データ科学2.pptx
|
|
- ひろと ちづ
- 2 years ago
- Views:
Transcription
1 データ科学 多重検定 2 mul%ple test False Discovery Rate 藤博幸
2 前回の復習 1 多くの検定を繰り返す時には 単純に個々の検定を繰り返すだけでは不十分 5% 有意水準ということは, 1000 回検定を繰り返すと, 50 回くらいは帰無仮説が正しいのに 間違って棄却されてすまうじちがあるということ ex) 1 万個の遺伝子について 正常細胞とガン細胞で それぞれの遺伝子の発現に差があるかどうかを検定
3 RNA-seq で発現量を 5 回計測 正常細胞 ガン細胞 遺伝子 遺伝子正常細胞 ガン細胞 1.5 遺伝子 遺伝子正常細胞 ガン細胞. 1.5 遺伝子 遺伝子正常細胞 遺伝子ガン細胞 遺伝子 遺伝子 遺伝子 正常細胞ガン細胞 遺伝子 遺伝子 遺伝子 遺伝子 遺伝子
4 前回の復習 2 Family Wise Error Rate で制御する 1) Bonferroni 法 2) Holm 法
5 FWER: FP/(FP + TN) を制御 TN (True Nega*ve) 帰無仮説が正しく 棄却されない FP (False Posi%ve) 帰無仮説が正しいのに棄却される
6 FWER は厳しすぎる FP ( 帰無仮説が正しいのみ あやまって帰無仮説を棄却すること ; 正常細胞とガン細胞で 遺伝子 A の発現に差がないのに 棄却してしまうこと ) を抑えようとしているが そのため TP ( 帰無仮説が間違っていて 帰無仮説が正しく棄却されること ; 正常細胞とガン細胞で 遺伝子 A の発現に差があり 帰無仮説が棄却されること ) であっても棄却されにくい ----à 発現に差のある遺伝子を検出しにくい ( お金と時間がかかっているのに )
7 FDR (False Discovery Rate) FP が混じっても良いので TP を増やす ただし FP がどれだけ含めれているか (FDR) を推定して それを新たな基準とする TP をどの程度許可するかの基準を 有意水準の p- 値と区別するため q- 値とよぶ p- 値の分布に仮定を設けて FDR を計算
8 FDR = FP / (FP + TP) TP = true posi%ve: 対立仮説が正しく 帰無仮説が棄却 FP = false posi%ve: 帰無仮説が正しいのに 帰無仮説が棄却
9 Benjamini-Hochberg 法 1 m 回の多重検定の場合 (1) p-value を昇順に並べる (p 1 < p 2 < < p m ) (2) i = m とする (3) p i <= α i / m を満たす時 p 1 ~ p i を有意とする そうでなければ i を i 1 にして, 上の条件を確認する i = 1 になっても 条件を満たさない場合は有意なものはないとする FWER の Holm 法が p 1 から順次 p-value が大きい方に向かうのに対し BH 法は p m から出発して, p-value が小さい方に向かうことに注意
10 Benjamini-Hochberg 法 2 p 1 < p 2 < < p i < p m とする i 番目 (p i ) を検討する α を false posi%ve を含む割合とする. m α は m 回の検定中 false posi%ve の期待回数 i / m は, m 回の検定中 i 個の占める割合 すると, m α i / m = α i は i 回の検定の中で false posi%ve を起こす回数 (= 棄却されたのに本当は帰無仮説が正しいもの ) の期待値 FP の上限として α i を考える
11 Benjamini-Hochberg 法 3 今 p i 以下の p-value で棄却するすると posi%ve となる検定が i 個ある この i 個には true posi%ve も false posi%ve も含まれているとすると FP + TP = i FDR = FP/( FP + TP) = FP/i < α i / i = α このようにして FDR を α 以下になるよう制御できる
12 Benjamini-Hochberg 法 4 p i <= α i / m を満たす時 p 1 ~ p i を有意とする この式を書き直すと p i m / i <= α を満たす時 p 1 ~ p i を有意とする q i = p i m / i を p-value に対して q-value とよぶ
13 Benjamini-Hochberg 法 5 実際に行ってみよう p-value Gene Gene Gene Gene Gene p- 値のソート p-value Gene Gene Gene Gene Gene h_ps:// より
14 Benjamini-Hochberg 法 6 p-value q-value q- 値への変換 Gene Gene Gene Gene Gene x (5/1) x (5/2) x (5/3) x (5/4) x 5/5 0.21
15 Benjamini-Hochberg 法 7 FDR の閾値を 0.05 として p-value の大きいものから順番に検討 p-value q-value Gene Gene Gene Gene Gene x (5/1) x (5/2) x (5/3) x (5/4) x 5/ < 0.05 < 0.05 > 0.05 > 0.05 > 0.05 Gene 2 と Gene 5 が有意
16 R でやってみよう 1 Gene1~Gene5 の p-value をベクトルとして表現 > pv <- c(0.21, 0.001, 0.1, 0.06, 0.005) pv を昇順にソート > spv <- sort(pv) > spv [1] q-value を記憶させる空ベクトルを作成 > qv <- c() for 文で q-value に変換 > for (i in 1:length(spv)) qv <- c(qv, spv[i]*length(spv)/i) > qv [1] 前ページの表と同じ結果が得られたことを確認
17 R でやってみよう 2 p.adjust 関数を使ってみる > p.adjust(pv, method="bh", n=length(pv)) [1] > p.adjust(pv, method="bh", n=length(pv)) < 0.05 [1] FALSE TRUE FALSE FALSE TRUE 遺伝子の並び順のままで検定を行える
18 Benjamini-Hochberg 法の問題点 1 Benjamini-Hochberg 法のキモは q-value の計算で q i = p i m / i を p-value に対して q-value とよぶ p i を基準とした時 その時の false posi%ve の数が p i m と仮定している点にある p i が一様分布していればこの仮定は正しい 帰無仮説が全て正しい場合 (ex 個全ての遺伝子で正常細胞とガン細胞における発現量に差はない ) p-value は一様分布する
19 帰無仮説が全て正しい場合における p-value の一様分布の確認 前回の多重検定での false posi%ve 生成と同じシミュレーションを実施 > N < # サンプル数を > p.values <- double(n) # p-value を格納するベクトル > for(i in 1:N) { + x <- rnorm(10, mean=0, sd=1) + y <- rnorm(10, mean=0, sd=1) + p.values[i] <- t.test(x,y)$p.value + } # 同じ正規分布から 10 こずつサンプルして平均値の差の検定 # 同じ分布からのサンプルなので差はないはず > hist(p.values) # p-value のヒストグラム作成
20 p-value がほぼ一様分布に従っていることがわかる
21 Benjamini-Hochberg 法の問題点 2 h_ps://sites.google.com/site/scriptocioinforma%cs/maikuroarei-guan-xi/fdr-zhi-yu-r
22 Benjamini-Hochberg 法の問題点 3 実際には 差があるものが含まれるので p-value は 0 に近い方に偏った分布となる > N < > rm1 <- runif(n)*5 > rm2 <- runif(n)*5 > rs1 <- runif(n)*2 > rs2 <- runif(n)*2 > p.values <- double(n*2) > # 5000 個は同じ分布からサンプリング > for (i in 1:N) { + x <- rnorm(10, mean=0, sd=1) + y <- rnorm(10, mean=0, sd=1) + p.values[i] <- t.test(x,y)$p.value + } > # 残り 5000 個はランダムに生成した平均と標準偏差を持つ分布からサンプリング > for (i in 1:N) { + x <- rnorm(10, mean=rm1[i], sd=rs1[i]) + y <- rnorm(10, mean=rm2[i], sd=rs2[i]) + p.values[n+i] <- t.test(x,y)$p.value + } > hist(p.values)
23 p-value の一様性は成立していないこの点については Q-value 法や Local FDR 法などの改良があるが今回は説明を省く
24 帰無仮説の分布と対立仮説の分布の混合分布帰無仮説と対立仮説の密度比が各々 π 0 :1 - π 0 の比だったとする h_ps://sites.google.com/site/scriptocioinforma%cs/maikuroarei-guan-xi/fdr-zhi-yu-r h_ps:// の記述だともう少し複雑
25 ヒストグラムのどの場所で高さをとるかという問題を考えたのが Q-value Q-value では 高さをとる場所を γ γ から推測される π 0 の値を π 0 (γ) としてプロットし このデータを自然スプライン関数で回帰 このスプライン関数を γ=0 まで外推した値を π 0 の予測値とする p-value のアナロジーとして使われている小文字の q-value とは違って これは Q value という手法名である点に注意 Q value はこの π 0 を BH 法の q-value にかける それ以外の計算手順は BH 法と同じなので 先にこの π 0 の予測値をかけておいた p -value を BH 法に適用すれば Q-vakue を求める事ができる R のパッケージ qvalue をインストールすると Q-value を計算できる
26 h_p://strimmerlab.org/notes/fdr.html
27 h_ps:// h_ps:// h_ps://sites.google.com/site/scriptocioinforma%cs/maikuroarei-guan-xi/fdr-zhi-yu-r h_p://d.hatena.ne.jp/hoxo_m/ /p1 h_p://
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
情報工学概論
確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
経験ベイズ検定による 偽陽性制御の方法 大羽成征 (( おおばしげゆき 京大数理デザイン道場 年 0077 月 2244 日 1155:: :: u.ac.jp
経験ベイズ検定による 偽陽性制御の方法 大羽成征 (( おおばしげゆき )@@ 京大数理デザイン道場 22001144 年 0077 月 2244 日 1155::0055--1155::4400 Email: oba@i.kyoto- u.ac.jp Twi6er: @shigepong 神経細胞間の 解剖学的結合と機能的結合 軸索末端 シナプス小胞 シナプス後細胞 Wikipedia commons
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
<4D F736F F D204B208C5182CC94E497A682CC8DB782CC8C9F92E BD8F6494E48A722E646F6378>
3 群以上の比率の差の多重検定法 013 年 1 月 15 日 017 年 3 月 14 日修正 3 群以上の比率の差の多重検定法 ( 対比較 ) 分割表で表記される計数データについて群間で比率の差の検定を行う場合 全体としての統計的有意性の有無は χ 検定により判断することができるが 個々の群間の差の有意性を判定するためには多重検定法が必要となる 3 群以上の比率の差を対比較で検定する方法としては
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説
第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない
Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of
Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty
Microsoft PowerPoint - statistics pptx
統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:
青焼 1章[15-52].indd
1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
日本経営システム学会
統計的検定における多重比較に関する一考察 名古屋大学古橋武 A Study on Multiple Comparisons in Statistical Test Nagoya University Takeshi Furuhashi 1 はじめに多重比較は研究者にとって間違いやすく, いささかならずややこしい問題である. 本稿は統計的検定における多重性の問題について, 全て Excel のシミュレーションによる具体例を紹介しながら,
仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています
MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書の 1 つです カイ二乗検定 概要 実際には 連続データの収集が不可能な場合や難しい場合 品質の専門家は工程を評価するためのカテゴリデータの収集が必要となることがあります たとえば 製品は不良
Microsoft PowerPoint - statistics pptx
統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
paper2005b14.dvi
R BH 1 (2004) 1 (Familywise error rate) Tukey step-down Tukey-Welsch R (False Discovery Rate) () Benjamini and Hochberg(1995) BH adaptivebh BY R 2 (False Discovery Rate) m m 0 m 1 m = m 0 + m 1 R Benjamini
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
Microsoft PowerPoint - Econometrics pptx
計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: kkarato@eco.u-toyama.ac.p webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます
Microsoft PowerPoint - sc7.ppt [互換モード]
/ 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
ChIP-seq
ChIP-seq 1 ChIP-seq 解析原理 ChIP サンプルのフラグメントでは タンパク質結合部位付近にそれぞれ Forward と Reverse のリードがマップされることが予想される ChIP のサンプルでは Forward と Reverse のリードを 3 側へシフトさせ ChIP のピークを算出する コントロールサンプルでは ChIP のサンプルとは異なり 特定の場所に多くマップされないため
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
解析センターを知っていただく キャンペーン
005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな
RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,
解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札
解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札を入れまず1 枚取り出す ( 仮に1 番とする ). 最初に1 番の学生を選ぶ. その1 番の札を箱の中に戻し,
異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定
異文化言語教育評価論 ⅠA 第 4 章分散分析 (3 グループ以上の平均を比較する ) 平成 26 年 5 月 14 日 報告者 :D.M. K.S. 4-1 分散分析とは 4-1-1 検定の多重性 t 検定 2 群の平均値を比較する場合の手法分散分析 3 群以上の平均を比較する場合の手法 t 検定の反復 (e.g., A, B, C の 3 群の比較を A-B 間 B-C 間 A-C 間の t 検定で行う
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Microsoft PowerPoint ppt
情報科学第 07 回データ解析と統計代表値 平均 分散 度数分布表 1 本日の内容 データ解析とは 統計の基礎的な値 平均と分散 度数分布表とヒストグラム 講義のページ 第 7 回のその他の欄に 本日使用する教材があります 171025.xls というファイルがありますので ダウンロードして デスクトップに保存してください 2/45 はじめに データ解析とは この世の中には多くのデータが溢れています
Microsoft PowerPoint - statistics pptx
統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
Microsoft Word - no103.docx
次は 数える例です ex19.c /* Zeller の公式によって 1 日の曜日の分布を求めるプログラム */ int year, month, c, y, m, wnumber, count[7] = {0, i; for(year = 2001; year
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>
第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
切断安定分布による資産収益率のファットテイル性のモデル化とVaR・ESの計測手法におけるモデル・リスクの数値的分析
日本銀行金融高度化センターワークショップ リスク計測の高度化 ~ テイルリスクの把握 ~ 説明資料 1 切断安定分布による資産収益率のファットテイル性のモデル化と VR VaR の計測手法における モデル リスクの数値的分析 2013 年 2 月 28 日日本銀行金融機構局金融高度化センター磯貝孝 要旨 ( 分析の枠組み ) 日経平均株価の日次収益率の母分布を切断安定分布として推計 同分布からのランダム
Microsoft PowerPoint - ch04j
Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
R-introduction.R
による統計解析 三中信宏 minaka@affrc.go.jp http://leeswijzer.org 305-8604 茨城県つくば市観音台 3-1-3 国立研究開発法人農業 食品産業技術総合研究機構農業環境変動研究センター統計モデル解析ユニット専門員 租界 R の門前にて : 統計言語 R との極私的格闘記録 http://leeswijzer.org/r/r-top.html 教科書と参考書
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
第7章
5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定
Microsoft PowerPoint - Lecture 10.ppt [互換モード]
講義予定 環境プラニング演習 II 第 0 回 009. 6. 7 千葉大学工学部都市環境システム学科 山崎文雄 http://ares.tu.cha-u.jp/ tu ujp/ ( 009 年 4 月 8 日 ( 土 :50 ー 4:0 演習の説明, 微分 積分と数値計算 ( 009 年 4 月 5 日 ( 土 :50 ー 4:0 微分 積分と数値計算 (3 009 年 5 月 9 日 ( 土 :50
<4D F736F F F696E74202D2091BD8F6494E48A7282CC8AEE916282C B C815B F96405F947A957A97702E >
第 27 回創薬情報研究会 多重比較の基礎とゲートキーピング法 日本開発センタークリニカルデータサイエンス部舟尾暢男 おわび 後で読み返していただいた際に理解しやすい様 細かなところまで説明するよう努めました そのため 内容が盛りだくさんとなってしまい 早口で説明させていただくこととなります ご容赦下さい また 全てをお話してしまうと時間が大幅に超過してしまいますので本講演では タイトルに があるスライド
Microsoft Word - Stattext11.doc
章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や
0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい
Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (
http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています
はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式
統計演習 統計 とはバラツキのあるデータから数値上の性質や規則性あるいは不規則性を 客観的に分析 評価する手法のことである 統計的手法には様々なものが含まれるが 今回はそのなかから 記述統計と統計学的推測について簡単にふれる 記述統計 : 収集した標本の平均や分散 標準偏差などを計算し データの示す傾向や性質を要約して把握する手法のこと 求められた値を記述統計量 ( または要約統計量 ) と言う 平均値
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
PowerPoint プレゼンテーション
1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定
ANOVA
3 つ z のグループの平均を比べる ( 分散分析 : ANOVA: analysis of variance) 分散分析は 全体として 3 つ以上のグループの平均に差があるか ということしかわからないために, どのグループの間に差があったかを確かめるには 多重比較 という方法を用います これは Excel だと自分で計算しなければならないので, 分散分析には統計ソフトを使った方がよいでしょう 1.
CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研
CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育
布に従う しかし サイコロが均質でなく偏っていて の出る確率がひとつひとつ異なっているならば 二項分布でなくなる そこで このような場合に の出る確率が同じであるサイコロをもっている対象者をひとつのグループにまとめてしまえば このグループの中では回数分布は二項分布になる 全グループの合計の分布を求め
< 解説 > 広告媒体の到達率推定モデル 株式会社ビデオリサーチ常務取締役木戸茂 広告媒体計画の評価指標として広告業界では 有効リーチ あるいは 有効フリークエンシー の概念が一般に用いられている 広告の到達回数分布 Frequency Distribution の推定が重視される背景としては Krugan97977 の3ヒット セオリー Threeexosuretheory を根拠とした 3リーチ
日心TWS
2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定
0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 スペクトルデータの特徴 1 波 ( 波数 ) が近いと 吸光度 ( 強度 ) の値も似ている ノイズが含まれる 吸光度 ( 強度 ) の極大値 ( ピーク ) 以外のデータも重要 時系列データの特徴 2 時刻が近いと プロセス変数の値も似ている ノイズが含まれる プロセス変数の極大値
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
Microsoft Word - 計量研修テキスト_第5版).doc
Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349
目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順
SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3
Microsoft PowerPoint slide2forWeb.ppt [互換モード]
講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均
untitled
C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
スライド 1
移動体観測を活用した交通 NW の リアルタイムマネジメントに向けて : プローブカーデータを用いた動的 OD 交通量のリアルタイム推定 名古屋大学山本俊行 背景 : マルチモード経路案内システム PRONAVI 2 プローブカーデータの概要 プローブカー : タクシー 157 台 蓄積用データ収集期間 : 22 年 1 月 ~3 月,1 月 ~23 年 3 月 データ送信はイベントベース : 車両発進
(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ
区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.
PowerPoint プレゼンテーション
SAS による多重比較 美女と野獣 の統計学 浜田知久馬東京理科大学 Multiple comparison using SAS Statistics for Beauty and Beast Chikuma Hamada Tokyo University of Science 内容 多重性とその対処 Bonferroniの方法の修正 (Holm,Sidak,Hochberg,Hommel,FDR)
Microsoft PowerPoint - 14都市工学数理ノンパラ.pptx
都市工学数理 浅見泰司 東京大学大学院工学系研究科教授 Yasushi Asami 1 0. 統計学的検定の基本 母集団と標本 世論調査では 日本人全員に聞くというのは事実上不可能 そこで 日本人全員 (= 母集団 ) から 一部 (= 標本 ) を選んで そこで得られた傾向 (= 仮説 ) が日本人全体にもある程度の信頼性で成り立つかどうかを考える (= 検定 ) 注意 サンプリングの方法 ランダムサンプリングが基本
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
Microsoft Word - Time Series Basic - Modeling.doc
時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (
Ч’Î‚Š‡è/A6212D
êêû êê ê strictions 0の帰無仮説は強く棄却されている を選択する ダイアログに制約式 このことから我が国の輸入市場は ドル建てに c 4 c 5 0 ついてみると円安 ドル高 YENDOLLの値が大 を書き入れる Eviewsは説明変数の順番をc 1 きくなる では速やかな輸入の減少をもたらして c 2 c 3 と し て 認 識 す る こ の 例 で はJIL-
第1回(全5回) Rの基礎と仮説検定
1 環境統計学ぷらす 第 1 回 ( 全 5 回?) R の基礎と仮説検定 高木俊 shun.takagi@sci.toho-u.ac.jp 2013/10/24 2 今回やること R の基礎 仮説検定 Fisher の正確確率検定 2 群の平均値の差の検定 (t 検定 ) 結果の表し方 図と表 文章中の表現 * 今後 Win 版を前提に話を進めます * 次回以降も R の操作練習 統計の解説 論文での表現の
プログラミング入門1
プログラミング入門 1 第 5 回 繰り返し (while ループ ) 授業開始前に ログオン後 不要なファイルを削除し て待機してください Java 1 第 5 回 2 参考書について 参考書は自分にあったものをぜひ手元において自習してください 授業の WEB 教材は勉強の入り口へみなさんを案内するのが目的でつくられている これで十分という訳ではない 第 1 回に紹介した本以外にも良書がたくさんある
Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt
重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1
4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる
生命情報学
生命情報学 5 隠れマルコフモデル 阿久津達也 京都大学化学研究所 バイオインフォマティクスセンター 内容 配列モチーフ 最尤推定 ベイズ推定 M 推定 隠れマルコフモデル HMM Verアルゴリズム EMアルゴリズム Baum-Welchアルゴリズム 前向きアルゴリズム 後向きアルゴリズム プロファイル HMM 配列モチーフ モチーフ発見 配列モチーフ : 同じ機能を持つ遺伝子配列などに見られる共通の文字列パターン
自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好
. 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :
SIGIR2013 勉強会 Session 11: Evaluation I 担当 : 加藤 ( 京都大学 )
SIGIR2013 勉強会 Session 11: Evaluation I 担当 : 加藤 ( 京都大学 ) Evaluation I 1. On the Measurement of Test Collection Reliability Julián Urbano (University Carlos III of Madrid), Mónica Marrero (University Carlos
PowerPoint プレゼンテーション
学位論文作成のための疫学 統計解析の実際 徳島大学大学院 医歯薬学研究部 社会医学系 予防医学分野 有澤孝吉 (e-mail: karisawa@tokushima-u.ac.jp) 本日の講義の内容 (SPSS を用いて ) 記述統計 ( データのまとめ方 ) 代表値 ばらつき正規確率プロット 正規性の検定標準偏差 不偏標準偏差 標準誤差の区別中心極限定理母平均の区間推定 ( 母集団の標準偏差が既知の場合
配付資料 自習用テキスト 解析サンプル配布ページ 2
分子系統樹推定法 理論と応用 2009年11月6日 筑波大 院 生命環境 田辺晶史 配付資料 自習用テキスト 解析サンプル配布ページ http://www.fifthdimension.jp/documents/molphytextbook/ 2 参考書籍 分子系統学 3 参考書籍 統計的モデル選択とベイジアンMCMC 4 祖先的な形質 問題 OTU左の の色は表現型形質の状態を表している 赤と青
数値計算法
数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして
データ構造
アルゴリズム及び実習 7 馬青 1 表探索 定義表探索とは 表の形で格納されているデータの中から条件に合ったデータを取り出してくる操作である 但し 表は配列 ( 連結 ) リストなどで実現できるので 以降 表 の代わりに直接 配列 や リスト などの表現を用いる場合が多い 表探索をただ 探索 と呼ぶ場合が多い 用語レコード : 表の中にある個々のデータをレコード (record) と呼ぶ フィールド
Microsoft Word - Stattext13.doc
3 章対応のある 群間の量的データの検定 3. 検定手順 この章では対応がある場合の量的データの検定方法について学びます この場合も図 3. のように最初に正規に従うかどうかを調べます 正規性が認められた場合は対応がある場合の t 検定 正規性が認められない場合はウィルコクソン (Wlcoxo) の符号付き順位和検定を行ないます 章で述べた検定方法と似ていますが ここでは対応のあるデータ同士を引き算した値を用いて判断します
角度統計配布_final.pptx
01/1/7 1, 1 JST GFP {x 1,x,,,x n } Credit: Elowitz lab {θ 1, θ, θ 3,,, θ n } (+) EB3-GFP π π π θ+π = θ movie Shindo et al., PLoS one, 008 (+) beating Shindo et al., PLoS one, 008 Guirao et al., NCB, 010
Microsoft PowerPoint - pr_12_template-bs.pptx
12 回パターン検出と画像特徴 テンプレートマッチング 領域分割 画像特徴 テンプレート マッチング 1 テンプレートマッチング ( 図形 画像などの ) 型照合 Template Matching テンプレートと呼ばれる小さな一部の画像領域と同じパターンが画像全体の中に存在するかどうかを調べる方法 画像内にある対象物体の位置検出 物体数のカウント 物体移動の検出などに使われる テンプレートマッチングの計算