Microsoft PowerPoint - Statistics[B]

Size: px
Start display at page:

Download "Microsoft PowerPoint - Statistics[B]"

Transcription

1 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード , , 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : website: 経済学研究棟 4 階 432 号室 推定誤差をある一定範囲内にするために必要なサンプルサイズを求める方法について学びます 標本分散の分布について学びます 母分散を区間推定する方法について学びます 分布について学びます 二つの正規母集団の母分散の比を区間推定する方法について学びます key words: 標本平均の分布, 中心極限定理, 区間推定 参考書 : 宮川 pp , 白砂 pp , 大屋 pp , 山本 pp , 鳥居 pp 復習 標本平均の分布 標本平均は分布をもつ 母集団から抽出される 1 組の標本から計算できる標本平均は一つだけであるが, 多数の組の標本がある場合には, 標本平均は様々な値をとるものと考えることができる サンプルサイズが十分に大きいとき, 標本平均の分布は正規分布に近似できる 中心極限定理 平均, 分散の同一の母集団分布から抽出した,,, の標本平均は, サンプルサイズが十分に大きいならば, 平均, 分散 の正規分布に近似することができる ~, 観測データから計算できる標本平均は正規分布, の実現値 の一つである 復習 母集団分布とサンプルサイズ 区間推定を行うときの標本平均の分布 母集団はどのような分布か? 母標準偏差は既知か未知か? サンプルサイズは十分に大きいか否か? 大標本の目安 : 30 または 100 とする場合もある 母集団分布の形 母標準偏差が既知母標準偏差が未知 大標本小標本大標本小標本 正規分布正規分布正規分布 非正規分布 正規分布による近似 なし t 分布または正規分布による近似 正規分布による近似 t 分布 なし 3 4

2 標本比率の分布 (1) 標本が二項データ率 を示している : 0 または 1 からなるときの平均は 標本比 例. [ 視聴率の調査 ]NHK 大河ドラマ 西郷どん の視聴率は 9.6% であった (2018 年 11 月全国個人視聴率調査の結果, 有効回答数 2,310 人 ) 標本比率の分布 (2) 二項変数は二項分布 1, にしたがうので, ~, である ( 真の視聴率 [ 母比率 ] がである TV 番組について, 人を調査するとき見ていた人数の分布 ) このとき の期待値は, 分散は 1 である が十分に大きいとき, 和の分布は正規分布に近づくので ~, 1 標本抽出母集団二項分布 B(1, p) 番組を見た 1 Pr (X 1) p 見なかった 0 Pr (X 0) 1 p 二項分布の成功比率のことを 母比率 とよぶ 調査結果 X i 1 見た 1 2 見なかった 見なかった 0 合計 S X i 222 平均 であり, 視聴率 も正規分布で近似できる : ~, 1 したがって, を標準化すると 1 ~ 0,1 6 標本比率の分布 (3) 標本比率の分布 (4) 例. 西郷どん の視聴率は 9.6%, 有効回答数 2,310 人 0.096, 2310 調査によって得られた は正規分布の実現値の一つであると考えられる 例題 1. 富山県の女性 (25~29 歳 ) の有配偶率は 38% である ( 総務省 国勢調査 ) ランダムに 400 人選び, 配偶者がいるかどうかを調べるものとしよう 母比率を 0.38 と考えるとき,400 人の有配偶率はどのような分布で近似できるか? 母比率 0.38 サンプルサイズ 400 標本の有配偶率 ~ 0.38,.. 7 8

3 標本比率の分布 (5) 例題 2. 家庭の生活状況について 前年に比べて暮らし向きが良くなった かどうかを調査するものとしよう 良くなった と考える人の真の比率 [ 母比率 ] を 0.2 とするとき,900 人の調査によって得られる 良くなった と考える人の標本比率はどのような分布で近似できるか? 母比率 0.2 サンプルサイズ 900 標本の有配偶率 ~ 0.2,.. 母比率の区間推定 (1) 標本比率 はが十分に大きいとき正規分布に近似できるので : 1 ~ 0,1 このとき, 標準正規分布において 95% の範囲は次の確率で示される 不等式を整理すると次が得られる ここで, を標本比率の 標準誤差 とよぶ したがって, 信頼限界を求めるには, 未知の母比率を推定しておく必要がある 9 10 母比率の区間推定 (2) 不等式の 2 乗をとり, について整理する : に関する2 次不等式の判別式 + + に対して と符号条件は次のように書ける : > 0 > 0 より二つの異なる実数解をもつので, となる信頼区間 ( 下側信頼限界, 上側信頼限界 ) が存在する 母比率の区間推定 (3) またはとして, 解の公式を利用してについて解くと ± サンプルサイズが十分に大きい場合には,. 0 より ± 信頼区間は は次のように書き直すことができる : 母比率の区間推定における標本比率の標準誤差は より計算する 11 12

4 母比率の区間推定 (4) 例題 1. 富山県の女性 (25~29 歳 ) についてランダムに 400 人選び, 配偶者がいるかどうかを調べたところ有配偶者は 156 人であった 母比率 ( 配偶者がいる人の真の割合 ) を信頼係数 95% のもとで区間推定しなさい 母比率の区間推定 (5) 例題 2. 家庭の生活状況について 前年に比べて暮らし向きが良くなった かどうかを900 人について調査したところ, 良くなった と考える人の割合は 21% であった 母比率 ( 良くなった と考える人の真の割合 ) を信頼係数 95% のもとで区間推定しなさい 0.39 より信頼限界は より, 信頼区間は である より信頼限界は より, 信頼区間は である 練習問題 (1) NHK 大河ドラマ 西郷どん の視聴率は 9.6% であった (2018 年 11 月全国個人視聴率調査の結果, 有効回答数 2,310 人 ) 母比率 ( 真の視聴率 ) を信頼係数 95% のもとで区間推定しなさい 練習問題 (2) 統計学受講者 56 人についてスマートフォンの種類を尋ねたところ,44 人が ios (iphone) であった この結果を大学生の iphone 占有率に関する標本調査とみなして, 母比率を信頼係数 95% のもとでの母平均を区間推定しなさい 15 16

5 母比率の推定誤差 (1) 標準正規分布において である確率は 95% であり, 標本比率を標準化した も標準正規分布にしたがうので であり, 母比率の推定誤差 (2) 標準誤差の設定方法は2 通り考えられる : i. 母比率の代わりに標本比率 を利用する ii. 標準誤差が最大となる 0.5 を利用する 推定誤差を以下にするために必要なサンプルサイズ 1.96 より. 1 と同値である これを i の場合. 1 ii の場合 と書く を ( 信頼係数 95% での ) 推定誤差 とよぶ 母比率の推定誤差 (3) 例題 1. 富山県の女性 (25~29 歳 ) の有配偶率を推定するために, 信頼係数 95% のもとでの推定誤差を 1% 以内にしたい 最低限必要なサンプルサイズを求めなさい [i] 400 の場合の標本比率が 0.39 であったのでこれを利用する : 練習問題 (3) 大学生が所有するスマートフォンについて iphone の占有率を調査する 信頼係数 95% のもとでの母比率の推定誤差を 5% 以内にしたい 次の [i] [ii] の場合について最低限必要なサンプルサイズを求めなさい [i] 統計学受講者 56 人の標本比率 44 56を母比率の参考にする場合 [ii] 母比率を 0.5 とする場合 少なくとも [ii] 0.5 とする場合 : 9140 のサンプルサイズが必要 少なくとも 9604 のサンプルサイズが必要 19 20

6 母分散の推定 母平均を推定するために標本平均が利用されるのと同様, 母分 散を推定するために標本分散 が利用される ただし, は偏差 2 乗和を示す 標本は変動するので, 標本分散もいろいろな値をとる可能性を持っていると考えることができる つまり, 標本分散は分布を持つ 標本分散の期待値と分散 * 期待値 分散 標本分散は平均的に見て母分散に等しく, 母分散やサンプルサイズ の値に応じて散らばりが決まる 標本分散をで計算すると, 期待値はとは等しくならない ( が小さい場合は特に ) サンプルサイズが大きくなれば, 標本分散の分散はゼロに近づくの でとは大きな違いはない 21 標本分散の分布 (1) 演習問題 -2 (4 月 23 日 ) 問 5 演習問題 -2 の提出者は 65 人 4 の標本が 65 組得られた 母集団 標本 復元抽出 4 456,400,336, , 標本分散の分布 (2) 標本分散の分布 (3) 有限母集団 母平均 万円 母分散 母標準偏差 63.2 万円 4 の 標本平均の平均 は母平均に近い値をとり, かつ 標本平均の分散 は母分散を 4 で割った値に近いをとる 母集団 標本サイズは 4 ( 標本数は 65) 平均 の平均 : ( 分散 ) 分散 の平均 : ( 分散 ) 標本分散 の分布 受講者番号 4 の標本が 65 組得られた 65 個の 65 個の 標本平均標本分散 (1) (2) 実は標本分散の分布はカイ 2 乗分布と関連性がある (65) 平均 分散 個の 65 個の の平均の分散

7 復習 カイ 2 乗分布 (1) Y 標準正規分布にしたがう個の確率変数,,, の 2 乗和を とおくとき, は自由度のカイ 2 乗分布にしたがう : ~χ, の期待値, 分散 ~,, のとき, と書 ける : Y Y ~χ 自由度 1 のカイ 2 乗分布自由度 2 のカイ 2 乗分布自由度 3 のカイ 2 乗分布 Y Y χ 1 χ 2 χ Y 25 復習 カイ 2 乗分布 (2) 母分散がの正規母集団から抽出したサイズの標本における標本 分散を とするとき, は自由度 のカイ2 乗分布にしたがう ~χ なぜか? ~,, 1,2,, のとき, ~χ ( ) より, ~χ (1) なので, は χ ( ) にし たがう確率変数から χ (1) にしたがう確率変数を引いた変数なので自由度 のカイ2 乗分布にしたがう 26 復習 カイ 2 乗分布 (3) カイ 2 乗分布の有意確率と臨界値 (1) 標本分散 の分布 受講者番号 (1) の 4 の標本分散 自由度 3 のカイ 2 乗分布 χ (3) 3 自由度 3 のカイ 2 乗分布 Pr χ χ 自由度 3 のカイ 2 乗分布 Pr χ χ は自由度 のカイ 2 乗分布における実現値と考えることができる である点に注意 χ 上側 ( 右側 ) から覆った面積が 97.5% となる値 χ 上側 ( 右側 ) から覆った面積が 2.5% となる値 28

8 カイ 2 乗分布の有意確率と臨界値 (2) χ は α を上側有意確率, を自由度とするときの臨界値 95% の範囲 ( 3 のとき ) Pr χ. 3 χ χ Pr 母分散の95% 信頼区間 母分散の区間推定 (1) 母分散がの正規母集団からサンプルサイズの標本を抽出し, その標本分散がであるとき, 信頼係数 95% のもとでの母分散の信頼区間は次のようになる χ. ( ) χ. ( ) 自由度 3 のカイ 2 乗分布.. 例. 標本分散 χ. χ. 30 母分散の区間推定 (2) 例題 1. 正規母集団から 16 の標本を抽出し, 標本分散を計算したところ 0.42 であった 母分散を信頼係数 95% のもとで区間推定しなさい 自由度 15 標本分散 0.42 偏差 2 乗和 臨界値 χ. (15) 27.5, χ. (15) 6.26 信頼区間. ( ). ( ) 母分散の区間推定 (3) 例題 2. 統計学受講者 ( 女性 ) 21 人の身長は標本平均 cm, 標本標準偏差 5.2 cm であった 女子大学生の身長の母集団は正規分布であるものとして, 母分散を信頼係数 99% のもとで区間推定しなさい 自由度 20 標本分散 偏差 2 乗和 臨界値 χ. (20) 40.0, χ. (20) 7.43 信頼区間. ( ). ( )

9 練習問題 (4) ある株式会社の株価の変化率を 30 日間計測したところ, 標本標準偏差は 2 % であった 株価の変化率は正規分布にしたがうと仮定して, 母分散を [1] 信頼係数 95% のもとで区間推定しなさい [2] 信頼係数 99% のもとで区間推定しなさい 母標準偏差の区間推定 母分散がの正規母集団からサンプルサイズの標本を抽出し, その標本分散がであるとき, 信頼係数 95% のもとでの母標準偏差の信頼区間は次のようになる χ. ( ) χ. ( ) 分布 (1) カイ 2 乗分布にしたがう二つの確率変数を, とし, それぞれの自由度が, であるとする ( ~χ, ~χ ) このとき ~, 分子の自由度, 分母の自由度の分布 分布 (2) 分布表を参照 例. 分子の自由度 3, 分母の自由度 20 の 分布と臨界値, 両側 5% の臨界値 ( 上側 2.5%, 下側 2.5%) 両側 10% の臨界値 ( 上側 5%, 下側 5%) 自由度 2, 10 自由度 3, 10 自由度 3, ~, 35 f() , 下側. 3, 上側 f() , 下側. 3, 上側 36

10 分布 (3) 例. 二つの正規母集団,,, からそれぞれサンプルサイズ, の標本を抽出し, その標本分散を, と書く は自由度 の, は自由度 のカイ2 乗分布にしたがうので,, とおくと ~, 分布, は二つの標本の分散比に関連した分布になっている 分布, の実現値を 値 とよぶ 分子の自由度, 分母の自由度 の分布 37 分布 (4) 例. 二つの正規母集団の分散が等しい場合 ( 等分散 ): 二つの正規母集団が,,, のとき であるから,, ~, 例. 二つの株式会社 (A 社,B 社 ) の株価収益率は正規分布にしたがい, 母分散はどちらも等しく 4 であるとしよう それぞれ サンプルサイズ 21 で株価収益率の標本分散を計算したとこ ろ次が得られた 3.97, 3.69 このとき, 値は.. 実現値である であり, この値は分布 20,20 の 38 分布 (5) 分布とその実現値 ( 母分散が等分散の場合の標本分散の比 ) 20,20 分布 (6) 逆数の 分布 確率変数 が自由度, の 分布にしたがうとき, 確率変数の逆数 1 は自由度, の 分布にしたがう つまり : ~, 1 ~, f() 例.. 3, , % 2.5% 3,20 20, f() f(),

11 分布 (7) t 分布と 分布の関係 自由度の t 分布にしたがう確率変数の 2 乗は, 分子の自由度 1, 分母の自由度 の 分布にしたがう 1 1 ~ 1, 母分散の比の区間推定 (1) ~, より自由度, の 分布における信頼係数 95% のもとでの 母分散の比 の信頼区間は : Pr.,., 0.95 ±. 10 1,10 ± ,., 10 1,10 下側 2.5% 臨界値 標本分散比 上側 2.5% 臨界値 標本分散比 T , 母分散の比の区間推定 (2) 例. 二つの株式会社 (A 社,B 社 ) の株価収益率は正規分布にしたがって いる ( 母分散は未知 ) それぞれサンプルサイズ 21 で株価 収益率の標本分散を計算したところ次が得られた 母分散の比の区間推定 (2) 20, , 両側 5% の臨界値は [ 下側 ]. 20, , [ 上側 ]. 20, なので,95% 信頼区間は , , % 信頼区間

12 練習問題 (5) 二つの株式会社 (C 社,D 社 ) の株価収益率は正規分布にしたがうものとする それぞれサンプルサイズ 11, 18 で株価収益率の標本分散を計算したところ次が得られた 1.6, 2.4 信頼係数 95% のもとで母分散の比 を区間推定しなさい 区間推定のまとめ 1 区間推定とは ある一定の信頼係数 (90, 95, 99% などの確率 ) のもとで母平均や母分散を含む範囲である 信頼区間 を求めること 母比率の区間推定 サンプルサイズが十分に大きい場合は, 標準正規分布を利用して母比率の区間推定を行うことができる このとき, 標本比率 の標準誤差は 1 より計算する 母分散 ( 母標準偏差 ) の区間推定 母分散がの正規母集団から抽出したサイズの標本における 標本分散を とするとき, は自由度 のカイ2 乗分布にしたがう また, 自由度 のカイ2 乗分布を利用し て母分散 ( ないし母標準偏差 ) の区間推定を行うことがで きる 区間推定のまとめ 2 確率分布と標本分布の関係 母分散の比の区間推定 母分散が の正規母集団および母分散が の正規母集団からそ れぞれサンプルサイズ, の標本を抽出し, その標本分散を, とするとき, は分子の自由度, 分母の自由度 の 分布, にしたがう, を利用して母分散の比の区間推定を行うこと ができる 超幾何分布,, 有限母集団非復元抽出 ベルヌーイ分布 1, 二項分布, 正規分布, 標準正規分布 0,1 カイ 2 乗分布 χ λ ポアソン分布 λ λ 大 大 t 分布 47 分布, 1, 48

13 Excel 自習 カイ 2 乗分布の下側有意確率を求める関数 chisq.inv(a,m) a: 下側有意確率,m: 自由度 例. 下側有意確率 1 上側有意確率とする chisq.inv(0.95,1) χ が得られる chisq.inv(0.025,3) χ が得られる 分布の下側有意確率を求める関数 f.inv(a,m1,m2) a: 下側有意確率,m1: 分子の自由度, m2: 分母の自由度 例. 下側有意確率 1 上側有意確率とする f.inv(0.975,3,20). 3, が得られる f.inv(0.05,2,10). 2, が得られる 49

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団 統計学 Ⅱ(16 11-1 章 11 章母集団パラメータの推定 1. 信頼区間 (1 点推定と区間推定 ( 区間推定のシミュレーション (3 母平均 μの信頼区間 (4 母比率 pの信頼区間 (5 母比率 pのより厳密な信頼区間. 点推定量の特性 (1 標本平均 X の持つ望ましい性質 ( 不偏性 (3 推定量の分散と有効性 (4 平均 乗誤差 MEと最小分散性 (5 一致性 (6 チェビシェフの不等式

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

Microsoft PowerPoint - Econometrics pptx

Microsoft PowerPoint - Econometrics pptx 計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: kkarato@eco.u-toyama.ac.p webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0 統計学 Ⅱ(06) 0 章 0 章 0 章標本抽出と標本分布. 母集団と標本 () 視聴率調査 () 有限母集団と無限母集団 (3) データと母集団. 標本抽出法 () 全数調査と標本調査 () 無作為抽出と有意抽出 (3) 単純無作為抽出法 (4) 層別抽出法 (5) 多段抽出法 (6) 系統抽出法 (7) その他の抽出法 3. 標本平均 の標本分布 () 標本平均の標本分布の例 () 標本平均

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ 区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63> 第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな 第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

untitled

untitled 分析の信頼性を支えるもの データ評価のための統計的方法 確率分布と平均値の推定 検定 田中秀幸 1 はじめに前回は, 統計的手法を適用するために意味のあるデータをどのように取得するのかについて, 母集団と標本について, 期待値 分散 標準偏差について解説した 今回は, 統計的推定 検定の基礎となる確率分布とその確率分布を用いた推定 検定について解説する 2 確率分布 測定データを取得したとき, そのデータのばらつきを視覚的に表すために,

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

Microsoft Word - Stattext11.doc

Microsoft Word - Stattext11.doc 章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 0 回回帰分析 Part 07 年 月 日 ( 水 ) 限 ( 金曜授業実施日 ) 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 4 号室 mal: kkarato@co.-toama.ac.jp wbst: http://www.-toama.ac.jp/kkarato/ 講義の目的 ロジスティック関数の推定方法について学びます 多重回帰分析について学びます kwords:

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

数値計算法

数値計算法 数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 学位論文作成のための疫学 統計解析の実際 徳島大学大学院 医歯薬学研究部 社会医学系 予防医学分野 有澤孝吉 (e-mail: karisawa@tokushima-u.ac.jp) 本日の講義の内容 (SPSS を用いて ) 記述統計 ( データのまとめ方 ) 代表値 ばらつき正規確率プロット 正規性の検定標準偏差 不偏標準偏差 標準誤差の区別中心極限定理母平均の区間推定 ( 母集団の標準偏差が既知の場合

More information

3. 株式投資の リスクとリターン 経済統計分析 (2015 年度春学期 )

3. 株式投資の リスクとリターン 経済統計分析 (2015 年度春学期 ) 3. 株式投資の リスクとリターン 経済統計分析 (15 年度春学期 ) 株式投資のリスクとリターン ( 統計分析手法 ) 成長率 ( 株価上昇率 ) 指数 平均 分散 標準偏差 相関係数 分布と確率の計算 信頼区間の推定 ( 点推定と区間推定 ) 仮説検定 ( 平均値の検定 平均差の検定 ) ( 経済理論等との関連 ) 金融資産価格 ( 株価 債券価格 為替レート ) の決定要因 相互関連 リスクとリターンの関係

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

日経平均株価の推移 ( 円 ) 5,, 15, 1, 5, ( データ ) 日経 NEEDS 3 日本株価の推移 (1 年 1 月 =1) 5 日経平均 TOPIX JASDAQ ( データ ) 日

日経平均株価の推移 ( 円 ) 5,, 15, 1, 5, ( データ ) 日経 NEEDS 3 日本株価の推移 (1 年 1 月 =1) 5 日経平均 TOPIX JASDAQ ( データ ) 日 3. 株式投資のリスクとリターン 経済統計分析 (1 年度春学期 ) 株式投資のリスクとリターン ( 統計分析手法 ) 成長率 ( 株価上昇率 ) 指数 平均 分散 標準偏差 相関係数 分布と確率の計算 信頼区間の推定 ( 点推定と区間推定 ) 仮説検定 ( 平均値の検定 平均差の検定 ) ( 経済理論等との関連 ) 金融資産価格 ( 株価 債券価格 為替レート ) の決定要因 相互関連 リスクとリターンの関係

More information

0415

0415 今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算 統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

Microsoft PowerPoint - ch04j

Microsoft PowerPoint - ch04j Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 回回帰分析 Part 4 7 年 月 7 日 ( 火 ) 限 担当教員 : 唐渡広志 研究室 : 経済学研究棟 4 階 4 号室 emal: kkarato@eco.-toyama.ac.jp webste: http://www.-toyama.ac.jp/kkarato/ 講義の目的 最小 乗法について理論的な説明をします 多重回帰分析についての特殊なケースについて 多重回帰分析のいくつかの応用例を検討します

More information

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る 確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Medical3

Medical3 1.4.1 クロス集計表の作成 -l m 分割表 - 3つ以上のカテゴリを含む変数を用いて l mのクロス集計表による分析を行います この例では race( 人種 ) によってlow( 低体重出生 ) に差が認められるかどうかを分析します 人種には3つのカテゴリ 低体重出生には2つのカテゴリが含まれています 2つの変数はともにカテゴリ変数であるため クロス集計表によって分析します 1. 分析メニュー

More information

13章 回帰分析

13章 回帰分析 単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

Microsoft Word - Stattext13.doc

Microsoft Word - Stattext13.doc 3 章対応のある 群間の量的データの検定 3. 検定手順 この章では対応がある場合の量的データの検定方法について学びます この場合も図 3. のように最初に正規に従うかどうかを調べます 正規性が認められた場合は対応がある場合の t 検定 正規性が認められない場合はウィルコクソン (Wlcoxo) の符号付き順位和検定を行ないます 章で述べた検定方法と似ていますが ここでは対応のあるデータ同士を引き算した値を用いて判断します

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

JUSE-StatWorks/V5 ユーザーズマニュアル

JUSE-StatWorks/V5 ユーザーズマニュアル 計数値の検定 推定 ここでは不良率や欠点数などの計数値のデータを取り扱います. 不良率は n 個の製品をランダムに選んだとき, そのうち何個が不良品だったか, 欠点数は 製品中にきずがいくつ見つかったか などを示すデータですが, 検定や推定にあたってそれぞれ二項分布や, ポアソン分布を想定します. 機能構成ここでは 5 種類の検定 推定を用意しており, 検定 推定の種類を選択すると仮説の条件設定,

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成 講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する

More information

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2 春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの

More information

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかというお問い合わせがよくあります そこで本文書では これらについて の回答を 例題を用いて説明します 1.

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

Microsoft PowerPoint - Lecture 10.ppt [互換モード]

Microsoft PowerPoint - Lecture 10.ppt [互換モード] 講義予定 環境プラニング演習 II 第 0 回 009. 6. 7 千葉大学工学部都市環境システム学科 山崎文雄 http://ares.tu.cha-u.jp/ tu ujp/ ( 009 年 4 月 8 日 ( 土 :50 ー 4:0 演習の説明, 微分 積分と数値計算 ( 009 年 4 月 5 日 ( 土 :50 ー 4:0 微分 積分と数値計算 (3 009 年 5 月 9 日 ( 土 :50

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

異文化言語教育評価論 ⅠA 教育 心理系研究のためのデータ分析入門 第 3 章 t 検定 (2 変数間の平均の差を分析 ) 平成 26 年 5 月 7 日 報告者 :M.S. I.N. 3-1 統計的検定 統計的検定 : 設定した仮説にもとづいて集めた標本を確率論の観点から分析し 仮説検証を行うこと

異文化言語教育評価論 ⅠA 教育 心理系研究のためのデータ分析入門 第 3 章 t 検定 (2 変数間の平均の差を分析 ) 平成 26 年 5 月 7 日 報告者 :M.S. I.N. 3-1 統計的検定 統計的検定 : 設定した仮説にもとづいて集めた標本を確率論の観点から分析し 仮説検証を行うこと 異文化言語教育評価論 ⅠA 教育 心理系研究のためのデータ分析入門 第 3 章 t 検定 (2 変数間の平均の差を分析 ) 平成 26 年 5 月 7 日 報告者 :M.S. I.N. 3-1 統計的検定 統計的検定 : 設定した仮説にもとづいて集めた標本を確率論の観点から分析し 仮説検証を行うこと 使用する標本は母集団から無作為抽出し 母集団を代表している値と考える 標本同士を比較して得た結果から

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式 統計演習 統計 とはバラツキのあるデータから数値上の性質や規則性あるいは不規則性を 客観的に分析 評価する手法のことである 統計的手法には様々なものが含まれるが 今回はそのなかから 記述統計と統計学的推測について簡単にふれる 記述統計 : 収集した標本の平均や分散 標準偏差などを計算し データの示す傾向や性質を要約して把握する手法のこと 求められた値を記述統計量 ( または要約統計量 ) と言う 平均値

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc (1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる

More information

MT2-Slides-13.pptx

MT2-Slides-13.pptx 計測工学 II 第 13 回 Excel による有意差の検定 今日の内容 第 13 回 Excel による有意差の検定 危険率や統計検定 を学習します 有意差とは? 計測して データを取りました データ処理して 特性を調べました それで 何がわかるの? ある治療法だと 病気の治癒率が高い! なぜ そう言い切ることができるの? 有意差があることを示す 意味の有る差 (Significant Difference)

More information

経営統計学

経営統計学 5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており

More information

Microsoft Word - reg2.doc

Microsoft Word - reg2.doc 回帰分析 重回帰 麻生良文. 前提 個の説明変数からなるモデルを考える 重回帰モデル : multple regresso model α β β β u : 被説明変数 epled vrle, 従属変数 depedet vrle, regressd :,,.., 説明変数 epltor vrle, 独立変数 depedet vrle, regressor u: 誤差項 error term, 撹乱項

More information

3章 度数分布とヒストグラム

3章 度数分布とヒストグラム 3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う

More information

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 =

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 = 1.. 統計学の基本的な概念 1.1 統計学とは何ぞや? 統計学は沢山のデータを要約し 中に含まれている情報を把握しやすくするための手段 データデータ データデータ データデータ 要約値 ( 統計量 ) 実質科学的評価 < 例 >100 人の日本人について体重を測定した場合 100 個のデータを眺めただけでそこに含まれる情報を読み取るのは困難 100 個のデータのほぼ真ん中を表す要約値として平均値を求める

More information

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書の 1 つです カイ二乗検定 概要 実際には 連続データの収集が不可能な場合や難しい場合 品質の専門家は工程を評価するためのカテゴリデータの収集が必要となることがあります たとえば 製品は不良

More information

Microsoft Word - 保健医療統計学112817完成版.docx

Microsoft Word - 保健医療統計学112817完成版.docx 講義で使用するので テキスト ( 地域診断のすすめ方 ) を必ず持参すること 5 4 統計処理のすすめ方 ( テキスト P. 134 136) 1. 6つのステップ 分布を知る ( 度数分布表 ヒストグラム ) 基礎統計量を求める Ø 代表値 Ø バラツキ : 範囲 ( 最大値 最小値 四分位偏位 ) 分散 標準偏差 標準誤差 集計する ( 単純集計 クロス集計 ) 母集団の情報を推定する ( 母平均

More information