CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

Size: px
Start display at page:

Download "CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )"

Transcription

1 III III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) pdf (982/03) II (999/06)

2 III II (985/04) (990/0) 5 59 F B80 89 A90 00 S A4 A4 afe David afe David 2:00 3:30 2 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ: (2) µ: (3) ν: (4) ξ, Ξ: (5) o: (6) π, Π: (7) ρ: (8) σ, Σ: (9) τ: (20) υ, Υ: (2) ϕ, Φ: (22) χ: (23) ψ, Ψ: (24) ω, Ω:

3 III : October 4, 203 Version :.. D f : D 2. f : D α D 3. f : D 4. e z 5. z 2 6. ( ) i α r > 0 α r (α, r) 7. m = (α, r) (z α) m dz = (i, ) z dz = π = (0, 2) 2. () z 2 dz = 2πi z i () (2) f : D D f(z) 300 D 2 f(z) dz

4 III : October, 203 Version :. (0/4). D (domain) : D D 2 D D f : D 2. f : D α D w = f(z) z = α (differentiable) : A f(z) f(α) lim z α z α = A A f α (differential coefficient) A = f (α). z α f(z) f(α) z α A w z A w A z A = re iθ 0 f z = α r = A θ = arg A f(α) 3. f : D w = f(z) D (holomorphic) : { f D f D. w = f(z) D : α D f D w = f(z) z D f (z) f (derivative). f D Goursat 4. e z. f : D w = f(z) z = x + yiw = u + vi f(x + yi) = u + vi (x, y, u, v R) (a) (b) (a) f D (b) u, v D (R) { ux = v y v x = u y

5 III f (z) = u x + iv x (R) the auchy-riemann equation) (R) f xy uv ( ) ( ) ux u y = v x v y e ( ) ( ) z ( = e x+yi ) = e x (cos y + i sin y) ( xy ) x u e uv = x cos y ux u y v e x y = ( ) sin y v x v y e x cos y e x sin y e x sin y e x u, v cos y (R) x, y f f (z) = u x + iv x = e x cos y + ie x sin y = e z 5. z 2 ( ) ( ) ( ) x u x = 2 y 2 ( ) ( ) y v 2xy ux u y 2x 2y = v x v y 2y 2x 6. ( ) i ( ) i := e i log( ) log( ) e z = = e πi = e πi+2mπi (m Z) log( ) = (2m + )πi (m Z) ( ) i := e i log( ) = e i(2m+)πi = e (2m+)π (m Z)..., e 3π, e π, e π, e 3π, e 5π,... α r > 0 α r (α, r) 7. m = (α, r) z(t) = α + re it z (t) = ire it. (z α) m dz = 2π 0 2π (re it ) m (ire it ) dt = ir m+ e i(m+)t dt = 0 [ ir m+ (m + )i ei(m+)t i 2π 0 (z α) m dz ] 2π 0 = 0 (m ) dt = 2πi (m = ). 8.

6 III (auchy s Integral Theorem)D D f : D f(z) dz = 0. (simple closed curve, s.c.c.) D (simply connected) D D D 9. = (i, ) z dz = 7 π 2 { 2πi α z α dz = 0 α ( z ) = 2 2i z 2i z + 2i ( ) z dz = 2 2i z 2i dz z + 2i dz. 2i 2i 2 2i (2πi 0) = π 2 0. (auchy s Integral Formula): D D f : D α ( ) f(α) = f(z) 2πi z α dz. = (0, 2) z 2 dz = 2πi z i

7 III I D = f(z) = z 2, α = i D f D i ( ) f(i) = z 2 dz I = 2πif(i) = 2πi. 2πi z i 2. () () (2) f : D D f(z) 300 D 2 f(z) dz () = 600 (2) z : z = z(t) z (t) = (0 t 2) t z z z (t) t 2 f(z) dz = f(z(t))z (t)dt f(z) z f(z(t))z (t) t 0 t f(z(t))z (t) f(z(t)) z (t) 300 = 300 () f(z(t))z (t) f(z(t))z (t) = () dz (2) z(z 2i) 4z 2 dz (3) + 2z 2 + 3z 2 dz 2-2. z 2 + dz (α, r) = { z(t) = α + re it t [0, 2π] } () = (i, ) (2) = ( i, ) (3) = (0, 2) (4) = (, ) 2-3. a, b E E = {z(t) = a cos t + ib sin t t [0, 2π]} 2π 2π () dz (2) z a 2 cos 2 x + b 2 sin 2 dx = x ab Hint: () 0

8 III : October 5, 203 Version :. (0/) (auchy s Integral Theorem)D D f : D f(z) dz = 0.. x = x(t), y = y(t) R : z = z(t) = x(t) + iy(t) (a t b) (smooth) dz dx dy (t) = (t) + dt dt dt (t)i a < t < b, (piecewise smooth), 2,..., N = + + N (closed curve) : z = z(t) (a t b) z(a) = z(b) : z = z(t) (a t b) (simple closed curve, s.c.c.) a t < t 2 < b z(t ) z(t 2 ) Jordan 3 (interior) int() (exterior) ext() D (simply connected) D int() D D t (orientation) z(a) (initial point)z(b) (terminal point) T T

9 III ,... n = + + n 2,... n 2 0 { } = 0 = n + +. n i i = i 2 { z α dz = 2πi : α int() 0 : α ext(). {α} α z α α D = 0. α r > 0 r := (α, r) n = 7 = = 2πi. r x dx = π 2 i x = 2 tan θ R > R 2 I R = R x dx R := { Re it t [0, π] } [ R, R] R 9 ( ) z dz = 2 2i z 2i dz z + 2i dz. 2i 2i = 2 2i (2πi 0) = π 2 = +I R = π R 2

10 III R 0 (R ) lim R I R = π/ 2 R > 2 z R z + 2 z 2 2 = R 2 2 > z dz R 2 2 l( R) = πr R 2 2 R l( R ) R 0 (R ) D f : D f(x + yi) = u + vi (x, y, u, v R) u, v x, y z z f z := ( 2 x i ) f(x + yi) y f z := ( 2 x + i ) f(x + yi) y z z f z, f z f z(z), f z (z) f(z) = z f z := ( 2 x i y ) (x yi) = 2 { x (x yi) i } (x yi) = {( 0) i(0 i)} = 0. y 2 f z := ( 2 x i ) (x yi) = {( 0) + i(0 i)} =. y 2 f(z) = z n f z (z) = 0f z (z) = nz n (Green s Theorem): D D f : D α int() f(z) dz = 2i int() f z dxdy f(z) = z z dz = 2i dxdy int() 4 α, β α β α + β α + β α = z 2, β = 2

11 III (int() ) = 2i z dz 0 z z f : D w = f(z) u + vi = f(x + yi) f z := ( 2 x + i ) (u + vi) = y 2 {(u x v y ) + i(u y + v x )} D f z 0 u, v f f f z f u+vi = f(x+yi) f(z) dz = (u + vi)(dx + idy) = (u dx v dy) + i (u dy + v dx) () = ( u y v x )dxdy + i ( v y + u x )dxdy = = i int() int() int() int() ( x (iu v) + ) ( u vi) dxdy y ( x + i ) (u + vi) dxdy = 2i y int() f z dxdy.. f : D α D f z (α) = Af z (α) = B z α f α f(z) = f(α) + A (z α) + B (z α) + o( z α ) f z (α) = 0. f(x + yi) = u + vi α = x 0 + y 0 i, f(α) = u 0 + v 0 i x = x x 0 y = y y 0 u = u u 0 v = v v 0 z = z α z = x + i y z = x i y f u, v x, y u = p x + p 2 y + o( x 2 + y 2 ), v = q x + q 2 y + o( x 2 + y 2 ),

12 III p = u x (x 0, y 0 )p 2 = u y (x 0, y 0 )q = v x (x 0, y 0 )q 2 = v y (x 0, y 0 ) f(z) f(α) = u + vi = (p x + p 2 y) + (q x + q 2 y)i + o( x 2 + y 2 ) = (p + q i) x + (p 2 + q 2 i) y + o( x 2 + y 2 ) = f z + z (α) + f z z (α) + o( z ) x 2 y 2i = ( ) f (α) i f 2 x y (α) z + ( ) f (α) + i f 2 x y (α) z + o( z ) = A (z α) + B (z α) + o( z α ). (auchy s Integral Formula): D D f : D α int() f(α) = 2πi f(z) z α dz z 2 = (0, 3) dz = 2πi I D = z + f(z) = z 2, α = D f D int() f( ) = 2πi z 2 z i dz I = 2πi( )2 = 2πi. (Pompeiu s Formula): D D f : D α int() f(α) = 2πi f(z) z α dz f z (z) π int() z α dxdy. 2 5 g(z) = f(z)/(z α)d(α, r) := {z z α < r} r D(α, r) int() g g(z) dz g(z) dz = 2i z dxdy ( ) (α,r) () int() D(α,r) z g z = ( ) f(z) = f ( ) z z α z (z) z α + f(z) z z α /(z α) int() D(α, r) 0 5 int() {α}

13 III () (α,r) f(z) z α dz f(z) f(α) = dz f(α) (α,r) z α (α,r) () z α dz z α = r 2 2πif(α) f f z (α) = Af z (α) = B f(z) f(α) = A(z α)+b(z α)+o( z α ) z α = r 0 z α = r f(z) f(α) ( A + B +) z α f(z) f(α) dz ( A + B + )2πr 0 (r 0) (α,r) z α r 0 ( ) I = 0 x 4 + dx () α = e πi/4 z 4 + = 0 ±α, ±α 4 (2) z 4 + = a, b, c, d (3) a z α + b z + α + c z α + d z + α x 2 dx I z, z. D f, g : D () z z f g (f(z)g(z)) = (z) g(z) + f(z) z z (z) f g (f(z)g(z)) = (z) g(z) + f(z) z z (z) Hint: (2) n f(z) = z n f z (z) = nz n (3) f(z) f(z)

14 III : October 25, 203 Version :. (0/8) D f : D f, f, f (3),.... f(x) = x 3/2 (x R) f f (0) 2. n D f : D D α int() n 0 f (n) (α) f (n) (α) = n! 2πi f(z) dz. (z α) n+ f (n) (α) n! = 2πi f(z) (z α) dz (z α) n (z α) n n 2. n = 0 n = n 2 h 0 n = 0 f(α + h) f(α) h = { h 2πi = 2πi f(z) z (α + h) dz f(z) (z α h)(z α) dz } f(z) z α dz h 0 f (α) = f(z) dz 2πi (z α) 2 f(z) (z α h)(z α) dz f(z) (z α) 2 dz = hf(z) (z α) 2 (z α h) dz f(z) M r N r () = z D(z, r) D(z, r) = int((z, r)) r, h 0 α α + h N r () z f(z)

15 III z z α r z α h r h M r 3 l() h 0 0. α D α D α α 2 n f (n) (α) n 0 f (n) D f (n+) f (n) f (n+) 2 α D f (n+2) (α) f (n+) z = α 3 α f (n+) D. = (0, 2) e z I = (z ) 4 dz 2 D = f(z) = e z, α =, n = 3 α int() f (3) () = 3! 2πi f (3) (z) = e z. e z (z ) 4 dz I = 2πif (3) () = eπi 3! 3. f : D D f = int() D f(z) dz = 0. (Morera) f : D D ( )D f(z) dz = 0 f D. ( ) F : D F (z) = f(z) (z D) F D f f F ( ) α D ζ D α ζ D, 2 ( ) 2 + ( ) f(z) dz = 0 = 2+( ) 2 = 2 Goursat 3 g z = α z = α

16 III D α ζ ( ) F (ζ) := f(z) dz = f(z) dz 2 F (ζ) = ζ α f(z) dz F : D f ζ D F (ζ + h) F (ζ) lim = f(ζ) h 0 h ϵ > 0 δ > 0 h δ F (ζ + h) F (ζ) f(ζ) h ϵ f ϵ > 0 δ > 0 z ζ δ h δ F (ζ + h) F (ζ) h f(z) f(ζ) ϵ D { = ζ+h h α ζ α } α ζ ζ ζ + h L : z(t) = ζ + ht (0 t ) F (ζ + h) F (ζ) h L = h dz = { F (ζ + h) F (ζ) h 0 +L } = h L f(z) dz h dt = hl(l) = h L f(ζ) = f(z) dz f(ζ) dz h L h L = h (f(z) f(ζ)) dz h e l(l) = ϵ ζ D ( ) L. f : D F : D F = f F f (primitive function)

17 III F F 2 f F (z) F 2 (z) D f : D ( ) F : D f(z) = z 2 F (z) = z 3 /3 + (z 3 /3) = z 2. f(z) = F (z) = log z + z log z = (0, ) dz = 2πi 0 ( ) z f(z) D = {0} f D f D := (, 0] ( ) F (ζ) = ζ f(z) dz D F log z Im log z < π Liouville s Theorem f : M > 0 f(z) M ( z ) f e z sin z, cos z sin x ( x R) sin z ( z ) z f(z) = + z 2 z f(z) z + z 2 2 f

18 III f : M f(z) M ( z ) α = (α, r) (r > 0) 2 f (α) = f(z) 2πi (z α) 2 dz 2π M r 2 l() = M r. M r > 0 f (α) = 0 α f The Fundamental Theorem in Algebra a n z n + a n z n + + a z + a 0 = 0 (a n 0, n ) x 2 + = 0 Gauss α, α 2,... α n a n z n + a n z n + + a z + a 0 = a n (z α )(z α 2 ) (z α n ) n n x 2 +. f(z) f(z) 0 z g(z) := f(z) z 0 f(z) = z n a n + a n + + a 0 z z n A(z) z r > 0 A(z) a n + + a 0 a n z z n r + + a 0 r n r 0 z r 0 A(z) a n /2 r 0 z r 0 f(z) z n ( a n a n 2 ) rn 0 a n 2 g(z) 2 r0 n a =: M. n E = {z z r} g(z) E M g(z) max{m, M } 4- = (0, 2) e z e z sin z () dz (2) z z 2 dz (3) (z π/2)(z + π) dz

19 III n = (0, 2) e z z + e iz () dz (2) z4 (z ) 2 dz (3) (z + 3) (3z π) 2 dz 4-3 () f : D D f (z) = 0 (2) f : D F, F 2 : D F (z) = F 2 (z) + Hint.

20 III / : November, 203 Version :. (0/25) D D(α, r) := {z z α < r} α r D(α, r) = int((α, r)) g n g g n g g n (z) dz g(z) dz g n g g n g g n : D (n N) D E g n E g : E (uniform convergence) ( ϵ > 0)( N N)( n N)( z E) g n (z) g(z) < ϵ E g n g z 0 g n g (n ) g = lim n g n. 0 < r < g n (z) = + z + + z n, g(z) = z g n g E(r) = {z z r} z < z = + z + + zn +. g n (z) = ( z n+ )/( z) g n (z) g(z) = z n+ z rn+ r 0 (n )

21 III r n+ /( r) z E(r) g n g E(r) = {z z r} r z 4- g n : D (n 0) g : D D g D. ϵ > 0 α D δ > 0 N z α < δ = g(z) g(α) < ϵ ( n N)( z D) g n (z) g(z) < ϵ/3 g n (α) g(α) < ϵ/3 m N g m D z = α δ > 0 z α < δ = g m (z) g m (α) < ϵ/3 z α < δ g(z) g(α) g(z) g m (z) + g m (z) g m (α) + g m (α) g(α) < ϵ/3 + ϵ/3 + ϵ/3 = ϵ 4-2 g n : D (n 0) g : D D D g n (z) dz g(z) dz (n ).. n N ( ϵ > 0)( N N)( n N)( z ) g n (z) g(z) < ϵ. g n (z) dz g(z) dz = (g n (z) g(z)) dz ϵ l() l() lim n g n (z) dz = 4-3 g n : D (n 0) g : D D () g D (2) D g n g g(z) dz

22 III () D D D g n D g n (z) dz = g(z) dz = 0 4- g g D (2) E D E D 2 r > 0 α E D(α, r) (α, r) D α E = (α, r) 2 g n(α) = 2πi g n n N g n(α) g (α) 2πi g n (z) (z α) 2 dz g (α) = 2πi g(z) (z α) 2 dz ( ϵ > 0)( N N)( n N)( z D) g n (z) g(z) < ϵ. g n (z) g(z) (z α) 2 dz ϵ 2π r 2 l() = ϵ r. ϵ/r α E g n g E. g n : D g : D E D g n E g E 4-3 g n g D g g n g D (Weiserstrass s Theorem) g n (z) = + z + z z n g(z) = /( z) D(0, ) g (z) = lim n g n(z) ( z) 2 = + 2z + + nzn + sin nx g n (x) = (x R) n g n g(x) = 0 R g n(x) = cos nx g (x) = 0 z g n (z) g(z) 4-4. D f : D α D R > 0 = (α, R) D z int() f(z) = f(α) + f (α)(z α) + f (α) (z α) 2 + 2! g n 2 {e n } E e n D /n { e n(k) } z D E z E E D D D D =

23 III f(z) α (Taylor expansion about α). g(z) = a n (z α) n 3 n=0 f n : D (n = 0,, 2,...) g n (z) := f 0 (z) + f (z) + + f n (z) z D g n (z) g(z) g(z) = f 0 (z) + + f n (z) +, g(z) = f n (z), g(z) = f n (z) n=0 n 0 g : D 4-5 D g n (z) = f 0 (z) + f (z) + + f n (z) g(z) = f n (z) f n (z) dz = n=0 n= f n (z) dz. n=0 g = lim n g n = g(z) dz = lim g n (z) dz = lim n n = 4-2 n f n (z) dz = lim k=0 n n k=0 f n (z) dz = z 0 int() r := z 0 < R z z 0 α z α = r R < f(z) z z 0 = f(z) (z α) (z 0 α) = f(z) z α z 0 α z α = f(z) z α n=0 ( ) n z0 α. z α 3

24 III f n (z) := f(z) z α ( ) n z0 α g n (z) := f 0 (z) + + f n (z)g(z) := f(z) z α z g(z) = lim g n (z) = n=0 z z 0 f n (z) f(z) M = M() z β = z 0 α z α g n (z) g(z) = f n+ (z) + f n+2 (z) + = f(z) z α (βn+ + β n+2 + ) M R β n+ β M β n+ R( β ) β = r/r < z g n g 4 f(z 0 ) = f(z) dz = 2πi z z 0 2πi = 2πi n=0 f n (z) dz n=0 n=0 f n (z) dz 4-5 = ( ) n f(z) 2πi n=0 z α z0 α dz z α ( ) f(z) = dz (z 2πi n=0 (z α) n+ 0 α) n f (n) (α) = (z 0 α) n. n! (/). z e z = + z! + z2 2! z3 + sin z = z 3! + z5 z2 cos z = 5! 2! + z4 4! α = 0 z < R R = (0, R) 4-4. e z e 2 = n! (z 2)n n=0 e z = e 2 e z 2 = e 2 n=0. (z 2) n n! f(z) A f(z) = a n (z α) n B f(z) = b n (z α) n n a n = b n. f(z) = z 2i 4

25 III () z = 0 (2) z = i () f(z) = 2i z < z < 2 2i f(z) = 2i ( z n = 2i) n=0 n=0 z 2i. (2i) n+ zn ( z < 2) (2) () f(z) = (z i) i = i z i i < z i < z i i. f(z) = ( ) n z i = i i i n+ (z i)n ( z i < ) n=0 n=0. a n (z α) n (radius of convergence) z α < R z α > R R () 2(2) z = 0 z 4 () (2) e z2 (3) cos z z + 3 z 5-2 f(z) = z 2 α + () α = 0 (2) α = 2i (3) α = 5-3 g n, g : g n (z) := () g n g R sin nz g(z) := 0 n (2) g n g z D g n g

26 III : November 5, 203 Version :. (/) D D(α, r) α r D(α, r) = int((α, r)) 4-4. D f : D α D R > 0 = (α, R) D z int() f(z) = n=0 f (n) (α) (z α) n n! f(z) α (Taylor expansion about α) 2 (z α) n f (n) (α) n! = 2πi f(z) dz (z α) n+ e z z 2 = z 2 + z + 2! + z 3! + e/z = + z + 2!z + 3!z 3 + z = 0 z 0 z = α D = {z R < z α < R 2 } f : D = (α, R) ( R < R < R 2 ) n a n a n := 2πi f(z) dz (z α) n+ z D f(z) = + a 2 (z α) 2 + a z α + a 0 + a (z α) + a 2 (z α) 2 +.

27 III f(z) α (Laurent expansion about α).. R = 0 R 2 = a n R. {a n } n Z f 0 < z α < R 2 k a k 0 f(z) = a k (z α) k + + a z α + a 0 + a (z α) + a 2 (z α) 2 + f z = α k (pole of order N) ez D = {0 < z < } α = 0 z2 e z z 2 = ) ( z 2 + z + z2 2! + z3 3! = z 2 + z + 2! + z 3! + z = z 2 D = {0 < z < 2} α = 0 (z 2) z 2 (z 2) = z 2 2( z/2) = ) ( 2z 2 z2 z = 2z 2 4z 8 z 6 z = z 0 D 0 := (z 0, ϵ), := (α, r ), 2 = (α, r 2 ) ϵ > 0 R < r < z 0 α < r 2 < R 2 0,, 2 f(z 0 ) = f(z) dz 2πi 0 z z 0 = ( ) 2πi 0 2πi 2 2 = a m 2πi (z 0 α) m, a m = 2πi m = a n (z 0 α) n, a n = 2πi 2 2πi n 0 f(z) dz (z α) m+ f(z) dz (z α) n+

28 III z z α < z 0 α = f(z) 2πi 2πi z 0 α f(z) ( ) n z α dz z 0 α z 0 α z α dz = 2πi z 0 α = 2πi n 0 n 0 ( f(z) (z α) n ) (z 0 α) n+ dz 4-5 = ( ) f(z) dz 2πi (z α) n (z 0 α) n+ = ( ) f(z) dz 2πi (z α) m+ (z 0 α) m. n 0 n+=m 2 5-2D α D f : D {α} D α f(z) = n Z a n(z α) n α D f(z) dz = 2πi a. a z α α., = (α, r) r D r n (z α) n dz = 0n = (z α) n dz = 2πi f(z) dz = ( ) a n (z α) n dz = ) (a n (z α) n dz = 2πi a. n Z n Z =. f(z) a a (z α) f α (residue) Res(f(z), α) 5-2 f(z) dz = 2πi Res(f(z), α) e z. z = 0 z2 e z z 2 = z 2 + ( ) e z + Res z z 2, 0 e z =. = (0, ) dz = 2πi = 2πi. z2

29 III = (0, ) D {0} 2πi 4 = πi 2 z 2 (z 2) = + Res 4z z 2 dz D = { z < 2} (z 2) ( ) z 2 dz = 2πi Res (z 2) z 2 (z 2), 0 ( ) z 2 (z 2), 0 = 4.. g(z) = z 2. g (0) =! 2πi g(z) z 2 dz z 2 (z 2) dz = 2πi g (0) = 2πi 4 = πi 2. {α, α 2,, α n } int() f int() {α, α 2,, α n } ( ) f(z) dz = 2πi n Res(f(z), α k ). k= f. r > 0 k = (α k, r),..., n D = + + n 5-2 = 2πi Res(f(z), α k ) ( k n) k f f(z) = n Z a n(z α) n a n (z α) n dz n Z a n (z α) n dz = n Z 4-5 f(z) f(z) = F (z) + G(z); F (z) := a n (z α) n, G(z) := n=0 n= a n (z α) n 5- D z 0

30 III (a) F n (z) := (b) G n (z) = n a k (z α) k F (z) k=0 n k= a k G(z) (z α) k (a) 5-3. F (z) = a 0 + a z + + a n z n + z 0 z < z 0 z F (z) 0 < r < z 0 F n (z) = a 0 + a z + + a n z n E(r) := {z z r}. r < z 0 r F (z 0 ) = a 0 + a z a n z0 n + a n z0 n 0 (n ) M > 0 n 0 a n z0 n M n ( ) z r < z 0 z a n z n = a n z0 n z n r z 0 M z 0 { a 0 + a z a n z0 n M + r ( ) n } r z M z 0 r/ z 0. n F (z) F (z) r (< z 0 ) z < z 0 F (z) E(r) z E(r) F (z) F n (z) = a n+ z n+ + a n+2 z n+2 + = lim N a n+z n+ + + a n+n z n+n a n+ z n+ + + a n+n z n+n M { ( ) n+ ( ) } n+n r r + + M (r/ z 0 ) n+ z 0 z 0 r/ z 0. N F (z) F n (z) M (r/ z 0 ) n+. z n r/ z 0 E(r) F (a) (a). 0 < R < R 2 R < z α < R 2 z f(z) = F (z) + G(z) = n Z a n(z α) n z = z 2 F n (z 2 ) = n k=0 a k(z 2 α) k n F (z 2 ) R < r < z 2 α < R 2 r = (α, r) F n (z) F (z) (b) 6- (a) (b) 2 α

31 III D = {z R < z α < R 2 } 5- f(z) = n Z a n(z α) n f D f(z) = m Z b n(z α) m a n = b n n (a) 5-3 (b) = (α, R) R < R < R 2 f(z) = n Z b n(z α) n D a n = 2πi = 2πi = m= f(z) (z α) n+ dz (z α) n+ b n 2πi = { m= b n (z α) m } dz (z α) n m+ dz = b n (b) () F (z) = a 0 + a /z + + a n /z n + z 0 z > z 0 z F (z) r > z 0 F n (z) = a 0 + a /z + + a n /z n E (r) := {z z r} (2) (b) 5-2 (a) = (α, r) 6-2 f(z) = z z 2 + z 2 () D = {z z < } (2) D = {z < z < 2} (3) D = {z z > 2} ( ) z Hint: f(z) = z 2 +z 2 = 3 z + 2 z+2 (2) z = z /z 2 z+2 = +z/2

32 III : November 22, 203 Version :. (/5). f(z) α f(z) = n Z a n(z α) n a (z α) f α (residue) Res(f(z), α) {α, α 2,, α n } int() f int() {α, α 2,, α n } ( ) n f(z) dz = 2πi Res(f(z), α k ). k= f. α f {z 0 < z α < R} 5-() f(z) = n Z a n(z α) n (). m N a m = 0 f(z) = a n (z α) n α (removable singularity) n=0 z 0 f(z) = sin z2 z 2 {0} = {z 0 < z < } f(z) = ( ) z 2 z 2 z6 3! + z0 = z4 5! 3! + z8 5! z = 0 f f(0) := f (2) k N a k 0 a m = 0 m k f(z) = a k (z α) k + + a z α + a 0 + a (z α) + a 2 (z α) 2 + α k (pole of order k) (3). a k 0 k N α f (essential singularity) f(z) = (sin z 2 )/z 2 z = 0 g(z) = ez z cos zi z = 0 sin(sin z) z

33 III e /z = + z + 2!z 2 + 3!z 3 + {0} z = 0 ()(2)(3) (isolated singularity). f(z) = sin(π/z) {0, ±, ±/2, ±/3,...} {±, ±/2, ±/3,...} f 2 z = 0 f I = f(z) dz (i) f(z) α,, α n (ii) Res(f(z), α k ) (iii) I = 2πi (). = (0, 2) I = e iz z 2 dz + 3 f(z) = eiz z 2 {±i} z = ±i + I = f(z) dz = 2πi{Res(f(z), i) + Res(f(z), i)}.. f Res(f(z), i) (z α) eiz z 2 + = { } e iz 2i z i eiz z = i z + i e iz z 2 + = eiz z + i z i = z i f(z) = e /z z 2 sin z 4 a n (z α) n f a

34 III w = z i z = w + i f(z) = e i(w+i) (w + i) 2 + = e e iw = 2ei w { + = 2ei +0 w Res(f(z), i) = /(2ei). 2iw + w 2 = 2ei w + w e iw 2i ( w ) ( + w ) 2 + } 2i 2i ( + iw + (iw)2 2! ) +. 6-f(z) = g(z) g(z) z = α (z α) k Res(f(z), α) = (k )! g(k ) (α). k = Res(f(z), α) = g(α). α k g(α) 0 g k f(z) = g(z) g(z) z = α = (α, r) r (z α) k 2 Res(f(z), α) = f(z) dz = g(z) 2πi 2πi (z α) k dz = (k )! g(k ) (α). 6- Res(f(z), ±i) g(z) = eiz z + i g(i) = e 2i. h(z) = g z = i 6- Res(f(z), i) = eiz z i Res(f(z), i) = h( i) = e 2i.. e iz ( e I = z 2 dz = 2πi + 2i e ) = π(e e). 2i 5 I = 2π cos θ dθ = π 2 Step. z = e iθ (0 θ 2π) z = (0, ) sin θ = z z 2i, cos θ = z + z, dz = ie iθ dθ dθ = dz 2 i z. 5 t = tan θ/2

35 III Step 2. I = z + z 2 dz i z = 2 i Step 3. f(z) f(z) = z = /3 I = 2 ( i 2πi Res f(z), ). 3 3z 2 + 0z + 3 dz 6-2 α = /3g(z) = k = 3(z + 3) ( Res f(z), ) ( = g ) = (z + /3)(z + 3) I = 2 i 2πi 8 = π I = + x 4 dx = π 2 f(z) = + z 4 = + z 4 dz α = eπi/4, β = e 3πi/4 = 2πi {Res(f(z), α) + Res(f(z), β)} f(z) = g(z) Res(f(z), α) = g (z). z = α g(z) = z 4 + ( ) Res + z 4, α = 4α 3 = α 4 = i 4 2. α 4 = ( ) Res + z 4, β = 4β 3 = β 4 = i Mathematica { log ( x 2 2x + ) + log ( x 2 + 2x + ) 2 tan ( 2x ) + 2 tan ( 2x + )} /(4 2)

36 III ( i = 2πi i ) 4 = π. 2 2 I = + J R = R J R := {z = x R x R} { } R := z = Re iθ 0 θ π = J R + R. π R 0 2 R ( ) I = lim = lim = lim = π R J R R R R R 2 z = R > z 4 + z 4 = R 4 > 0 R f(z) R 4 f(z) dz l( R) R R 4 = πr R 4 0 (R ). I = π α h(z) h(α) 0 f(z) = g(z) = (z α)h(z) 6- Res(f(z), α) = h(α). g (z) = h(z) + (z α)h (z) g (α) = h(α) e z ( () (2) 2z2 + z πi (z ) 2 (3) z 2 exp ) z 7-2. z () dz (2) dz (3) (0,) sin z (0,3) (z )(z + 2) e z (4) z 2 (z 2 dz (5) 4) z 2 (z 2 dz (6) 4) (,2) (,2) (0,2) (i,) (4) z 2 sin z e z (z )(z 3) dz z 4 dz

37 III : November 29, 203 Version :. (/22). f(z) = I = cos x + x 2 dx = π e eiz 2 + z2 = f(z) dz = R + J R, R := { z = Re it 0 t π }, J R := {z = t R t R}. z = i = 2πi Res(f(z), i). f(z) = z i e iz z + i eiz z + i z = i 6- ei i Res(f(z), i) = i + i = e 2i. = 2πi e = π 2i e. 2 R 0 z = R > z 2 + R z 2 = R 2 > 0 z = x + yi R y 0 e iz = e i(x+yi) = e y R f(z) = e iz + z 2 R 2 f(z) dz l( R) R R 2 = πr R 2 0 (R 0). e ix R + x 2 dx = R R = J R R 0 J R cos x R + x 2 dx + i R sin x sin x dx + x2 + x 2 ( ) I = lim = lim = lim = π R J R R R R R e..

38 III I = 0 sin x x dx = π f(z) = eiz z = + J J 2 := { z = Re it 0 t π } J := {z = t R t r} { } 2 := z = re i(π t) 0 t π J 2 := {z = t r t R} r < R r 0, R int() f f(z) dz = 0 + J J 2 = 0. 2 i R r sin x x dx = (R ) : z = Re it (0 t π) dz = ire it dt = iz dt dz/z = idt f(z) dz = e iz z dz π = e ireit idt 0 π = e ir(cos t+i sin t) π dt = e R sin t e ir cos t dt 2 0 sin x x dx = 0 π ( ) e R sin t dt 0 0. (R 0) 3 sin x/x x = 0 I = lim r +0 R sin x/x 2I = lim r +0 R ( r R sin x x dx + R r 0 sin x x dx ) R r sin x dx x

39 III ( ) π 0 e R sin t e ir cos t dt t e R sin t e ir cos t 0 π e R sin t e ir cos t = πi (r 0) 2 π 0 e R sin t dt 7- α f {z 0 < z α < R} α r := { z = α + re it 0 t π } lim f(z) dz = πi Res(f(z), α). r 0 r. r = (α, r) r 0 f(z) dz = 2πi Res(f(z), α) r r α f(z) = a + g(z) g(z) z = α z α a f(z) dz = r z α dz + g(z) dz r r π 0 r a re it ireit dt = πia = πi Res(f(z), α).. 2 g(z) z = α r r g(z) g(α) r g(z) g(α) + g(z) dz r = ( g(α) + ) l( r) = ( g(α) + ) πr 0. (r +0) f(z) = e iz /z, α = 0 0 f(z) = ) ( + iz + (iz)2 + = +0 z 2! z Res(f(z), 0) = r = 2 lim r +0 f(z) dz = lim r +0 2 f(z) dz = πi Res(f(z), 0) = πi. r r +0R 2 i 0 sin x x dx = 0 + ( πi) I = i 2 πi = π 2.

40 III D D f D (meromorphic) P := {α, α 2, } D f D P α k f 4 P = f D. f(z) = ez f P = {0, } P z + z2. f(z) = f P = Z Z sin πz. f(z) f(α) = 0 α f ( zero) f z = α α k f(z) = a k (z α) k + a k+ (z α) k+ + k α (order) α k f(z) = a k (z α) k + + a z α + c 0 + a (z α) + k α (order) α k f(z) = 0 α k f(z) = 5 7-2D D f D f (z) dz =. 2πi f(z). 4 α k P α k P D lim z αk f(z) = 5

41 III int() int() α,..., α N β,..., β M r > 0 n := (α n, r), D n := D(α n, r) ( n N) m := (β m, r), D m := D(β m, r) ( m M) r int() f (z)/f(z) D := int() N D n n= 6 f (z) 2πi f(z) dz = N n= f (z) 2πi n f(z) dz () M m= + D m M m= f (z) 2πi f(z) dz. m (2) (). n =,..., N α n k n D n g = g n g(α n ) 0 f(z) = (z α n ) k n g(z) f g f (z) f(z) = k n(z α n ) kn g(z) + (z α n ) kn g (z) (z α n ) k = k n + g (z) n g(z) z α n g(z). g(α n ) 0 g r D n g(z) 0 g (z)/g(z) n D n 02-3 f (z) 2πi n f(z) dz = 2πi n () = k n dz + g (z) z α n 2πi n g(z) dz = k n + 0 = k n. N k n = n= 6 D f f D f /f D f /f D

42 III (2). () m =,..., M β m l m D m h = h m h(β m ) 0 h(z) f(z) = (z β m ) l m f h f (z) = l m (z β m ) lm+ h(z) + (z β m ) h (z) lm f (z) f(z) = l m + h (z) z β m h(z). () g h(β m ) 0 h (z)/h(z) m D m f (z) 2πi f(z) dz = l m dz + h (z) 2πi m z β m m 2πi h(z) dz = l m + 0 = l m. m M (2) = ( l m ) = m= () 4 2 i (2) 4 (a) π 0 R r e R sin t dt = 2 sin x x dx = + 2 π/2 0 e R sin t dt (b) t [0, π/2] sin t 2t/π 8-2. () I = (2) I = π 0 e R sin t dt 0 (R 0) x 6 dx (Hint x sin x (x 2 + ) 2 dx = π zeiz (Hint 3 f(z) = 4e (z 2 + ) (HintE := int() int() E

43 III : December 6, 203 Version :. (/29). D f D (meromorphic) P := {α, α 2, } D f D P α k f P = f D 7-2D D f D f (z) dz =. 2πi f(z) 7.2 w = f(z) f() arg w w = f(z) dw = f (z)dz f (z) 2πi f(z) dz = 2πi f() w dw w f() w = 0 f f() {0} w f() w = e x+yi (x, y R) f() : w(t) = : z = z(t)f() : w = f(z(t)) t

44 III e x(t)+i y(t) (0 t ) x(t)y(t) t arg w(t) = y(t) t t x := x(t + t) x(t) y := y(t + t) y(t) w(t + t) = e x(t+ t)+i y(t+ t) = e (x(t)+i y(t))+ x+i y = w(t) e x e i y arg w(t + t) = arg w(t) + y w = e x+yi dt dw = e x+iy dx + e x+iy i dy dw w 2πi f() = dx + i dy w dw = + 2πi dx() 2π dy(2) w(t) = e x(t)+i y(t) f() x(t) + i y(t) () 0 0 dx = x (t) dt = x() x(0) 0 f() w(0) = w() e x() = e x(0) x() = x(0) (2) () dy = y (t) dt = y() y(0) 0 e i y() = e i y(0) y() = y(0) + 2mπ (m Z) 2mπ w(t) f() y(t) = arg w(t) 2 m = m = 0 y(t) f (z) 2πi f(z) dz = 2πi w dw = m f() : w = 0 f() 2 y = arg w dy = d arg w 2π 2π f()

45 III RouchéD f, g : D D int() D f(z) > g(z) ( f(z) + g(z) ) = ( f(z) ) f f g f > g. z 3 +3z + = 0 f(z) = z 3 g(z) = 3z + z = 2 f(z) = 8 g(z) = 3z + 3 z + = 7 = (0, 2) z < 2 f(z) + g(z) z < 2 f(z) f(z) = z 3 3 z = 0 z < 2 z 3 + 3z + = 0 3 z 3 + 3z + = 0 3 D(0, 2). z = g(z) = 3z + 3 z = 2 f(z) = = (0, ) z < g(z) + f(z) z < g(z) g(z) = 3z + z = /3 z < z 3 + 3z + = 0 2 z < w = h t (z) := f(z) + tg(z) (0 t ) z 2 h t w t = 0, 0.2, 0.4 t = 0.6, 0.8,.0

46 III z 00 5z 3 + = 0 f(z) = 5z 3 g(z) = z 00 + z = f(z) = 5 g(z) z 00 + = 2 f(z) = D f n f f g n (z) := f(z) f n (z) f n (z) = f(z) + g n (z) g n (z) 0. z ( f(z) > g(z) 0 f(z) f(z) + g(z) = f(z) + g(z) ) h(z) = + g(z) f(z) f(z) {f(z)h(z)} dz = f (z) 2πi f(z)h(z) 2πi f(z) dz = 2πi ( f (z) f(z) + h (z) ) dz = + h (z) h(z) 2πi h(z) dz 0 w = h(z) (z ) w = h(z) = g(z) f(z) < h h() w w = w /w 3 h (z) 2πi h(z) dz = dw = 0. 2πi h() w f(z)g(z) n n + α,, α n+ f(α k ) = g(α k ) (k =,..., n + ) z f(z) = g(z) h(z) := f(z) g(z) n h(α k ) = 0 (k =,..., n + ) h(z) = (z α )(z α 2 ) (z α n+ )Q(z) 3 h()

47 III Q(z) Q(z) n + Q(z) = 0 Identity Theorem D f(z)g(z) α D {z n } n=0 D {α} z n α (n ) f(z n ) = g(z n ) (n =, 2,...) z D f(z) = g(z) f :, x + yi f(x + yi) ( x R) f(x) = e x f f(x + yi) = e x+2yi, f(x + yi) = e x ( + yi), f(x + yi) = e x cos y, f ( z ) f(z) = e z f(x + yi) = e x+yi g(z) = e z, z n = /n R, α = 0 D D(α, r) f g r > 0 r = D f g D f(z) = z3 (z )(z 2 4) (z 2 + ) 2 r = f (z) /2, 3/2, 5/2 dz f(z) (0,r) 4

48 III z 00 5z 3 + = z <.02 log 0.02 = , log 0 7 = g(z), h(z) z = α g(α) 0 f(z) = g(z) g(α) z = α Res(f(z), α) = h(z) h (α) Hint 6-2

49 III : December 3, 203 Version :. (2/6) Identity Theorem D f(z)g(z) α D {z n } n=0 D {α} z n α (n ) f(z n ) = g(z n ) (n =, 2,...) z D f(z) = g(z) h(z) = f(z) g(z) n z n α( n N) f(z n ) = 0 = ( z D) f(z) = 0 E z f(z) = 0 E f 0 9- α D n = 0,, 2, f (n) (α) = 0 D f(z) 0. β D D α β : z = z(t), (0 t ); α 0 := α, t 0 := 0 R 0 (0, ] α 0 D D = R 0 = D(α, ) := D(α 0, R 0 ) f z D(α 0, R 0 ), f(z) = n= f (n) (α 0 ) (z α 0 ) n n! α 0 = α f (n) (α) = 0 D(α 0, R 0 ) f 0 D = D z(0) = α, z() = β k 0 D(α k, R k ) f 0 α k+ α k+ D(α k, R k ) α k+ = z(t k+ ) 0 t k < t k+ < R k+ > 0 α k+ D D(α k+, R k+ ) z D(α k+, R k+ ), f(z) = E 0 n= f (n) (α k+ ) (z α k+ ) n n!

50 III α k+ D(α k, R k ) D(α k, R k ) f 0 n = 0,, 2, f (n) (α k+ ) = 0 D(α k+, R k+ ) f 0 t k N N β D(α N, R N ) N R k 0 (k ) D f(β) = 0 β ( 9-) f D f(α) = f( lim n z n) = lim n f(z n) = 0. D f 0 9- k N f (k) (α) 0 k α f(z) = (z α) k g(z) g(z) α g(α) 0 z = z n z n α g(z) 0 = f(z n ) = (z n α) k g(z n ) g(z n ) = 0 g(α) = g( lim n z n) = lim n g(z n) = 0. g(α) 0 D f 0 f : D D f α r > 0 z D(α, r) {α}, f(z) 0. D(α, r) α z n α < /n, f(z n ) = 0 z n Maximum Principlef : D α D ( z D), f(α) f(z) f D Maximum Modulus Principle 9-2f : D E D z f(z) E α E ( z E), f(α) f(z)

51 III f(z) = z 2 x (, ) 0 < f(x) f(0) = 2 (, ) x = 0 f(x) E = D(0, ) = {z z } f(z) + z 2 2 z = ±i f(z) = 2 ±i E f(z) = z zz + f(z) = z z z = f f z 2, sin z, e z 2 α D r > 0 = (α, r) int() D z f(z) z α = f(z) f(α) r r f(α) = f(z) 2πi z α dz 2π f(α) l() = f(α) r f(z) = f(α)

52 III r r < r int() f(z) = f(α) 2 int() f f(z) = f(α)f D 9-2 z f(z) D E D E E E = E E, E E = α E f(α) E α D f D f(z) = f(α)f D E 3 D = D(0, ) f : D D f(0) = 0 f(z) z f (0) z D f(z) = e iθ z (θ R) f 00 f (0) f (0) > f(z) = az + O(z 2 ) (a = f (0) ) g(z) = f(z)/z = a + O(z) z r < 9-2 z 0 z 0 = r g(z) g(z 0 ) = f(z 0 ) / z 0 /rr < z D g(z) f(z 0 ) = z 0 z 0 D g(z 0 ) = f (0) = g(0) = f (0) g(0) = g(z) g(z) = f(z)/z = e iθ D, D 2 f : D f 2 : D 2 D D 2 f = f 2 f 2 f (analytic continuation) f f f (z) = + z + z 2 + D = D(0, ) f 2 (z) = z D 2 = {} f D D 2 D f = f 2 s = σ + it (σ, t R) ζ (s) := + 2 s + 3 s + 2 f(x + yi) = u + vi f(z) 2 = u 2 + v 2 2uu x + 2vv x = 2uu y + 2vv y = 0 u x = v x = u y = v y = f f 2 f f 2 5

53 III n s := e s log n log n > 0 ζ D := {s Re s = σ > } n s e s log n ζ : D ζ ζ : {} ζ s = ζ n Nζ( 2n) = 0 ζ (Riemann s zeta function) 6 00 (The Riemann Hypothesis) ζ(α) = 0 = α = 2n (n N) Re α = / D f, g : D D f int() f α, α 2,, α N α n ( n N) k n g(z) f (z) 2πi f(z) dz = k g(α ) + + k N g(α N ). (g(z) = 0-2 f(z) = z n + a n z n + + a z + a 0 () R ( z R = f(z) R n /2 Hint: f(z) z n a n + + a z z n + a ) 0 z n (2) f(z) g(z) = /f(z) g(z) 2/R n R () g(z) = 0 6 Γ( s) ( z) s ζ(s) = 2πi e z dz Γ ( z) s = e (s ) log( z) Im log( z) < π

54 III203 - : December 20, 203 Version :. (2/3) () (2) () w = zn w = z /n w = log z D, D 2 f : D f 2 : D 2 D D 2 f = f 2 f 2 f (analytic continuation) f f xy R 2 p r D(p, r) ( ) 2 ( ) D R 2 F : D R 2 x u F : p = p 0 D y v det ( u x v x u y v y ) p=p0 0 q 0 = F (p 0 ) r > 0 G : D(q 0, r) R 2 () G(q 0 ) = p 0. (2) q D(q 0, r), F G(q) = q. (3) p G(D(q 0, r)), G F (p) = p. ( ) ( ) u x (4) G : F v y ( x u y u x v y v ) ( u x v x u y v y ) ( ) 0 =. 0 () (2) 2 f f 2 3

55 III203-2 D f : D f : z w z 0 D f (z 0 ) 0 w 0 = f(z 0 ) r > 0 g : D(w 0, r) () g(w 0 ) = z 0. (2) w D(w 0, r), f g(w) = w. (3) z g(d(w 0, r)), g f(z) = z. (4) g : w z f dg dw df dz =. ( z ( = x+yiw = u+vi f(x+yi) = u+vi x u 2 F : f y) v) z 0 = x 0 + y 0 i ( ( ) ux u det y ux v = det x = u v x v y) 2 v z=z x u x + v 2 x = u x + v x i 2 z=z0 = f (z 0 ) 2 0 x 0 z=z z=z0 0 ( ( ) x x0 = z = z y) y 0 2 () 0 (3) r > 0 D(w 0, r) g : D(w 0, r), g(u + vi) = x + yi () (3) (4) g(u + vi) = x + yi 2 (4) ( ) ( ) ( ) ( ) xu x v ux u = y ux v = x ux v = x y u y v v x v y v x u x u 2 x + vx 2 v x u x x u = y v, x v = y u g w 2 = z dg dw = g u = x u + y u i = u 2 x + vx 2 (u x v x i) = u x + v x i = f (z) = df/dz. z = w 2 = f(w) w 0 z 0 z = re iθ (r > 0, 0 θ < π) w = ± re iθ/2 w z /2 = e (log z)/2 w = z z = w 2 dz dw = 2w 0 w 0 0 z 0 = w0 2 z = f(w) w = g (z) w 0 z 0 = ( w 0 ) 2 f w = g 2 (z) g 2 (z) = g (z)

56 III203-3 z 0 = g g 2 g () =, g 2 () = = (0, ) z g (z) g 2 (z) z g 2 (z) g (z) : z w g g () = g 2 g 2 () = Mathematica z 2 w S =z 2 w 4 z z := {0} 2 4

57 III203-4 S 5 f g g 2 S w w w = 0 S z = 0 S w = z (Riemann surface) z = 0 S (branched point) z S (branch) w = g(z) S g z g w w = z /n w = z /n z z = w n =: f(w) n w z = 0 n w n z n w = log z w = log z z 0 z = e w =: f(w) w w z w = df dw = d(ew ) dw = ew 0 z k Z k z = w = 2kπi f = exp g k g k (, 0] w S k := {w (2k )π < Im w < (2k + )π} g k g k± w = log z 5

58 III203-5 w = log z 6 (, 0] k f = exp g k : (, 0] S k df dw dg k dz = dg k dz = df/dw = e w = z. g k /z k /z (, 0] g k (z) g k () = z ζ dζ g k(z) = z dζ + 2kπi ζ z (, 0] Log z g 0 (z) = Log z g k (z) = Log z + 2kπi Log ( + z) = z z2 2 + z3 3 z4 + ( z < ) 4 (, 0] D(, ) z < Log ( + z) = +z ζ dζ + z + η = ζ z < Log ( + z) = z 0 z + η dη = 0 ( η) n dη = n=0 z n=0 0 ( η) n dη = ( ) n z n+ n=0 n + 6 w = Log z

59 III203-6 = ( η) n η < z < ( + z) α z < α 7 n=0 ( + z) α αlog (+z) := e e αlog (+z) = e α(z z2 /2+z 3 /3 ) = + α(z z2 2 + z3 3 ) + α2 (z z2 2 + z3 3 )2 2! 2 + ( + z) α α(α ) = + αz + (z α) 2 + 2! ( ) α α(α ) (α n + ) := n n! z < α ( ) ( + z) α α = z n n n= w = z 2 S S w Hint: z 2 x > 7 ( + z) α = e α log(+z)

60 III : January 0, 204 Version :. (2/20) XY Z R 3 S := { (X, Y, Z) R 3 X 2 + Y 2 + Z 2 = } (0, 0, ) N XY Z = 0 { (x, y, 0) R 3 x, y R } = {x + yi x, y R} (x, y, 0) x + yi XY N x + yi (x, y, 0) S N P = (X, Y, Z) P = (X, Y, Z) x + yi S N - z = x + yi P = (X, Y, Z) X = 2x + z 2, Y = 2y + z 2, Z = + z 2 + z 2 x = X Z, y = Y Z

61 III P = (X, Y, Z) S N z = x + yi S N z z P z N N point at infinity N = (0, 0, ) S N S { } S { } (the Riemann sphere) Ĉ 2 Ĉ Ĉ S R3 - Ĉ z, z 2 d(z, z 2 ) := 2 z z 2 + z 2 + z 2 2, d(z, ) := 2 + z 2. d(, ) := 0 Ĉ z Ĉ r > 0 } B(z, r) := {w Ĉ d(w, z) < r 3 () z n, α n z n α 0 d(z n, α) 0 (2) U U U (Ĉ, d) (3) U Ĉ R > 0 {z z > R} U. z n, α Ĉ d(z n, α) 0 (n ) {z n } α z n α (n ) lim n z n = α z w n {w n } lim (z + w n) = lim (w n + z) = lim w n n n n z + = + z = z z + = + z = 2 P 3

62 III z z = z =, z = 0, z 0 =., ±, /, { αzz + βz + β z + γ = 0 α, γ R, β, β 2 αγ > 0 ( ) α 0 ( ) z + β α 2 = β2 αγ α 2 (> 0) β/α ( β 2 αγ)/α 2 z 0 r > 0 z z 0 = r (z z 0 )(z z 0 ) = r 2 zz z 0 z z 0 z + z 0 z 0 r 2 = 0 α =, β = z 0, γ = z 0 z 0 r 2 β 2 αγ = r 2 > 0 ( ) α = 0 β = p + qi ( ) βz + β z + γ = 0 2Re ( βz) + γ = 0 2(px + qy) + γ = 0 β 2 αγ = β 2 > 0 (p, q) (0, 0) ( ) ax + by + c = 0 (a, b) (0, 0) α = 0, β = (a + bi)/2, γ = c β 2 αγ = (a 2 + b 2 )/4 > 0 ( ) -3z ( ) S (X, Y, Z) Π Π : 2pX + 2qY + (α γ)z + (α + γ) = 0. ( ) β = p + qi β 2 αγ > 0 ( S (0, 0, 0) Π) < - z = X + Y i Z ( ) X2 + Y 2 = Z 2 ( ) ((0, 0, 0) Π) < α + γ (2p)2 + (2q) 2 + (α γ) 2 < (α + γ)2 < 2β 2 + (α γ) 2 4( β 2 αγ) > 0. R 3 Π S N α = 0 N Π

63 III Ĉ Ĉ a, b, c, d, ad bc 0 T (z) = az + b cz + d (Möbius transformation) (fractional linear transformation) X f : X f(x) = Y (homeomorphism, topological map) f f f -5 T (z) = az + b cz + d T ( ) = a ( c, T d ) = c Ĉ Ĉ c = 0 T (z) = αz + β (α 0) T () = T ( ) = (complex affine transformation) 4 T Ĉ 4

64 III T (z) = 2z = 2z z + 0, T (z) = z + = z + 0 z + τ(z) = z = 0 z + T z + 0 τ z = ± (±, 0, 0) S w = T (z) = (az + b)/(cz + d) z = S(w) = (dw b)/( cw + a) S( ) = d/cs(a/c) = () w ĈT S(w) = w (2) z ĈS T (z) = z (3) T, S Ĉ S = T T -6 Ĉ Ĉ w = T (z) = (az + b)/(cz + d) c = 0 w = a d z + b d c 0 w = a c z a d z =: z z + b d = w. + bc ad c 2 z + d/c z z + d c =: z z =: z 2 bc ad c 2 z 2 =: z 3 a c + z 3 = w. T 3 () z λz (λ 0) (2) z z + l (l 0) (3) z z 3 () w = T (z) = λz (λ 0) ( ) Ĉ ( ) λ λ α(λz)(λz) + β λλz + βλ λz + λλγ = 0 αw w + βλw + βλ w + λ 2 γ = 0 5 z /z S 2 P P PP PP

65 III α = α, β = βλ, γ = λ 2 γ β 2 α γ = λ 2 ( β 2 αγ) > 0 ( ) w = T (z) { α w w + β w + β w + γ = 0 α, γ R, β, β 2 α γ ( > 0 ) Ĉ Ĉ (2)(3) f : D, w = f(z)d z 0 A 0 := f (z 0 ) 0 z z 0 f(z) f(z 0 ) = A 0 (z z 0 )( + o( z z 0 )) w w 0 A 0 (z z 0 ) z 0 f A 0 A 0 = A 0 e i arg A 0 f z = z 0 A 0 arg A 0 z = z 0 2 f 2 w = w 0 z = z 0 2 f w = w 0-7 3, 2, 3 3 0, 2, 3 3 4, 2, 3 2 α T (z) = 3 z α k = T ( k) (k =, 2, 3), 2 Ĉ T ( 0) T ( 4) T ( ) = : 2 3

66 III : January 24, 204 Version :. (/0) D f D f D f Ĉ α D w = f(z) k N w = f(z) = a k (z α) k + a k+ (z α) k+ + ( = a k (z α) k + a ) k+ (z α) + a k a k 0 ϵ > 0 z = α + ϵe it (0 t 2π) w = f(z) = a k ϵ k e ikt { + O(ϵ)} a k ϵ k e ikt z α f(z) 0 k Ĉ R3 w 0 k Ĉ k α D w = f(z) k N a k w = f(z) = (z α) k + a k+ (z α) k + + a 0 + = a ( k (z α) k + a ) k+ (z α) + a k a k 0 ϵ > 0 z = α + ϵe it (0 t 2π) w = f(z) = a k ϵ k e ikt { + O(ϵ)} a k ϵ k e ikt 2 a k /ϵ k e ikt t z α w = f(z) k f(z) a k ϵ k e ikt O(ϵ) 2 f(z) (a k /ϵ k ) e ikt O(ϵ)

67 III Ĉ k τ(z) = /z 3 τ f(z) = (z α)k = f(z) = a k (z α)k a k ( + a k+ ) (z α) + a k ) ( a k+ a k (z α) + = (z α) k a k+ (z α) k+ + a k a 2 k k f k k D Ĉ D f : D Ĉ (holomorphic map) α D α f(α) α f α f(α) = α τ f α = f(α) τ(α) = 0 f τ α = f(α) = τ(α) = 0 τ f τ D f D α D f(α) = f : D Ĉ f : D Ĉ f : D f ({ }) T : Ĉ Ĉ, T (z) = (az + b)/(cz + d) (ad bc 0) Ĉ (automorphism) R(z) = a mz m + + a z + a 0 b n z n + + b z + b 0 (rational functioin) R : Ĉ Ĉ (rational map) 4 R(z) = lim z 3z5 z 2 R(±) = R( ) = 3z 3 = R : Ĉ Ĉ /z2 3 ( + x) α = + αx + 4 R(z)

68 III () f : Ĉ Ĉ f : Ĉ Ĉ (2) f : Ĉ Ĉ f : Ĉ Ĉ (3) f : Ĉ = f (3) f f(ĉ) f() f f () = = /f(z) f( ) f P Ĉ P z 0 z 0 = g = τ f τ g g 0 z 0 g = τ f z 0 g 0 α,, α n α j k j f(z) = a kj (z α j ) kj + + a z α j + a 0 + a (z α j ) + a kj 0 h j (z) h j (z) f(z) {h (z) + + h n (z)} Ĉ (3) f 5 (2) = () = () f 2 2 w = z w = ( z 2 )( k 2 z) (0 < k < ) 5

69 III X (separable) E X E = X Ĉ X d 0 X = d 0 (z, w) = z w X = Ĉd 0 = d X 6 D Ĉ {f n : D X} E D f : E X ϵ > 0, N N, n N, z E, d 0 (f(z), f n (z)) < ϵ {f n : D X} f : D X D f n f f n (z) = nz z + n f n D = Ĉ f = id D Ĉ D X = Ĉ 0 (D, X) F 0 (D, X) (normal family) F {f n } n N F D {f n(k) } k N {f n(k) } f = lim k f n(k) F 0 (D, X) F F 6

70 III : January 3, 204 Version :. (/24). X d 0 X = d 0 (z, w) = z w X = Ĉd 0 = d X D Ĉ D D X = Ĉ 0 (D, X) 0 (D, X) F 0 (D, X) (normal family) F {f n } n N F D {f n(k) } k N 0 (D, X) F F (the Ascoli-Arzelà theorem, AAT) F 0 (D, X) { () z D F (2) z D F () : ( z D)( ϵ > 0)( δ = δ(z) > 0)( f F), w D d(z, w) < δ = d 0 (f(z), f(w)) < ϵ δ z f F D F (2) : ( z D)( E = E(z) X)( f F), {f(z) f F} E E z f F D F AAT AAT 2 3-(X = Ĉ ) F 0 (D, Ĉ) () z D F 2

71 III z D E(z) = Ĉ AAT (2) AAT D X D, X R n ( =) () (2) 5 A = (Q + Qi) D A A = D Ĉ A A = {a, a 2, a 3, } F {f n } n N a k A (2) {f n (a k )} n N k = N = {, 2, 3, 4, } N = {n, n 2, n 3, n 4, } {f n (a )} n N lim j f nj (a ) N N 2 = {n 2, n 22, n 23, n 24, } N {f n (a 2 )} n N2 N N N 2 N 3 N k k {f n (a k )} n Nk N k = {n k, n k2, n k3, n k4, } M = {n, n 22, n 33, n 44, } N k {f n (a k )} n M 3 M {f n } n M = {f nkk } k N D E D ϵ > 0 () 3 M = {0, 200, 3000,...} ( ζ E)( δ = δ(ζ) > 0)( f F), z D d(z, ζ) < δ(ζ) = d 0 (f(z), f(ζ)) < ϵ/6 N = {, 2, 3, 4,...} N = {0, 20, 30, 40,...} N 2 = {00, 200, 300, 400,...} N 3 = {000, 2000, 3000, 4000,...}

72 III E ζ, ζ 2,..., ζ l z E j {, 2,..., l} z B(ζ j, δ(ζ j )) 4 B(α, r) α r z, w B(ζ j, δ(ζ j )) f F d 0 (f(z), f(w)) d 0 (f(z), f(ζ j )) + d 0 (f(ζ j ), f(w)) ϵ/6 + ϵ/6 = ϵ/3 A D a j B(ζ j, δ(ζ j )) (j =, 2,..., l) {f n } n M = {f nkk } k N g k := f nkk k 0 µ, ν k 0 j =, 2,..., l d 0 (g µ (a j ), g ν (a j )) ϵ/3 z E z B(ζ j, δ(ζ j )) j {, 2,..., l} d 0 (g µ (z), g ν (z)) d 0 (g µ (z), g µ (a j )) + d 0 (g µ (a j ), g ν (a j )) + d 0 (g ν (a j ), g ν (z)) g µ F d 0 (g µ (z), g µ (a j )) d 0 (g µ (z), g µ (ζ j )) + d 0 (g µ (ζ j ), g µ (a j )) < ϵ/6 + ϵ/6 < ϵ/3 3 2 d 0 (g µ (a j ), g ν (a j )) < ϵ/3 d 0 (g µ (z), g ν (z)) < ϵ/3 + ϵ/3 + ϵ/3 < ϵ {g µ (z)} µ N X z E {f n } n M = {g µ (z)} µ N ( =) (= ) ()(2) F E ϵ > 0 z n, z n E f n F d(z n, z n) < /n d 0 (f n (z n ), f n (z n)) ϵ E {z n } {z n} α {f n } f : E X E d 0 (f n (z n ), f n (z n)) d 0 (f n (z n ), f(z n )) + d 0 (f(z n ), f(z n)) + d 0 (f(z n ), f n (z n)) 3 n ϵ/3 f f n E 2 n ϵ/3 () (2) z D U = {f(z) f F} {w n } U f n F d 0 (f n (z), w n ) < /n {f n } { } f n(k) { fn(k) (z) } lim w n(k) U 4 E {B(ζ, δ(ζ)) ζ E} {B(ζ j, δ(ζ j ))} (= )

73 III X = F (Montel s Theorem F 0 (D, ) F (2) E D F (2) f F K = K(E) f F f(e) K AAT (2) AAT ()(2) (2) (2) (2) α D F α D r > 0 D(α, r) D f F ζ.ζ D(α, r/2) = (α, r) f(ζ) f(ζ ) = 2πi f(z) z ζ dz 2πi f(z) z ζ dz = 2π f(z)(ζ ζ ) (z ζ)(z ζ ) dz (2) f M > 0 f(z) < M z z ζ r/2 z ζ r/2 f(ζ) f(ζ ) 2π M ζ ζ (r/2)(r/2) l() = 4M r ζ ζ. l() 2πr r M f F ζ = α F D D int() D D := {z z < } (the Riemann Mapping Theorem, RMT) D ψ : D D

74 III D D D ψ (z) 0 RMT z 0 D r > 0 T (z) = r(z z 0 ) D T (D) D 0 D D RMT F ()(3) f : D f(d) () f(d) D (2) f(0) = 0 (3) f : D f(d) f 0 (z) = z 3 f 0 F z D f F f(z) D D F F M := sup{ f (0) f F} f 0 F M sup M n M (n ) f n F M n f n(0) < M F {f n } D ψ ψ (0) = M 5 ψ F 6 z D f n (z) ψ(z) ψ(z) < () (2) ψ(0) = lim f n (0) = 0 (3) a, b D ψ(a) = ψ(b) =: p D F n (z) := f n (z) pψ(z) := ψ(z) p D int() a b Ψ Ψ(a) = Ψ(b) = 0 Ψ (z) 2πi Ψ(z) dz 2 F n F n F n(z) 2πi F n (z) dz F n F n Ψ Ψ F n(z) Ψ (z) dz dz 2πi F n (z) 2πi Ψ(z) ψ(d) = D α D T α : w w α D D 7 αw α D ψ(d) ψ(z) α ϕ(z) := (= T α (ψ(z))) αψ(z) ψ(0) = 0 α 0 0 ϕ : D ϕ(d) D ϕ(z) ϕ(0) Φ(z) := ϕ(0)ϕ(z) = ϕ(z) α (= T ϕ(0) (ϕ(z))) αϕ(z) Φ F α = 0, ( ) Φ (0) = α + ψ (0) > ψ (0) = M 2 α M 5 6 7

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d 8. y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = π f(t)e iωt dt. : ϕ(x, y) x + ϕ(x, y) y = ( ).. . : 3. (z p, e z, sin z, sinh

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

E Riemann-Stieltjes 65   teaching.html (epsilon-delta ) 23 4 4 2 5 3 9 4 6 5 22 6 24 7 3 8 34 9 4 42 48 2 49 3 53 A Goursat 56 B 56 6 D 62 E Riemann-Stieltjes 65 http://www.math.nagoya-u.ac.jp/~yamagami/teaching/ teaching.html (epsilon-delta ) http://sss.sci.ibaraki.ac.jp/teaching/set/set25.pdf,

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

i 978 3 3 Riemann Stein 2 3 n 2n n Cauchy Riemann Dolbeault 3 Dolbeault 2 Čech ii 2009 3 5 TEX 3 2009 3 iii i ii 4 20. C n....................................2.....................................3.....................................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I z n+1 = zn 2 + c (c ) c   pd L.V. K. 2 I 2012 00-1 I : October 1, 2012 Version : 1.1 3. 10 1 10 15 10 22 1: 10 29 11 5 11 12 11 19 2: 11 26 12 3 12 10 12 17 3: 12 25 1 9 1 21 3 1 I 2012 00-2 z n+1 = zn 2 + c (c ) c http://www.math.nagoya-u.ac.jp/~kawahira/courses/12w-tenbou.html

More information