y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

Size: px
Start display at page:

Download "y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d"

Transcription

1 8. y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = π f(t)e iωt dt. : ϕ(x, y) x + ϕ(x, y) y = ( )..

2 . : 3. (z p, e z, sin z, sinh z, log z) 4. : :.3.3. x, y,... R: z : i: (i = ) Re z, Im z R: z z z: z z = x + iy = Re z + i Im z () z = x iy = Re z i Im z Re z = x = z + z z z z z, Im z = y =. i z = z z = (x + iy)(x iy) = x (iy) = x + y R + i i = ( + i)( i) ( i)( i) = ( + i)( + i) ( i)( + i) + 3i + i = = + 3i i.3. z = x + iy z z z (x, y) (r, θ) z = r(cos θ + i sin θ) = re iθ ( r = x + y = z, tan θ = y x ). r = z > z θ arg z z

3 π z = r(cos θ + i sin θ) = r [cos(θ + nπ) + i sin(θ + nπ)] (n =...,,,,,,... Z) Z: z = r (cos θ + i sin θ ), z = r (cos θ + i sin θ ) z z = r r [cos(θ + θ ) + i sin(θ + θ )] z z = r r = z z, arg(z z ) = θ + θ. () z z z z arg(z z ) z z = r (cos θ + i sin θ ) r (cos θ + i sin θ ) = r r [cos θ cos θ sin θ sin θ + i (sin θ cos θ + cos θ sin θ )] = r r [cos(θ + θ ) + i sin(θ + θ )]. z = r [cos(θ θ ) + i sin(θ θ )] z z r = r = z r z, arg z ( z z ) = θ θ. (3) () z = z = z z = r [cos(θ) + i sin(θ)] ( (), (3) ) z n = r n [cos(nθ) + i sin(nθ)] (n Z) (4) n n n z: n z (( n z) n = z) n z = z /n (4) z n n z [ ( n z = r /n θ cos n + m ) ( θ n π + i sin n + m )] n π (m Z) (5) m Z n n 3

4 ' Finite tfi! L± (a) n =3 n = z lr3@oggy.o.n ' ' (b), n =3 : n = z ' lr3@gga.n', z = r(cos θ + i sin θ) n z = R(cos Θ + i sin Θ) (4) z = ( n z) n r(cos θ + i sin θ) = R n [cos(nθ) + i sin(nθ)] r = R n, cos θ = cos(nθ), sin θ = sin(nθ). R, Θ R = r /n, nθ = θ + mπ (m Z) z n n z = R(cos Θ + i sin Θ) (5) m π n z = r(cos θ+i sin θ) /n ( n z = r /n ) /n (arg z = θ + mπ) n n n (r = =, θ = arg = ) n = cos ( m n π ) ( ) m + i sin n π (m Z). 3 4 ( ) ( ) ( ) ( ) =, cos 3 π + i sin 3 π, cos 3 π + i sin 3 π ± 3i =, ( ) ( ) ( ) ( ) ( ) ( ) =, cos 4 π + i sin 4 π, cos 4 π + i sin 4 π cos 4 π + i sin 4 π =, i,, i. e iθ = cos θ + i sin θ (6) 4

5 . n ' ' E i. i E i E n=. 43yd. n=i.gr " ',., O s > Isi i j : ( 3i = cos π 3 + i sin π ) = e iπ/3 3 = e πi = e 4πi /3 =, e πi 4πi 3, e 3 ( ) e z = e x+iy e x e x x n = n! = + x +! x + 3! x3 + 4! x4 + 5! x5 +. x = iθ cos θ, sin θ e iθ = + iθ +! (iθ) + 3! (iθ)3 + 4! (iθ)4 + 5! (iθ)5 + (7) = + iθ! θ 3! iθ3 + 4! θ4 + 5! iθ5 + (8) =! θ + (θ 4! + + i 3! θ3 + ) 5! θ5 + (9) = cos θ + i sin θ. (). z = ( ) 6 + 8i 4 3i z 4, π ( ) ( ) ( ) 6 + 8i (6 + 8i)(4 + 3i) 5i = = = (i) = 4 = 4 (cos π + i sin π). 4 3i (4 3i)(4 + 3i) 5 (x, y) = ( 4, ) i 5

6 ( 3 + i = 3 + i ) = /6 3 cos π 4 + i sin π 4 ( π = [cos /6 + nπ ) ( π + i sin 3 + nπ )] 3 (n Z) 3 /6 θ = π, π + π = 3π, π + 4π = 7π

7 . y = f(x) (x, y R) x y = f(x) w = f(z) (w, z ) z w = f(z) f(z) u(z) v(z) w = f(z) = u(x, y) + iv(x, y) (z = x + iy, u(x, y), v(x, y) R) f(z) u(z), v(z). f(x) f(x) lim f(x + x) = f(x ) x f(x) x = x f(x) f(x + x) f(x ) lim x x f(x) x = x df dx (x ) = f (x ) () x f(x) f(x) = x dx (x + x) x dx = lim x x=x x x + x x + x x = lim x x = lim x x + x = x. f(x) x = x f(x + x) = f(x ) + f (x ) x + f (x ) y = f(x) x = x 7

8 実関数の場合を参考に 複素関数 f (z) についても連続性と微分を以下のように定義する 複素関数 f (z) について other ' Zzf. at eother a IL lim f (z + Z z) = f (z ) z I が満たされるとき f (z) は z = z で連続であるという at eil ' Zzf I 複素関数a f (z) について 次の極限 Z " f (z + z) f (z ) df lim (z ) = f (z ) z z dz. ' " () ' が存在するとき f (z) は z = z で微分可能という I 実数関数の微分と一見同じ形をしているが 今回は複素平面上で z をどの方向からゼロに I 近づけても同じ値に収束することが必要になる L L Itri 上記の点だけ注意すれば 計算自体は実関数と同様に計算できる i i T E 例) f (z) n= = z の (複素) 微分は ^ n ^,r on=i two / n dz dz E L. i i T. z + zi z +, z z (z + z) z, = lim = lim z + z = z. = lim / z z z I z z,r on=i two z=z Itri n= L.,,. = ; 微分可能な関数 f>(z) は z = z で近傍で次のように近似できる Isi = ; > f (z + z) =Isif (z ) + f (z ) z + ) ) ) ox<. l i. i. ) j j (3) he ^Y=fH ^y=fh ^Y=fH ^y=fh T.IE#it:YnK..a.fzo T.IE#it:YnK..a.fzo goofy ox< goofy. l i. :$ i.:$ i.i. > io io '! ' ', > ; '! ' ',, >,, x > x,,, ( ;, ; ; i i,. xotoxxotox ) ( ox ( >ox )> ( o o ) (a) 実関数の微分 > >x. Xotox Xotox x ^ ^ he Zotoz oz oz x x Zotoz zotoz zotoz Toto Toto > > ) (b) 複素平面上の極限 図 3: (a): x = x における実関数の微分は 式 () の極限 ( x ) を取ることで得られる x の 正の側 ( x > ) と負の側 ( x < ) から近づく 通りの極限の取り方がある (b): 複素微分の定 義 () の極限 z は 複素平面上の様々な方向から取ることができる その全てについて式 () の左辺が同じ値に収束するとき 関数 f (z) は z = z で微分可能となる 8

9 .3 x x x x z ( z ) z () f(z) f(z) 4: z z = z () f(z) = u(x, y) + iv(x, y) (z = x + iy, x, y, u, v R) (). [ z = x, x ( x R)]: z () z = x + iy f(z + z) f(z ) lim z z [u(x + x, y ) + iv(x + x, y )] [u(x, y ) + iv(x, y )] = lim x [ x u(x + x, y ) u(x, y ) = lim + i v(x ] + x, y ) v(x, y ) x x x = u x (x, y ) + i v x (x, y ). (4). [ z = i y, y ( y R)]: z f(z + z) f(z ) lim z z [u(x, y + y) + iv(x, y + y)] [u(x, y ) + iv(x, y )] = lim y i y [ u(x, y + y) u(x, y ) = lim + i v(x ], y + y) v(x, y ) y i y i y = i u y (x, y ) + v y (x, y ). (5) 9

10 df/dz(z ) (4) (5) u x (x, y ) = v y (x, y ), u y (x, y ) = v x (x, y ) (6) (6) () z = x + i y x, y f(z) f(z + z) = u(x + x, y + y) + iv(x + x, y + y) (7) u(x, y ) + u x (x, y ) x + u [ y (x, y ) y + i v(x, y ) + v x (x, y ) x + v ] y (x, y ) y ( ) ( ) u u = u(x, y ) + iv(x, y ) + x + i v x + x y + i v y. (8) y u/ y v/ x v/ x u/ x ( ) ( u f(z + z) = u(x, y ) + iv(x, y ) + x + i v x + v ) x x + i u y x ( ) u = u(x, y ) + iv(x, y ) + x + i v ( x + i y) x = f(z ) + () ( u x + i v x f(z + z) f(z ) lim z z ) z. (9) = u x (x, y ) + i v x (x, y ) () z ( y/ x). f(z) z = z. z = z f(z) = u(x, y) + iv(x, y) (6) f(z) f(z) f(z) f = u + iy u x + u y =, v x + v =. () y

11 f u(x, y) (6) u x = x u x = v x y = y v x = u y y u x + u y = 4 (6) 3 v(x, y) f(z) f(z) z z z x = (z + z)/ y = (z z)/i x z =, x z = i = i f = u + iv z f z u(x, y) v(x, y) = + i z z = u x x z + u ( y v y z + i x x z + v ) y y z = u x + i u y + i v x + i i v y = ( u x v ) + i ( u y y + v ) =. x f f/ z = f z

12 '. 3 ( ) f(x) x z f(z) 3. : z n m f(z) = c n z n = c + c z + c z + + c m z m ityotoy ) ^ f (z) = i Yo zoi ) oy o Xo ^ ^ i zoi Yo, i i o f(z) = az + b (a, b ): > ( o W=iz '. > LZ W=iz iq.fi ^ w^=izti.... i. f: > >. > LZ. w=z 4 A Y TIM, > (a) f(z) = iz +,, # 4. a ' ' > 4 ityotoy ) ^ ^ i o > ( o m c n nz n oy o, d LZ iq.fi d f(z) = z : z = re iθ f(z) = r e θ ^ a. r... θ i. Xo Xotosc f: 5: ^ i. > Xotosc w^=izti > >. >. LZ w=z Y TIM, > z = r(cos θ + i sin θ) (4) ( θ f(z) = z /n = r [cos /n n + πmi ) ( θ + i sin n n + πmi )] n πmi n n A. 4 #,, 4 (b) f(z) = z (m Z). ' ' > 4

13 : p(z), q(z) f(z) = p(z) q(z) = c + c z + c z + + c n z n d + d z + d z + + d n z m (q(z) ) f(z) f(z) = az + b cz + d (a, b, c, d ) 3. f(x) = e x (x R). f(z) = u(x, y) + iv(x, y). f(z) f(x) = e x y = u(x, ) = e x, v(x, ) = () 3. u x = v y, u y = v x () u(x, y), v(x, y) f(z) () e x e iθ = cos θ + i sin θ ( ) e z = e x+iy = e x (cos y + i sin y) (3) (3) e z = u(x, y) + iv(x, y) u(x, y) = e x cos y, v(x, y) = e x sin y. u x = ex cos y, u y = ex sin y, v x = ex sin y, v y = ex cos y. (6) 3

14 e iy = cos y + i sin y. (4) ( e iy = cos y + i sin y = cos y + i sin y =.) y = π/ exp(iπ/) = i, y = π exp(iπ) = e z πi e z+πni = e z (n Z). ( e z+πni = e z e πni = e z (cos(nπ) + i sin(nπ)) = e z = e z.) : e z = 3. z = x + iy e z = 3 e x cos y = 3, e x sin y =. z = log 3 + nπi (n Z) 3.3 sin x, cos x cosh x, sinh x (4) e iy = cos y + i sin y, e iy = cos( y) + i sin( y) = cos y i sin y. (y R) ( ) sin y, cos y cos y = eiy + e iy, sin y = eiy e iy i, tan y = sin y cos y = eiy e iy e iy + e iy. y R z ( ) cos z = eiz + e iz, sin z = eiz e iz i, tan z = eiz e iz. (5) e iz + e iz (4) e iz = cos z + i sin z 4

15 ( ) e cos z + sin iz + e iz ( ) e iz e iz z = + = (eiz + e iz ) (e iz e iz ) i 4 = 4 4 = d dz cos z = d e iz + e iz dz d dz sin z = d e iz e iz dz i = ieiz + ( i)e iz = ieiz ( i)e iz i = eiz e iz = sin z i = eiz + e iz = cos z cos z, sin z cos x, sin x z = iy (y R) ( ) ei iy + e i iy cos(iy) = ei iy e i iy sin(iy) = i = e y + e +y = e y e +y i = cosh y, = i ey e y = i sinh y. (6) z = x + iy ( ) cos(x + iy) = ei(x+iy) + e i(x+iy) = e y + e y sin(x + iy) = ei(x+iy) e i(x+iy) i = e y e y i = eix e y + e ix e y cos x + i e y e y cos x + i e y + e y i = e y (cos x + i sin x) + e y (cos x i sin x) sin x = cos x cosh y i sin x sinh y = eix e y e ix e y i = e y (cos x + i sin x) e y (cos x i sin x) i sin x = sin x cosh y + i cos x sinh y (6) y z ( ) cosh z = ez + e z, sinh z = ez e z. (7) 5

16 4 ( ) ln z = ln z + i arg z z p = e p ln z w = az + b cz + d 4. z z = x + iy = re iθ = r (cos θ + i sin θ) (r = z = x + y, x, y R) z z θ arg z z : e z = e x+iy = e x e iy = e x (cos y + i sin y) (8) z e iθ = cos θ + i sin θ z = re iθ = r (cos θ + i sin θ) z n (n Z) z z /n z n = r n z n = (re iθ ) n = r n e inθ = r n [cos(nθ) + i sin(nθ)]. (9) [ cos ( θ n + mπ ) ( θ + i sin n n + mπ ) ] (m Z). (3) n z /n n z ((z /n ) n = z) ( ) { [ ( z /n n = r θ n cos n + mπ ) ( θ + i sin n n + mπ ) ]} n n = ( { ) [ ( r n θ n cos n n + mπ )] [ ( θ + i sin n n n + mπ )] } n [ ( ) ( )] = r cos θ + mπ + i sin θ + mπ = r (cos θ + i sin θ) = z. (3) z /n mπ/n sin(θ + mπ) = sin θ, cos(θ + mπ) = cos θ 6

17 4. y = ln x (x, y R) y = e x y = e x x = ln y ( e ln x = x, ln(e x ) = x) (3) ln x e w = ln w (z, w ) ln z z = e w w = ln z (33) w = ln z = u + iv z z = re iθ z = e w z = e w z ( = re iθ) = e w = e u+iv = e u e iv. (34) ln z = u + iv u v z = re iθ r = e u, e iθ = e iv. (35) (35) (35) r = e u u = ln r, (36) e iθ = e iv v = θ + nπ (n Z). (37) e nπ = (n Z) e iθ = e iv v nπ (36), (37) z = re iθ ( ) ln z ln z = ln ( re iθ) = ln r + i (θ + nπ) (n Z) (38) = ln z + i arg z + nπi (39) ln z z ln z arg z (39) nπi Ln z Ln z = ln z + i arg z ( π < arg z π) (4) ln z (39) arg z π π ln( ) = (n + )πi =..., 3πi, πi, πi, 3πi, 5πi,..., Ln( ) = πi. 7

18 ir it. ^ LZ ir, ^ L w=lnz r ' minty, it r I. ; io ;,, ft, ; 6: w = Ln z z r z = re iθ w w = ln r + iθ ( π < θ π) (39) ( ) ln(z z ) = ln z + ln z, z = z = : ( z ) ln = ln z ln z. (4) z ln(z ) = ln(z ) = ln( ) = πi + nπi ln(z ) + ln(z ) = πi + nπi, ln(z z ) = ln [( ) ( )] = ln = + nπi. (n Z) nπi d ln z dz = d Ln z dz = z. (4) (39) ln z z Ln z z = x + iy Ln z = ln z + i arg z = ln x + y + i arctan y x u + iv. (43) Ln z u v ( ) y v u x = x x + y, u y = x + y, u x = v y, y x + y, v y = x x + y. (44) x = u y = v x. (45) d Ln z/dz d Ln z/dz d Ln z = Ln z dz x = u x + i v x = x x + y + i y x + y = x iy x + y = z z z = z. (46) 8

19 4.3 z z n z /n p z = e Ln z z p = (e ln z ) p = e p ln z. (47) z p p ln z z p z p i i z p = e p Ln z (48) i i = e i ln i = e i[( π +nπ)i] = e ( π +nπ). (n Z) (49) i =, arg i = π/ ln i = ( π + nπ) i (n Z) ln i nπ i i Ln z = πi i i = e i Ln i = e i πi = e π (5) 4.4 ( ) w = az + b (a, b, c, d, ad bc ) (5) cz + d ad bc = w = ( ) ad bc : (5) w = z + b : b = x + iy w = az : a = re iθ r θ w = /z : z = w = /z z = re iθ w = z = re iθ = r e iθ (5) w = r = z z arg w = θ = arg z arg z z w 9

20 ' ' z = x + iy z A(x + y ) + Bx + y + D = (A, B,, D R) (53) x = z+ z, y = z z w = /z i Az z + B z + z + z z i + D = A w w + B w + w + w w + D = i w = ˆx + iŷ (ˆx = $ A + B w + w w+ w, ŷ = + w w i + Dw w = (54) w w ) i A + Bˆx ŷ + D (ˆx w + ŷ ) =. (55) ' ' w yr ) z = x + i (x R) Z=teio )O w = z w ˆx + ( ŷ + ) = ) o z = x + i (x R) y = (56) trap (53) A = B =, =, D = w = /z (55) ŷ (ˆx ' ' io + ŷ ) ( e = ˆx + ŷ + ( ) W=zI=r. = (57) ) 4 w i $ ' ' teio O ) ) o Z= yr try # ^ i i x, *i I > ^ o E w=' > W= =r ' e io i (a) z = re iθ (b) z = x + i (x R) ^ # 7:,i w = /z (a) z = re iθ w = r e iθ, ati ^w=' : O. > w + i/ = / i/ / > x r θ (b) z = x + i (x R) Ẹ i

21 : (5) w = az + b cz + d = a ( ) z + d c ad + b c cz + d + b cz + d + a c = ad c K cz + d + a c.. f (z) = cz + d (c d ). f (z) = z ( ) 3. f 3 (z) = Kz + a c (K a/c ) (58) ( ) ad bc K c (58) w = f 3 (f (f (z))) f 3 f f (z) (59) (58) f,,3 (z) z : (5) 4 a, b, c, d a, b, c, d αa, αb, αc, αd (α ) w w = az + b cz + d = αaz + αb αcz + αd 3 3 z 3 w z =,, w =, 5, 8 (5) z =,, w =, 5, 8 w = az + b = b cz + d d, 5 = a + b c + d, 8 = a + b (6) c + d a = 3d, b = d, c =. (6) w : w = 3dz + d z + d (6) = 3z +. (63) (5) z = d/c w z = d/c w w = w = /z z z = w = z z = w z =

22 5 ( ) f(z)dz = (f(z): ) 5. a x b f(x) n b a a = x < x < < x n < x n = b f(x) lim n n f(ˆx i ) x i ( x i x i x i ) (64) i= x i n ˆx n x n ˆx n x n f(x) n f(x) [a, b] z(t) t z(t) = x(t) + iy(t) (a t b) t [a, b] n a = t < t < < t n < t n = b. f(z) n f(z)dz = lim f(ẑ i ) z i (z i z(t i ), z i z i z i ) (65) n i= z i n f(ẑ i ) i ẑ i = z(ˆt i ), t i ˆt i t i 5. : [k f (z) + k f (z)] dz = k f (z)dz + k f (z)dz : z f(z)dz = z z z f(z)dz :, f(z)dz = f(z)dz + f(z)dz

23 = fix ) Meta AY > x Erie? ' 8: z i f(ẑ i ) 5.3 t z = z(t) dz = dz(t) dt dt t z z = z = + i t z(t) = t + it ( t ) dz dt dz = dz d(t + it) dt = dt = ( + i)dt. (66) dt dt [ ] z dz = (t + it) ( + i)dt == ( + i) 3 t dt = ( + i) 3 t3 = 3 + i. (67) 3 z z = z z z = + i : z(t) = t ( t ), : z(t) = + it ( t ) : dz = dz(t) dt = dt, dz z dz = z dz + z dz = [ ] [ = 3 t + i t + i t 3 t3 t dt + ] : dz = dz(t) dt = i dt dz ( + it) idt = ( 3 + i + i ) 3 (67) = 3 + i. (68) 3 3

24 /z θ z(θ) = e iθ = cos θ + i sin θ ( θ π) (69) dz dz = dz(θ) deiθ dθ = dθ dθ dθ = ieiθ dθ (7) π z dz = e iθ ieiθ dθ = (z z ) n (n Z) z z = ρ θ (z z ) m dz = π idθ = i [θ] π = πi. (7) z(θ) = z + ρe iθ ( θ π) (7) dz = dz(θ) dθ dθ = d ( z + ρe iθ) dθ = iρe iθ dθ (73) dθ π ( ) π ρe iθ n iρe iθ dθ = iρ n+ e i(n+)θ dθ. (74) n π π [ ( ) ( )] iρ n+ e i(n+)θ dθ = iρ n+ cos (n + )θ + i sin (n + )θ dθ = iρn+ n + n = n + = i π (z z ) m dz = [ sin ( (n + )θ ) i cos ( (n + )θ )] π =. (75) dθ = i [θ] π = πi (76) { πi (n = ) (n ). (77) 5.4 D f(z) D f(z)dz = (78) 4

25 " " life.. o, >! idea go.ee 9: (67), (68), (4), (77) D D D f(z) = u(x, y) + iv(x, y), dz = dx + idy f(z)dz = (u + iv)(dx + idy) = ( ) ( Vy x V ) x dxdy = y (udx vdy) = j (udx vdy) + i (udy + vdx). (79) (V x dx + V y dy) (8) ( v x u ) dxdy. (8) y D f(z) u x = v y, u y = v x (8) (8) 5.4., = f(z)dz = f(z)dz f(z)dz f(z)dz = f(z)dz. (83) 5

26 , f(z) f(z) D D f(z) = /z (/z z = ) " " ; Hiatt : 5.4. ( ) f(z)dz + f(z)dz + = (84),... f(z) = /z " 4*9%4 : D, 6

27 5.4.3 f(z) = z z = z = + i z f(z) = z z (/3)z 3 +i z dz = [ 3 z3 ] +i = ( + i)3 3 = 3 + i. (85) 3 f(z) = cos z z = z = i cos z i cos zdz = [sin z] i = sin(i) sin = i sinh (86) sin = sin(i) = ei i e i i i = e e i = e e i = i sinh (87) 7

28 6 ( ) f(z)dz = (f(z): ) z z dz = πi f(z ) = πi f (n) (z ) = n! πi f(z) dz z z f(z) (z z ) n+ 6. a b (b a) b a f(z)dz = a b f(z)dz. a b c : b a f(z)dz = c a f(z)dz + b c f(z)dz. f(z) f(z) f(z)dz = [f(z) : ] a b A, B A B f(z) A f(z) B f(z) 8

29 ( ) a A b B a f(z) b a b b = f(z)dz = f(z)dz + f(z)dz = f(z)dz f(z)dz. a A b a A b B f(z)dz = b a B a A f(z)dz a B, f(z), f(z) ( ) (), f(z) () = f(z)dz = f(z)dz + f(z)dz + f(z)dz + f(z)dz. (88) f(z)dz = f(z)dz, f(z)dz = f(z)dz = f(z)dz. (89), 3 4 f(z)dz = f(z)dz. (9) 4,, 9

30 (88) = f(z)dz + f(z)dz + f(z)dz + f(z)dz 3 4 = f(z)dz + f(z)dz f(z)dz f(z)dz,, = f(z)dz f(z)dz,,, f(z)dz =, f(z)dz. f(z) " " im#i*,,, : f(z) 6. z = z f(z ) D f(z) f(z) πif(z ) = dz. (9) z z z D z D z = z /(z z ) πi : dz = πi. z z f(z) f(z) dz = πi f(z ) z z 3

31 z = z f(z ) ( ) (9) f(z) = f(z ) + (f(z) f(z )) z f(z ) f(z) f(z ) f(z) f(z ) f(z) f(z ) dz = dz + dz (9) z z z z z z z = z z = z ρ z = z + ρe iθ ( θ π) (9) πif(z ) z = z + ρe iθ ( θ π) f(z ) π dz = f(z ) dz = f(z ) z z z z ρe iθ iρeiθ dθ = f(z ) i θ z(θ) = z + ρe iθ dz = dz dθ dθ = iρeiθ dθ π dθ = πif(z ). f(z) f(z ) z z ρ f(z) f(z ) z z ϵ/ρ f(z) f(z ) z z dz < f(z) f(z ) z z dz < ϵ ρ πρ = πϵ ϵ. ab < a b (a, b ) f(z) f(z ) dz = z z (93) z z z = z f(z) z z z = z f(z) f(z) z z z = z + ρe iθ ( θ π) f(z) f(z ) f(z) ϵ > δ > z z < δ f(z) f(z ) < ϵ ρ < δ f(z ) f(z) z z < ϵ ρ z = z + ρe iθ ( θ π) 3

32 6.. (9) (78) f(z) dz (f(z): ) z z z = z f(z) dz = πif(z ). z z z = z f(z) z z ( f(z) f(z)dz = ) f(z) z z dz =. [ ] z + z (a) z = (b) z = (c) z = (d) z = i ^ (d) LE ^ i (a) i > ' or 7 ^ ( c ) ( b ) 3: (a) z =, (b) z =, (c) z =, (d) z = i [ ] z + z = z + (z + )(z ) z =, z = 3

33 (a), (b) z = z = z z z + + z dz = z+ z dz = πi z + z + = πi + z= + = πi. (a), (b) (a), (b) (c) z = z + z + z dz = z + z + z dz = πi z + z = πi ( ) + z= = πi. (c) (c) (d) z = ± z + z z + dz =. z (d) 6.3 z = z f(z ) dn f dz n (z ) f (n) (z ) D f(z) D f(z) D z = z f (n) (z ) f (n) (z ) = n! πi f(z) dz (n =,,,...) (94) (z z ) n+ z D z D f(z) ( f (z ) ) f(z) f(x) 33

34 z = z f(z) f(z) = n! f (n) (z )(z z ) n = f(z )+f (z )(z z )+ f (z )(z z ) + 3! f (z )(z z ) 3 + { (z z ) dz = πi (n = ) n (n ) (94) f(z) dz (z z ) (97) n+ f(z ) + f (z )(z z ) + = f (z )(z z ) + f (z 3! )(z z ) 3 + dz (z z ) n+ [ f(z ) = dz (z z ) + f(z )(z z ) + f (z )(z z ) + + ] f (n) (z )(z z ) n + n+ (z z ) n+ (z z ) n+ n! (z z ) n+ [ f(z ) = dz (z z ) + f(z ) n+ (z z ) + f (z ) n (z z ) + + ] f (n) (z ) + n n! z z = πi n! f (n) (z ). (98) (96) πi (n ) z z (z z ) n (94) (95) [ (94) ] n = f (z ) = πi (95) (96) f(z) z z dz (99) f (z ) [ f (z ) = lim z z [f(z f(z) + z) f(z )] = lim z πi z z (z + z) f(z) ] z z [ f(z) z z (z + z) f(z) ] = z z [ ] f(z) (z z ) + z f(z) dz. (z z z)(z z ) z (94) z d z z z z (z + z) d 34

35 z f(z) (z z z)(z z ) dz z < f(z) L (z z z)(z z ) dz < z d max f(z). 3 () L = dz max f(z) f(z) f(z) z () (94) 3.6 [ ] cos(πz) z = (z ) 3 [ ] z = cos(πz) z = (z ) 3 (94) n =, z = cos(πz) πi dz = [cos(πz)] = πi (z ) 3! z= [ π cos(πz) ] z= = π 3 i cos(π) = π 3 i. z = 35

36 7 [ ] z = z f(z) = a n (z z ) n = a + a (z z ) + a (z z ) + () ( ) : f(z) = n! f (n) (z )(z z ) n = f(z ) + f (z )(z z ) + f (z )(z z ) + 7. () f(z) a n z z z z f(z) z f(z) ( z = ) f N (z) = N z n = + z + z + + z N = zn+ z () f N (z) N z N+ N z = r = e iθ z N z N = (re iθ ) N = r N e inθ = r N N ( z = r < ) ( z = r = ). ( z = r > ) e inθ = () 3 N f N (z) = z n = ( z < ) zn+ z N ( ) ( z = ) z ( z = r > ) (3) z < z 3 z = r = () f N (z) z=e iθ = ei(n+)θ [cos(nθ) + i sin(nθ)] e iθ = e iθ N f N (z) 36

37 e z e z = n! zn = + z +! z + 3! z3 + (4) z z, z,... = {z n } n c ϵ > N > z n c < ϵ ( n > N) (5) lim z n = c n lim n z n = n z n z n R z n n= z n = z + z + {z n } f N (z): f N (z) = N z n = z + z + + z N n= N n= z n = z + z + z n = z + z + n= n= z n 37

38 ( ) 3 n= z n n= b n z n b n (n =,,...) (6) n= z n n= b n 4 z n n= z n lim n z n+ z n = L (a) L < (b) L = (c) L > z lim n+ n z n = L n z n + z n+ + z n+ + = z n ( + L + L + ) L < zn L > L L = 5 4 [ ] n= z n n= z n n= z n < n= b n < N n= z n N N 5 (b) L = () z n = n, () z n = n (7) n= z z n () L = lim n+ n+ n z n = lim n n =, () L = lim n (n+) n = () () z n = n= n= n= z n = n < + n= n = > x dx = + x dx = [ln x] =, [ x ] = + = () () π /6) 38

39 n= z n lim n n z n = L (a) L < (b) L = (c) L > lim n n z n = L z n L n ( ) L < L > 6, ( ) () a n (z z ) n (a n ) z = z n= z z < z z () z = z z z > z z z = z z = z z z z = z z z z = z [ ] z n= a n(z z ) n 7. () z () 3. () () 6 (7) (), () L = lim n n z n = 7 z lim n+, n n z limn n z n zn+ z n 3., n z n q < 39

40 ^ ^ Zl zol Zz Zo Zo/ Zz \ P " > > 4: n= a n(z z ) n z = z z = z z z z ( ) z z ( ) ( ) R z z > R a n n ( n= a n(z z ) n lim a n+ n a n = L R R = L = lim a n (8) L n a n+ = R = lim n a n+ a n (L = ) R = z = z [ ] 7. n= a n(z z ) n a n+ (z z ) n+ = a n+ a n (z z ) n a n z z n L z z L L L < z z < /L L > z z > /L 4

41 : lim n n a n = L R = /L a n+ /a n 8 R = lim n n= (n)! (n!) (z 3i)n R /4 (n)! (n!) [(n + )]! [(n + )!] n= R = lim n (n)! [(n + )!] = lim n [(n + )]! (n!) n n! (z 3)n n n! (n+) (n + )! n (n + )! = lim n (n+) n! = lim n (n + )(n + ) (n + ) = 4. = lim n n =. 8 a n /a n+ ( ) 4

42 8 [ 3.3, 3.4 ] a nc n f(z) z = z f(z) = n! f (n) (z )(z z ) n = f(z ) + f (z )(z z ) + f (z )(z z ) + n f(z) z = z f(z ) f (n) (z ) 8. (z = ) z z z : a nz n, b nz n z < R a n z n = b n z n a n b n a n = b n (n =,,,...) z = f(z) = a nz n, g(z) = b nz n z < R f(z) ± g(z) = (a n ± b z )z n ( ) ( ) f(z)g(z) = a n z n b m z m = a b + (a b + a b ) z + (a b + a b + a b ) z + = m= ( n ) a m b n m z n. (9) m= 4

43 f(z) = a nz n 9 ( f (z) = d ) a n z n d = dz dz (a nz n ) = n a n z n () n a nz n (8) R R = lim a n n a n+ () R R = lim n a n n (n + )a n+ = lim n n n + lim a n n a n+ = lim n R a n a n+ = R ( ) ( ) f(z)dz = a n z n dz = a n z n dz = n + a nz n+ f(z) 8. f(z) f(z) z z < R f(z) f(z) = n! f (n) (z ) (z z ) n () f (n) (z ) (94) n! f (n) (z ) = f(z ) πi (z z ) n+ dz () f(z) z D 9 a nz n () [ f(z + z) f(z) (z + z) lim f n (z) = lim z z a z n ] n n a n z n = z z

44 [ () ] (9): f(z) = πi f(z ) z z dz (3) z z z = z q = + q + q + (4) z z z z = z z (z z ) = z z [ = z z + z z z z + z z z z ( ) ] z z + = z z (3) f(z) = dz f(z ) πi (z z ) (z z ) n = n+ = ( πi (z z ) n+ (z z ) n. ) f(z ) (z dz (z z z ) n+ ) n n! f (n) (z ) (z z ) n. (94) (), () f(z) f(z) z = z z = z z z f(z) f(z) (z = ) f(z) z = z ( 3.4 ) 44

45 ^ * 6 T R Z *, Zo * > x + x + x + x (a) (b) 5: (a) z = z f(z) z = z f(z) R (b) z = z = x+i z 8.3 f(z) (), () 8. ( ) z = z = z n = + z + z + z 3 + (5) z z = z = c z = c z = [ + z ( z ) ] c c + + c c z = + z + z 4 + z 6 + z z z = e z = n! zn = + z + z + 3 z3 + 45

46 e z ( ) z = (8.3) z iz (4) e iz = cos z + i sin z (6) sin z = (n + )! zn+ = z 3! z3 + 5! z5 (7) cos z = (n)! zn =! z + 4! z4 (8) cosh z = ez + e z, sinh z = ez e z (8.3) Ln ( + z) z = ( ) n Ln ( + z) = z n = z z n + z3 3. (9) n= Ln( + z) = Ln( + z) + i arg z Ln( + z) z = 8... ) ( z) z = : ( z) z ( z) = d dz z ( z) z (5) ( z) = d dz + z = d ( + z + z + z 3 + ) dz = + z + 3z + 4z

47 ( z) = ( z ) (5) (9) z = ( z) z z = Ln( + z) z = Ln( + z) +z Ln( + z) = z + z dz (5) z z Ln(+z) = z + z dz = z dz ( z + z z 3 + ) = z z + 3 z3 4 z4 + Ln( + z) (9) z = z = +z Ln( + z) z = ( z) n (n Z) z = ( z) n z ( z) n = (n )! d n dz n z (5) ( z) n = (n )! = = (n )! (n )! d n dz n z = d n (n )! dz n z m = m= m(m ) [m (n ) + ]z m (n ) m=n m=n m! [m (n )]! zm n+ = m= (n )! m= ( m + n )! z m = (n )! m! d n zm dzn n m z m. m= 47

48 9 [ ] f(z) z = z f(z) = a n (z z ) n b n + (z z ) = + b n (z z ) + b +a +a (z z )+a (z z ) + z z n= z = z (z z ) n z = z z = z f(z) 9. f(z) z = z (): f(z) = n! f (n) (z ) (z z ) n = f(z ) + f (z )(z z ) +! f (z )(z z ) + 3! f (z )(z z ) 3 + () ( ) z = z z = Ln z z = i Ln z = Ln z + (Ln z) (z z ) + z=z! (Ln z=z z) (z z ) + 3! (Ln z=z z) (z z ) 3 + = Ln i (z i) + z=i (z i) z=i (z i) 3 + z z=i! z 3! z 3 = Ln i i (z i) +! i (z i) 3 i (z 3 i)3 + = πi + i(z i) (z i) i 3 (z i)3 + f(z) f(z) z = z Ln z z = z=z z = i z = R = i = 48

49 z = z = z = z n = + z + z + z 3 + ( R = ) e z = n! zn = + z + z + 3! z3 + ( R = ) ( ) n cos z = (n)! zn = z + 4! z4 ( R = ) ( ) n sin z = (n + )! zn+ = z 3! z3 + 5! z5 ( R = ) ( ) n Ln( + z) = z n = z n z + 3 z3 4 z4 ( R = ) n= z = z z = R = Ln( + z) z = R = = e z, cos z, sin z R = cosh z, sinh z cos z, sin z + cosh z = + z + 4! z4 +, sinh z = z + 3! z3 + 5! z5 + (R = ) f(z) z w f(z) z w ) + iz = = + z + z + = iz 4 z z z iz 4 z iz 4 ( π ) sin z = z 3! z3 + 5! z5 = π z π z z ( π ) 3 6 z ( π ) 5 + z + e iz = cos z + i sin z cos z = eiz + e iz, sin z = eiz e iz i e z z ±iz a n R = lim n a n a n+ 49

50 f(z) + g(z) f(z)g(z) (9) 3 z + z = + z + z + + ( + z + (z) + ) = + 3z + 5z + z sin(z) = z (z 3! (z)3 + ) 5! (z)5 = z 3 43! z ! z7 f (z) f(z)dz z (+z) = : ( + z) = d ( ) = d ( z + z z 3 + z 4 ) = z + 3z 4z 3 + (R = ) dz + z dz z+3 z = : [ z + 3 = 3 ( ) = + z ( ) ] z z = ( 3 z + 4 ) 9 z + = 3 9 z z3 + 3 e z cosh z = ez + e z = [ + z + z + 3! z3 + ( 4! z ( z) + ( z) + 3! ( z)3 + )] 4! ( z)4 + = [ + z + z + 3! z3 + ( 4! z4 + + z + z 3! z3 + )] 4! z4 + = + z + 4! z4 + (R = ) sinh z = ez e z = [ + z + z + 3! z3 + ( 4! z4 + z + z 3! z3 + )] 4! z4 + = z + 3! z3 + 5! z5 + (R = ) 5

51 3+z z = 3 z = z = 3 R = z + z 3z + = = z + z = + z + z + + [ + z + (z) + ] = + 3z + 5z + z = z 9.. f(z) z = z, f(z) f(z) = a n (z z ) n + = + n= b n (z z ) n b (z z ) + b z z + a + a (z z ) + a (z z ) + () f(z) a n = f(z ) πi (z z ) n+ dz (n =,,...), b n = (z z ) n f(z )dz (n =,,...) πi () cos z z z = ( cos z z ) z = z z cos z = z ( + z 4! z4 ) = z z + 3. (3) z cos z z 5

52 f(z) f(z) f(z) = f(z ) πi z z dz f(z ) πi z z dz, z z z = z (), () () a n, b n { :z (z z ) dz = πi (n = ) (4) n (n ) () f(z) f(z ) πi (z z dz (n =,,...) ) n+ f(z ) πi (z z ) n+ dz = [ ] dz a πi (z z ) n+ m (z z ) m b m + (z z m= m ) m = = [ ] dz a m πi (z z ) + b m. (5) m+n+ (z z ) m +n+ m= (4) ( z z ) m + n + = m = n m + n + n + > (5) πi f(z ) (z z ) n+ dz = πi dz [ m=, m = a m (z z ) + m+n+ m = b m (z z ) m +n+ a n () f(z) πi (z z ) n f(z )dz (n =,,...) (z z ) n f(z )dz = [ ] dz (z z ) n a m (z z ) m b m + πi πi (z z m= m ) m = = [ ] dz a m πi (z z ) + b m. m n+ (z z ) m n+ m= m = ] = a n (6) m n + m n + m = n (6) (z z ) n f(z )dz = [ ] dz a m πi πi (z z ) + b m = b m n+ (z z ) m n+ n m= b n m = (7) 5

53 z = z (6) ^ * * ^ i, [ z * Zo Zo * X X ) ) 6: z = z z = z z = z z = z z = z 9.. (3) (z z ) n ( ) z = z (z z ) n z( z) z = z z z z = z( z) = z z = z ( + z + z + z 3 + ) = z + + z + z + z < z = z( z) z = ( ) z z z z = 4 z( z) = z = z = z = z ( z [ ) ( ) + ) + z z= z z=(z [ z= (z ) + z= (z ) z z= z z 3 3! [ (z ) + (z ) (z ) 3 + ] = z + (z ) + (z ) + ( ) ) z z=(z 3! ( ) z z= 3 z 4 z= (z ) + z < z = ] (z ) + ] 4 z z = z = + z + z + z = [ (z )] = + [ (z )] + [ (z )] + [ (z )] 3 + = (z ) + (z ) (z )

54 [ ] f(z) z = z z z Res f(z) z=z : f(z)dz = πi Res f(z) z=z. f(z) z = z f(z) = a n (z z ) n b n + (z z ) = + b n (z z ) + b +a +a (z z )+a (z z ) + z z n= z = z f(z) z = z f(z) 3 5. f(z) z = z z = z f(z) f(z) = a n (z z ) n b n + (z z ) = + b n (z z ) + b +a +a (z z )+a (z z ) + z z. (m ) n= f(z) z = z z = z f(z) f(z) = a n (z z ) n + m n= b n (z z ) n = b m (z z ) m + + b z z + a + a (z z ) + (b m ) (z z ) m z = z m 5 f(z) f(z) 54

55 3. z sin z z = z = sin z z = z z sin z = ( z z 3! z3 + ) 5! z5 + = 3! z + 5! z4 + z = sin z z = z z z = z f(z ) f(z) = a n (z z ) n = a + a (z z ) + a (z z ) + f(z) z = z z(z ) + 3 z = z = 5 z = 5 (z ) z z(z ) (z ) = 3z , z = (z ) z(z ) (z ) = (z ) 5 4(z ) + 4 e z z = ( e z = n! z ) n = + z + ( ) + z 3! ( ) 3 + z z (z = x x ) e /z = e /x, (z = x x ) e /z = e /x e /z z =

56 .. f(z) z = z z = z f(z ) = z = z f(z) f(z) = a n (z z ) n = a m (z z ) m + a m+ (z z ) m+ + n=m m z = z f(z) m.. z z w w = z z w z w = w = z = {z } z = ( ) f(z) = z z w f(z) = = w w = z f(z) = z = z f(z) = z f(z) = /w z = e z z w f(z) = e/w w = e z z = 7 z =. f(z) z = z m f(z) z = z f(z) z = z f(z) = :z b m (z z ) m + + b z z + a + a (z z ) + (z z ) n { (z z ) dz = πi (n = ) n (n ) 56

57 . l = toit. Z* of 7: {z } z z z z = f(z) [ b m f(z)dz = dz (z z ) + + b ] + a m + a (z z ) + = πi b (8) z z z z b z z f(z) z = z Res f(z) = b, z=z (8) 7.. f(z) z z Res f(z) = b z=z b f(z) z = z f(z) = b z z + a + a (z z ) + b (z z ) z z [ ] b lim (z z )f(z) = lim (z z ) + a + a (z z ) + z z z z z z [ = lim b + a (z z ) + a (z z ) + ] z z = b. 7 (8) 57

58 m (m > ) Res f(z) = b = lim (z z )f(z). (9) z=z z z f(z) z = z m m > f(z) = b m (z z ) m + + b z z + a + a (z z ) + (b m ) (9) (z z ) n> b (z z ) m m z z lim z z = lim z z = lim d m dz (z z ) m f(z) m [ d m dz (z z ) m m b m (z z ) m + + b z z + a + a (z z ) + d m [ bm + b z z dz m m (z z ) + + b (z z ) m + a (z z ) m + a (z z ) m+ + ] = lim z z = (m )! b. [ (m )! b + m! a (z z ) + (m + )! a (z z ) + m ] ] (3) m Res z=z f(z) = b = (m )! lim z z d m dz m (z z ) m f(z) (3) f(z) z = z (8) ( ) f(z) = πi Res z=z f(z) (3).. f(z) = 5z z = 4 z = (z + 4)(z ) 58

59 z = 4 (9) 5z 5 ( 4) Res f(z) = lim (z + 4)f(z) = lim = = 8. (33) z= 4 z 4 z 4 (z ) ( 4 ) z = 4 f(z) (3) f(z)dz = πi Res f(z) = 6πi. (34) z= 4 f(z) = Res f(z) = lim z= z 5z z = (3) m = (z + 4)(z ) d dz (z z ) f(z) = lim z d dz 5z z + 4 = lim z 5 z + 4 5z (z + 4) = = 8. z = f(z) f(z)dz = πi Res f(z) = 6πi. (35) z= f(z) = cos z z = z z = cos z z cos z ( ) z (9) Res z= f(z) = lim z f(z) = lim z z z z cos z = lim cos z =. (36) z f(z) (3) f(z)dz = πi Res f(z) = πi. (37) z= 59

60 [ ]... f(z) z = z f(z) z = z f(z) = + b (z z ) + b z z + a + a (z z ) + a (z z ) + z z b f(z) z = z Res z=z f(z) = b z = z f(z) f(z)dz = dz [ + b (z z ) + b z z + a + a (z z ) + a (z z ) + { (z z ) dz = πi (n = ) n (n ) : f(z) f(z)dz = ] = πib = πi Res z=z f(z). 8 = f(z)dz + f(z)dz = f(z)dz f(z)dz,,,, f(z)dz = f(z)dz,, z = z ϵ z = ϵe iθ + z θ z = z, z,... 8 = f(z)dz + f(z)dz + f(z)dz + = f(z)dz f(z)dz f(z)dz,,,,,, f(z)dz = f(z)dz + f(z)dz +,, ϵ,,... n πi Res z=zn f(z) ( ) f(z)dz = f(z)dz+ f(z)dz+ = πi Res f(z) + Res f(z) + Res f(z) z=z z=z z=z n,,,, = πi n 6

61 f(z) = πi n Res f(z) z=z n z = z n f(z) " Dixey ; Yippy 8: z z,,3,,3.. 3 f(z) = b z z + a + a (z z ) + z = z Res f(z) = lim (z z )f(z). z=z z z f(z) = p(z) ( p(z), q(z) :, q(z ) =, p(z ) ) q(z) z = z f(z) q(z) z = z q(z) = q(z ) + q (z )(z z ) + q (z )(z z ) + = q (z )(z z ) + q (z )(z z ) + 6

62 f(z) Res f(z) = lim (z z ) p(z) z=z z z q(z) = lim p(z) (z z ) z z q (z )(z z ) + q (z )(z z ) + p(z) = lim z z q (z ) + q (z )(z z ) + = p(z ) q (z ). Res f(z) = p(z ) z=z q (z ). (38) m b m f(z) = (z z ) + + b m (z z ) + b + a + a (z z ) + (b m ) z z Res z=z f(z) = b = (m )! lim z z d m dz m [(z z ) m f(z)]. (z z b ),...,m z z b f(z) = + (z z ) + b + a + a (z z ) + a (z z ) + z z f(z) z z b f(z) = e /z z = z ( ) n e /z = = + n! z z + z + Res z= e/z = z dz z = z = z z 4 3z Res z= z z = lim z 4 3z z z z = 4 3z z = 4, z= 4 3z Res z= z z = lim 4 3z (z ) z z z = 4 3z z =. z= 6

63 . (a) z =, 4 3z dz = πi z z ( 4 3z Res z= z z + Res z= ) 4 3z = πi ( 4 + ) = 6πi. z z (b) z = z = 4 3z 4 3z dz = πi Res = πi ( 4) = 8πi. z z z= z z. ( z =, ) ze πz z 4 6 ze πz z 4 6 = ze πz (z )(z + )(z + i)(z i) z = ±, ±i z = ±i (38) Res z=i Res z= i ze πz z 4 6 = lim z i ze πz z 4 6 = lim z i ze πz ze πz = lim (z 4 6) z i 4z 3 ze πz (z 4 6) = lim z i ze πz 4z 3 = ieπi 4(i) 3 = 6, (39) = ie πi 4( i) 3 = 6 (4) ze πz z 4 6 = πi ( ze πz Res z 4 6 = πi 6 ) = πi 6 4. z=±i ^ K Llc %f.me a rz. o i Le rc Ft ; x ) = ; 9:

64 .. cos θ, sin θ F (cos θ, sin θ) θ π I = π F (cos θ, sin θ)dθ (4) z = e iθ θ π dθ cos θ = eiθ + e iθ dz = dz(θ) dθ = z + z, sin θ = eiθ e iθ i (4) I = = z z, i deiθ dθ = dθ dθ = ieiθ dθ = izdθ dθ = dz iz ( z + z F, z ) z dz i iz (4) π dθ cos θ π dθ = cos θ z = = i z+z z = dz iz = i z = z z + dz { } { }. (43) z ( + ) z ( ) ( )= z z + = z = ± ( ) 4 ± z { z + = z ( } { + ) z ( } ) (43) z = ± z = z = (43) i z = dz { } { } = πi i Res z ( + ) z ( ) z= { } { } z ( + ) z ( ) = 4π lim z z ( + ) = 4π = π. ( + ) dz 64

65 . 8 f(x)dx (44) = {x R x R} = {z z = Re iθ ( < θ < π)} = + f(z)dz = πi Res f(z). z=z n n R f(z)dz = f(z)dz + f(z)dz = f(x)dx + f(z)dz R R πi Res f(z) = f(z)dz = z=z n n f(x)dx + lim f(z)dz. R (44) lim R f(x)dx = f(z)dz = πi Res f(z) (45) z=z n n R ( ) R dx + x 4 8 dx + x 4 = dx + x 4. (46) 65

66 =d, + z ^ = # _ir a z t di R t i > r > R : dz + z = R dx 4 + x + 4 R dz + z 4 (47) R lim R R R dx + x 4 = dx + x 4 (i) (47) (ii) (47) lim R (46) (i) (47) +z 4 + z = 4 (z e iπ 4 )(z e 3iπ 4 )(z e 5iπ 4 )(z e 7iπ 4 ) z = e iπ 4, e 3iπ 4, e 5iπ 4, e 7iπ 4 9 z = e iπ 4, e 3iπ 4 ( ) (38) Res f(z) = z=e iπ 4 (z 4 ) = iπ z=e 4 4z 3 = 3πi e 4 = iπ z=e e πi 4, Res f(z) = z=e 3πi 4 4z 3 = 9πi e 4 = πi e 4 iπ. z=e dz + z = 4 πi (R ) ( Res z=e iπ 4 = πi i sin ( π 4 f(z) + Res ) = π z=e 3iπ 4 f(z) = ) π. ( = πi 4 e πi e 9 + z 4 z = e iπ 4, e 3iπ 4, e 5iπ 4, e 7iπ 4 ( + z 4 ) = 4z 3 z = e iπ 4, e 3iπ 4, e 5iπ 4, e 7iπ 4 +z 4 z = e iπ 4, e 3iπ 4, e 5iπ 4, e 7iπ 4 ) πi 4 66

67 (ii) (47) lim R z = Re iθ ( < θ < π) dz = ire iθ dθ dz π + z = ire iθ π 4 + (Re iθ ) dθ = ire iθ dθ (48) 4 + R 4 e4iθ R dz + z 4 dz π + z 4 = ire iθ π + (Re iθ ) 4 dθ < R R 4 dθ = πr R. R 4 R 4 e 4iθ R 4 R (48) (48) (46) : dx + x = dx 4 + x = dz 4 + z = π 4. (49) (R ). f(x) cos(sx)dx, f(x) sin(sx)dx, f(x)e isx dx = f(x) cos(sx)dx = Re f(x) (cos(sx) + i sin(sx)) dx = f(x)e isx dx, cos(sx) k + x dx = π k e ks, lim R e isz f(x) cos(sx)dx + i f(x) sin(sx)dx = Im f(x) sin(sx)dx f(x)e isx dx. sin(sx) dx = (s >, k > ) (5) k + x k +z dz e isz dz = lim k + z R R R (i) (5) e isx e dx + lim k + x R isz dx (5) k + z 67

68 eisz e isz k + z = z = ±ik k > (z ik)(z + ik) z = ik e isz Res z=ik k + x = e isx (k + z ) = eisx eis ik z=ik z = z=ik iz = e ks ik. (5) e isz e isz lim dz = πi Res R k + z z=ik k + x = πe ks. k (ii) (5) lim R z = Re iθ ( < θ < π) dz = ire iθ dθ (5) lim R e isz dx = lim k + z R π e isreiθ k + (Re iθ ) ireiθ dθ. (5) e isreiθ k + (Re iθ ) ireiθ = eis[cos θ+i sin θ] k + (Re iθ ) ireiθ = eisr cos θ e sr sin θ k + (Re iθ ) ire iθ. e isr cos θ sr sin θ e ire iθ k + (Re iθ ) = eisr cos θ e sr sin θ ire iθ sin θ e sr = k + (Re iθ ) k + Re iθ R Re sr sin θ R k. (53) e isr cos θ = e iθ =, k + Re iθ R k ( e iθ =, R > k ) (5) lim e R isz k + z dx π = lim e isreiθ R k + (Re iθ ) ireiθ dθ π e isreiθ π sr sin θ sr sin θ Re πre lim R k + (Re iθ ) ireiθ dθ lim dθ = lim =. R R k R R k s >, < θ < π s sin θ > Re sr sin θ R k R (5) e isx dx = lim k + x R e isz πe ks dz = k + z k (5) cos, sin 68

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = (

θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = ( ( ) i i i (Σe i i = e i + e i 2 + ), y n ( ) 2 y y = +iy 2 (, y) = + iy y > (upper hlf plne) y < (lower hlf plne) = + iy (rel prt) y (imginry prt) Re = Im = y = Re + iim = + iy = = ( + iy)( iy) = 2 + y

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3) [ ] KENZOU 6 3 4 Origin 6//5) 3 a a f() = b n ( a) n c n + ( a) n n= n= = b + b ( a) + b ( a) + + c a + c ( a) + b n = f() πi ( a) n+ d, c n = f() d πi ( a) n+ () b n c n d n d n = f() d (n =, ±, ±, )

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

main.dvi

main.dvi 2 f(z) 0 f(z 0 ) lim z!z 0 z 0 z 0 z z 1z = z 0 z 0 1z z z 0 1z 21 22 2 2 (1642-1727) (1646-1716) (1777-1855) (1789-1857) (1826-1866) 18 19 2.1 2.1.1 12 z w w = f (z) (2.1) f(z) z w = f(z) z z 0 w w 0

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

main.dvi

main.dvi Chpter 5 5. [; ] f(x) 3 f(x) = X + ( n cos nx + b n nx ) (5:) n= (5.) ; ;...;b ;b ;... n; m > 3 Z Z Z mx cos mx mx nx nx cos ( : n 6= m dx = : n = m ( : n 6= m dx = : n = m nx cos dx = (5.) (5.) (5.) 3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

E Riemann-Stieltjes 65   teaching.html (epsilon-delta ) 23 4 4 2 5 3 9 4 6 5 22 6 24 7 3 8 34 9 4 42 48 2 49 3 53 A Goursat 56 B 56 6 D 62 E Riemann-Stieltjes 65 http://www.math.nagoya-u.ac.jp/~yamagami/teaching/ teaching.html (epsilon-delta ) http://sss.sci.ibaraki.ac.jp/teaching/set/set25.pdf,

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R > 2 2 http://www.ozawa.phys.waseda.ac.jp/inde2.html But nothing s unconditional, The Bravery > (, ( > (, f, g > f (,, > sup f( ( M f(g( (i > g [, lim g( (ii g > (, ( g ( < ( > f(g( (i g < < f(g( g(

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information