) *15., J(x, t) 1 2πα { Re[A(k 2s )] sin(ft + π 4 ) Im[A(k 2s)] cos(ft + π 4 ) } ( ) *15 k 1s = k 2s,,. A(k 1s ) = A( k 2s ) = A (k 2s ) A e iθ + Ae iθ = 2(Re[A] cos θ + Im[A] sin θ)

33 61., I(x, t) 1 2πα A(k 2s ) cos(ft + φ k ), J(x, t) 1 2πα A(k 2s ) sin(ft + φ k )., { [ReA(k)] 2 + [ReA(k)] 2} 1/2 = A(k) ( )., φ k = π 4 arg(a(k))., ( ) ( ), (2.8.80) (2.8.81) *16. *16 3. ũ, (2.8.80) 3 ik ũ 0 (k)(b(k) ) B( k) = ik ũ 0 ( k) = ik ũ 0(k) = B (k), ik ũ 0 (k)., ( ) A(k), ik ũ 0 (k). A(k s ),. A(k s ) = ik s ũ 0 = k s ũ 0 (k s )

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V 62 3 3.1,,.,. J. Charney, 1948., Burger(1958) Phillips(1963),.,. L : ( 1/4) T : ( 1/4) V :,. v x u x V L, etc, u V T,,.,., ( )., 2.1.1. 63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1).,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu + Holton 9.2.2 semigeostrophic 1 9.2.2 semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu + Dt DΘ Dt + w dθ 0 dz = 0, (9.2) = 0, (9.3) = 0, (9.4)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

eto-vol2.prepri.dvi

eto-vol2.prepri.dvi ( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information