19 /

Size: px
Start display at page:

Download "19 /"

Transcription

1 19 /

2 Andreev / DBdG / Andreev / DBdG / Dirac-Bogoliubov-de Gennes DBdG

3 H.K.Onnes (Meissner ) (Josephson ) 1957 Bardeen Cooper Schrieffer BCS Cooper 1959 Bogoliubov de Gennes Cooper BCS 1 Bogoliubov-de Gennes BdG BdG BdG Bogoliubov-de Gennes / Andreev 1.1 Andreev Cooper Cooper Andreev Andreev BdG Josephson π /

4 E 1.1: Andreev 1. Andreev 1.1 / Andreev / Andreev Beenaer Andreev (a) / Andreev (b) / Andreev Andreev (a) (b) e h e h x y 1.: (a) / Andreev (b) / Andreev 1.3 / / 3

5 Andreev 1.4 / 3 / 4 DBdG 4

6 / /.1. DBdG.3.4 DBdG.5.6 Andreev.1 4, 5.1(a) 6 A B σ π 1.1(b) 6 Γ 6 K K 6 M Fermi π π 1 K K Fermi E = E F = K K. K Γ M K π.1: (a) (b) 1 5

7 .: π K K Dirac K ) γ (ˆ σ F K (r) = ɛf K (r) (.1) K γ (ˆ σ ) F K (r) = ɛf K (r) (.) F (r) A B ( ) ( ) F K FA K F (r) =, F K A K (r) = (.3) FB K FB K σ = (σ x, σ y ) ( ) ( 1 i σ x =, σ y = 1 i ) (.4) ˆ γ ɛ F K (r) F K (r) exp (i r) (.5) ɛ (±) () = ±γ x + y (.6) K K Dirac v = γ (.7) 6

8 6, 7 8. DBdG /.3 x y x > x > x < x > / x < y x.3: / N S Dirac-Bogoliubov-de Gennes DBdG DBdG H + H + u v = E u v (.8) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (.9) { e iφ if x > (r) = if x < (.1) 7

9 { U if x > U (r) = (.11) if x < U U µ, (.1).3 DBdG H + u u = E (.13) H + v v (u, v) exp (i x x + i y y) µ E ( x i y ) ( x + i y ) µ E = (.14) E = µ ± x + y = µ ± = E± e (.15) µ E ( x i y ) ( x + i y ) µ E = (.16) E = µ ± = E h ± (.17).4 E = E+ e = 1 e i xx+i y y u 1 u 1 e ia (.18) E = E e u 1 u = 1 1 e ia e i xx+i y y (.19) e ia = x + i y x + y (.) 8

10 E µ F F µ.4: 1. E > µ E = E+ e = µ + E + µ = x + y (.1) x + y = E + µ > (.) ( ) E + µ x = y > (.3) q y > (.4) E + µ ( ) q 1 E + µ cos α (.5) E + µ sin α q E + µ x = = E + µ e ia = x + i y x + y = E+µ = e iα = + iq + q = E+µ (.6) cos α > (.7) E+µ ( E+µ E+µ cos α + i sin α = cos α + i sin α 9 E+µ cos α + i sin α ) cos α + ( ) E+µ sin α (.8)

11 = 1 u 1 u 1 e iα x = = E + µ + iq + q e ia = x + i y = x + y = E+µ E+µ cos α + i E+µ sin α e ix+iqy (.9) cos α < (.3) = cos α + i sin α = e iα (.31) = 1 u 1 u 1 e iα e ix+iqy (.3). E < µ E = E e = µ E + µ = x + y (.33) x + y = E + µ > (.34) ( ) E + µ x = y > (.35) x = = E + µ e ia = x + i y x + y E+µ = cos α < (.36) = + iq + q cos α + i E+µ sin α = cos α + i sin α E+µ = e iα (.37) 1

12 = 1 u 1 u 1 e iα x = = E + µ e ia = x + i y x + y = E+µ + iq = + q E+µ e ix+iqy (.38) cos α > (.39) E+µ cos α + i sin α = cos α + i sin α = e iα (.4) = 1 u 1 u Ψ e+ N = 1 1 e iα e ix+iqy (.41) (1)E > µ ()E < µ e iα/ e iα/ Ψ e N = 1 e iα/ e iα/ eix+iqy (.4) e ix+iqy (.43) E = E+ h v 1 v = 1 e ia 1 e i xx+iqy (.44) E = E h v 1 v = 1 1 e ia e i xx+iqy (.45) e ia = x + i y x + y (.46) 11

13 1. E > µ E = E+ h = µ + E µ = x + y (.47) x + y = E µ > (.48) ( ) E µ x = y > (.49) E µ ( ) q 1 E µ cos α (.5) E µ sin α q E µ x = = E µ = iq + q E µ (.51) cos α > (.5) e ia = x i y x + y E µ = cos α i E µ sin α = cos α i sin α = e iα (.53) = 1 v 1 v e iα / e iα / e i x+iqy (.54) x = = E µ e ia = x i y x + y E µ = = iq + q E µ cos α < (.55) cos α + i E µ sin α = cos α i sin α = e iα (.56) 1

14 = 1 v 1 v e iα / e iα / e i x+iqy (.57). E < µ E = E h = µ E µ = x + y (.58) x + y = E µ > (.59) ( ) E µ x = y > (.6) x = = E µ = + iq + q E µ cos α < (.61) e ia = x + i y x + y E µ = cos α + i E µ sin α = cos α i sin α = e iα (.6) = 1 v 1 v e iα / e iα / e i x+iqy (.63) x = = E µ e ia = x + i y x + y = + iq + q E µ cos α > (.64) = E µ cos α + i E µ sin α = cos α i sin α = e iα (.65) 13

15 = 1 e i x+iqy v 1 v e iα / e iα / (.66) (1)E > µ ()E < µ Ψ h+ N = 1 x+iqy e iα / ei (.67) e iα / Ψ h N = 1 e iα / e iα / e i x+iqy (.68) Ψ e+ N = 1 e iα/ e iα/ eix+iqy (.69) Ψ e N = 1 e iα/ e iα/ e ix+iqy (.7) Ψ h+ N = 1 Ψ h N = 1 e iα / e iα / e iα / e iα / ei x+iqy e i x+iqy (.71) (.7) 14

16 q < q c = E + µ (.73) q < q c = E µ (.74) q = E + µ sin α (.75) Andreev ( ) E µ α < α c = arcsin E + µ α c (.76).4 DBdG H + H + u v = E u v (.77) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (.78) (u, v) exp (i x x + i y y) u = (u 1, u ) v = (v 1, v ) µ + U E ( x i y ) ( x + i y ) µ + U E = (.79) µ U E ( x i y ) ( x + i y ) µ U E E S ± = E = + (µ U ± ) E S ± (.8) + ξ ±, ξ ± = ± (µ + U ) (.81).5 U µ, E = E S E = ES a e ( ) ia E S + ξ b ( ) c E S + ξ e ia (.8) d 15

17 E U + µ >>.5: (1) E < Ω E (.83) ( ) E Ω = i 1 (.84) E cos β (.85) 1 < E/ < 1 < β < π sin β > ( ) E Ω = i 1 = i sin β (.86) E = + ξ (.87) ( ) E ξ = ± E = ±i 1 = ±i sin β = (µ + U ) (.88) 16

18 = µ + U ± i sin β (.89) + ( ) µ + x U ± i sin β = q = (µ + U ) sin β () (µ + U ) () q ± i (µ + U ) sin β () q ± i (µ + U ) sin β () (.9) U y q (.91) (µ + U ) () q (.9) κ (µ + U ) () sin β (.93) x = ( 1 ± i ) (µ + U ) () sin β (.94) x ± i (µ + U ) () sin β = ± iκ (.95) sin γ q µ + U, π < γ < π (.96) = µ + U ( q 1 µ + U ) = µ + U cos γ (.97) x κ 17

19 1. ( + iκ, q) κ e ia = x + i y x + y = = + iq + q = µ+u + i ( µ+u ) + ( µ+u q ) q µ+u cos γ + i sin γ cos γ + sin γ = eiγ (.98) a e ( ) ia E S + ξ e b ( ) iγ (E + i sin β) c E S + ξ e ia (E + i sin β) e iγ d (.99) a + b + c + d = ( E + sin β ) + ( ) E = + sin β + 1 = 4 (.1) ( ) a e iγ E b c 1 + i sin β ( ) E + i sin β e iγ e iφ = 1 d e iφ e iγ e iβ e iβ e iγ e iφ e iφ e iβ Ψ e+ S = 1 e iγ+iβ e iφ ei x κx+iqy e iγ iφ (.11) (.1). ( iκ, q) κ e ia = + iq + q = cos γ + i sin γ = e iγ (.13) 18

20 a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ e iβ iγ Ψ e S = 1 e iφ e iφ iγ e i x+κx+iqy (.14) (.15) 3. ( + iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.16) ( ) a e iγ E b c 1 i sin β ( ) e iγ e iβ E i sin β e iγ e iφ = 1 e iβ e iγ e iφ d e iφ Ψ h+ S = 1 e iφ e iβ e iβ iγ e iφ e iφ iγ e i x κx+iqy (.17) (.18) 4. ( iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.19) 19

21 a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ Ψ h S = 1 e iγ iβ e iφ e i x+κx+iqy e iγ iφ (.11) (.111) () E > E = E S = + ( µ U ) (.11) ( µ U ) = E > (.113) = ± E + µ + U (.114) + ( x + y µ + U ± ) E = (.115) x = ( µ + U ) y ± (µ + U ) E () + E () = ± (µ + U ) E () + E () (.116) 1 ± (µ + U ) E () = ± (µ + U ) E () (.117) ( ) E cosh δ δ > ( ) E δ = arcosh (.118)

22 cosh δ sinh δ = 1 (.119) E = ( E ) 1 = sinh δ (.1) = + (µ + U ) sinh δ () (.11) cosh δ = cos (iδ) (.1) sinh δ = i sinh (iδ) (.13) iδ = β (.14) cosh δ = cos β (.15) sinh δ = i sinh β (.16) = + (µ + U ) sinh δ () = + i (µ + U ) sin β () = + iκ (.17) E < E < x κ 1. ( + iκ, q) κ e ia = x + i y x + y = = + iq + q = µ+u + i ( µ+u ) + ( µ+u q ) q µ+u cos γ + i sin γ cos γ + sin γ = eiγ (.18) 1

23 E a b c 1 ( + sinh ) δ E + sinh δ e iγ e iφ = 1 d e iφ e iγ e iβ 1 e iβ e iγ e iφ e iφ e iγ e iβ Ψ e+ S = 1 e iγ+iβ e iφ ei x κx+iqy e iγ iφ cosh δ + sinh δ (cosh δ + sinh δ) e iγ e iφ e iφ e iγ (.19) (.13). ( iκ, q) κ e ia = + iq + q = cos γ + i sin γ = e iγ (.131) a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ e iβ iγ Ψ e S = 1 e iφ e iφ iγ e i x+κx+iqy (.13) (.133) 3. ( + iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.134)

24 a e iγ (cos β i sin β) e iγ e iβ b c 1 (cos β i sin β) e iγ e iφ = 1 e iβ e iγ e iφ d e iφ e iφ e iβ e iβ iγ Ψ h+ S = 1 e iφ e iφ iγ e i x κx+iqy (.135) (.136) 4. ( iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.137) a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ Ψ h S = 1 e iγ iβ e iφ e i x+κx+iqy e iγ iφ (.138) (.139) U µ, γ = arcsin q/ (U + µ) e iβ Ψ e+ S = 1 e iβ e iφ ei x κx+iqy (.14) e iφ 3

25 Ψ h+ S = 1 e iβ e iβ e iφ e iφ e i x κx+iqy (.141).5 / Andreev ψ N = Ψ e+ N + rψe N + r AΨ h N (.14) U µ, E = E S ψ S = aψ e+ S + bψh+ S (.143) x = Ψ e+ N + rψe N + r AΨ h N = aψe+ S + bψh+ S (.144) Ψ h+ N + r Ψ h N + r AΨ e S = a Ψ e+ S + b Ψ h+ S (.145) Andreev { e iφ X 1 cos α if α < α c r A = (.146) if α > α c α c = arcsin ( ) E µ E + µ (.147) ( ) ( ) α r = ix cos 1 + α α α β sin i sin β sin (.148) { r A e iφ X 1 cos α if α < α c = (.149) if α > α c 4

26 ( ) ( ) α r = ix cos 1 + α α α β sin + i sin β sin ( ) ( ) α α α + α X = cos β cos + i sin β cos (.15) (.151) x vx+ e = 1 E+ e = v + q = v E + µ = v cos α (.15) vx e = 1 E e = v = v cos α (.153) + q vx+ h = 1 E+ h vx h = 1 E h = v + q = v E µ = v cos α (.154) = v + q = v cos α (.155) ( ) ( ) vx e r = α cos r = r = + α α α ix 1 β sin i sin β sin (.156) r A = r = v e x+ vx h vx+ e vx h vx+ h r A = { cos α cos α r A = e iφ X 1 cos α cos α if α < α c if α > α c (.157) ( ) ( ) α r = r = ix cos 1 + α α α β sin + i sin β sin r A = vx e vx+ h r A = ( ) r r A R = r A r (.158) cos α cos α r A = e iφ r A (.159) (.16) E < unitary ( RR ) = δ nm nm E > unitary ( ) q α = arcsin (.161) E + µ ( ) q α = arcsin E µ µ µ 5 (.16)

27 1. µ ( q α = arcsin µ ), α = arcsin ( ) q µ (.163) α = α (.164). µ α = arcsin ( ) q, α = arcsin E ( ) q E (.165) α = α (.166) µ α = α Andreev µ α = α Andreev.6.7 E E U + µ >>, E r µ r A F F.6: µ ( Andreev ) Andreev r A (E, α) = r A (E, α) = e iφ cos α (E/ ) cos α + ζ, if µ (.167) e iφ cos α E/ + ζ cos α, if µ (.168) 6

28 E E U + µ >> r r A µ F F.7: µ ( Andreev ) r (E, α) = iζ sin α (E/ ) cos α + ζ, if µ (.169) r (E, α) = i (E/ ) sin α E/ + ζ cos α, if µ (.17) ( ) E 1 if E > ζ = ( ) (.171) E i 1 if E < E < r + r A = 1 α = r A = 1 Blonder-Tinham-Klapwij BTK I αc V = g ( (V ) 1 r (ev, α) + r A (ev, α) ) cos αdα, (.17) g (V ) = 4e h N (ev ), (µ + E) W N (E) =, α c = arcsin π ( ) E µ E + µ (.173) g N W y µ µ α c = arcsin (1) = π (.174) α < π (.175) 7

29 µ ev/ x < 1 I V 1 g (V ) = = π/ { 4 ( 1 r (ev, α) + r A (ev, α) ) cos αdα if x = ( 1 1 ) 1 ln x 1 if < x < 1 x x x x+1 (.176) ev/ x 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα { if x = 1 π x 1 + x 1 ln x x x+1 if x > 1 x 1 (.177) µ ev/ x < 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα { if x = 1 x 1 if < x < 1 (.178) 1 x + 1 x (1 x ) 1 x ln 1 x +1 ev/ x 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα 4 if x = 1 3 ( ) πχ + 4χ πχ 3 + 4χ χ 1 arcsin if x > 1 χ 1 χ (.179) χ = x x 1 (.18).8.6 Andreev E = E e ± = µ ± (.181) E = E h ± = µ ± (.18) 8

30 ( V ) 1 g I V µ << µ >> ( ) ev.8: µ Andreev µ Andreev 1. y vy e+ = 1 E e E+µ + q = v q x + q = v sin α = v sin α (.183) v e y v h+ y v h y = 1 E e q = v q = 1 E+ h q = v q = 1 E h q = v q E+µ E+µ x + q = v E+µ E µ x + q = v E µ E µ x + q = v E µ sin α = v sin α (.184) sin α = v sin α (.185) sin α = v sin α (.186).5 y 1. µ α = α Andreev hole y Andreev. µ α = α Andreev hole y Andreev α α Andreev Andreev 9

31 3 / 3 / / 3.1 DBdG / 3.1 / x < x < y x 3.1: / F S DBdG DBdG V ex (r) H + + V ex (r) H + + V ex (r) u v = E u v (3.1) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (3.) V ex (r) = { if x > V ex if x < 3 (3.3)

32 (r) U (r) { e iφ if x > (r) = if x < U (r) = { U if x > if x < (3.4) (3.5) U µ, (3.6) (u, v) exp (i x x + i y y) µ E + V ex ( x i y ) ( x + i y ) µ E + V ex = (3.7) E = E e ± = µ + V ex ± (3.8) µ E + V ex ( x i y ) ( x + i y ) µ E + V ex = (3.9) E = E h ± = µ + V ex ± (3.1) 3. E µ +V ex µ +V ex 3.: Andreev V ex E E V ex (3.11) 31

33 α,, α, α α = arcsin = arcsin q E + µ V ex q E µ V ex, = E + µ V ex cos α, = E µ V ex cos α (3.1) / Andreev N ( ) ( ) α r = ix cos 1 + α α α β sin i sin β sin (3.13) { e iφ X 1 cos α cos α r A = if α < α c if α > α c (3.14) ( ) ( ) α α α + α X = cos β cos + i sin β cos (3.15) α c ( ) E µ Vex, α c = arcsin (3.16) E + µ V ex N (E) = µ + E V ex W π DBdG H + V ex (r) H + V ex (r) u v = E u v (3.17) E = E e ± = µ V ex ± (3.18) E = E h ± = µ V ex ± (3.19) 3.3 E E + V ex (3.) α,, α, q α = arcsin, = E + µ + V ex cos α E + µ + V ex α q = arcsin, = E µ + V ex cos α (3.1) E µ + V ex 3

34 E µ V ex µ V ex 3.3: Andreev φ φ + π (3.) φ Andreev { e i(φ+π) X 1 cos α cos α r A = if α < α c (3.3) if α > α c N N + (E) = µ + E + V ex W π α c ( ) E µ + Vex, α c+ = arcsin (3.4) E + µ + V ex 3. BTK I V = e h N s (ev ) s=±1 αc N s (E) = µ + E + sv ex W π ( 1 r (ev, α) + r A (ev, α) ) cos αdα, (3.5), α cs = arcsin ( ) E µ + svex E + µ + sv ex (3.6) s = ±1 Fermi µ 1. K K Fermi Fermi s = ±1 α α α = α (3.7) 33

35 .6 Andreev α cs α cs = arcsin (1) = π (3.8) I V = e h W π ( ev + V ex + ev V ex ) N s (E) = µ + E + sv ex W π π/, α cs = arcsin ( 1 r (ev, α) + r A (ev, α) ) cos αdα, ( ) E µ + svex E + µ + sv ex (3.9) (3.3) α = α / ev/ x < 1 π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα = { if x = 1 x 1 if < x < 1 1 x + 1 x (1 x ) 1 x ln 1 x +1 (3.31) ev/ x 1 π/ = ( 1 r (ev, α) + r A (ev, α) ) cos αdα 4 if x = 1 3 ( ) πχ + 4χ πχ 3 + 4χ χ 1 arcsin if x > 1 χ 1 χ (3.3) χ = x x 1 (3.33) ev > V ex ev + V ex + ev V ex = ev (3.34) < V ex ev + V ex + ev V ex = V ex (3.35) 34

36 / < V ex Andreev 9 / V ex V ex = µ / (3.35) I V V ex (3.36) 35

37 4 / Fermi µ α α α = α Andreev < V ex µ 36

38 Dirac-Bogoliubov-de Gennes DBdG Fermi K K ψ (r, µ, α) = 1 } {F µ (r, α) e ik r + G µ (r, α) e ik r = 1 { Fµ (r, α) e ik r + G µ (r, α) e ik r} (1) ψ (r, ν, α) = 1 {F ν (r, α) e ik r + G ν (r, α) e ik r } () µ, ν = A, B (3) K = K K K ( ) F A (r, α) ˆF (r, α) = (4) F B (r, α) Ĝ (r, α) = ( G A (r, α) G B (r, α) ) (5) α, β =, (6) { Fµ (r, α), F ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (7) {F µ (r, α), F ν (r, β)} + = (8) { Gµ (r, α), G ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (9) {G µ (r, α), G ν (r, β)} + = (1) {F µ (r, α), G ν (r, β)} + = (11) { Fµ (r, α), G ν (r, β) } + = (1) δ µ,ν δ (r r ) = δ (r r ) (13) 37

39 { ψµ (r, α), ψ ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (14) {ψ µ (r, α), ψ ν (r, β)} + = (15) K K Hamiltonian Dirac Hamiltonian Ĥ + = iσ D µ = i (σ x D x + σ y D y ) µ (16) Ĥ = iσ D µ = i (σ x D x σ y D y ) µ (17) ± K K D = i e A ~c v µ Fermi Schrödinger Ĥ + Ĥ Ĥ + Ĥ ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) = E ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) V Hamiltonian H 1 = dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) Ĥ + + V Ĥ + V Ĥ + V Ĥ V dr ˆF ) (r, α) (Ĥ+ + V ˆF (r, α) = dr ˆF (r, α) ( iσ D) ˆF (r, α) + 1 dr ˆF (r, α) (σ D) ˆF (r, α) = dr dr F A (r, α) F B (r, α) δ (r r ) ( ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) (18) (19) dr ˆF (r, α) ( µ + V ) ˆF (r, α) () D x id y D x + id y ) F A (r, α) F B (r, α) r = dr dr δ (r r ) (D x + id y ) r F B (r, α) F A (r, α) + (D x id y ) r F A (r, α) F B (r, α) = dr {(D x + id y ) F A (r, α)} F B (r, α) + {(D x id y ) F B (r, α)} F A (r, α) = dr F A (r, α) ( ) Dx idy F B (r, α) + F B (r, α) ( ) Dx + idy F A (r, α) = dr ˆF { T T (r, α) (σ D ) ˆF (r, α)} (1) 38

40 dr ˆF (r, α) ( µ + V ) ˆF (r, α) = dr ˆF { T T (r, α) ( µ + V ) ˆF (r, α)} () dr ˆF ) (r, α) (Ĥ+ + V ˆF (r, α) = = dr ˆF { } T T (r, α) iσ D ( µ + V ) ˆF (r, α) dr ˆF ( ) { T T (r, α) Ĥ + V ˆF (r, α)} (3) ) drĝ (r, α) (Ĥ + V Ĝ (r, α) = ( ) {Ĝ T drĝt (r, α) Ĥ V (r, α)} (4) H 1 = 1 dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T H + + V H + V H + V H V H+ V H V H+ + V H + V ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T (5) H = 1 dr α,β dr ψ α (r) ψ β (r ) g (r r ) ψ β (r ) ψ α (r) (6) spin-singlet g (r r ) = gδ (r r ) = gδ µ,ν δ (r r ) (7) g 39

41 H = 1 = g α drψ (r, µ, α) ψ (r, µ, ᾱ) gψ (r, µ, ᾱ) ψ (r, µ, α) dr{ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) = g +ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, )} dr { ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) } (8) = g ψ (r, µ, ) ψ (r, µ, ) (9) = g ψ (r, µ, ) ψ (r, µ, ) (3) ψ (r, µ, ) ψ (r, µ, ) g + ψ (r, µ, ) ψ (r, µ, ) g + ψ (r, µ, ) ψ (r, µ, ) g ψ (r, µ, ) ψ (r, µ, ) g (31) (3)... 1 ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) = g ψ (r, µ, ) ψ (r, µ, ) + g ψ (r, µ, ) ψ (r, µ, ) g (33) H = dr { ψ (r, µ, ) ψ (r, µ, ) + ψ (r, µ, ) ψ (r, µ, ) } = 1 dr { F µ (r, ) e ik r + G µ (r, ) e ik r} { F µ (r, ) e ik r + G µ (r, ) e ik r} + { F µ (r, ) e ik r + G µ (r, ) e ik r} { F µ (r, ) e ik r + G µ (r, ) e ik r} (34) = 1 dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, )} + { F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) } + { F µ (r, ) F µ (r, ) e ik r + G µ (r, ) G µ (r, ) e ik r} + { F µ (r, ) F µ (r, ) e ik r + G µ (r, ) G µ (r, ) e ik r} (35) F F, GG 4

42 H = 1 dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, )} = 1 + { F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) } (36) dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) G µ (r, ) F µ (r, ) F µ (r, ) G µ (r, ) } + {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) = 1 G µ (r, ) F µ (r, ) F µ (r, ) G µ (r, ) } (37) dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T (38) Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T Hamiltonian H = H 1 + H = 1 dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T H + + V H + V H + V H V H+ V H V H+ + V H + V ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T (39) (1,1) (1,8) (8,1) (8,8) BCS Hamiltonian 41

43 H BCS = dr ˆF (r, ) Ĝ (r, ) T H + + V ˆF (r, ) H + V Ĝ (r, ) T (4) ˆF (r, ) ˆf (r, ) = e i r (41) Ĝ (r, ) ĝ (r, ) Hamiltonian H + V = iσ D + µ + V iσ D + µ + V (4) D = (43) H + V iσ + µ + V = H + + V (44) BdG H + + V u u = E H + + V v v (45) u = φ A φ B +, v = φ A φ B (46) φ A B K K Andreev (,) (,7) (7,) (7,7) BCS Hamiltonian H BCS = dr Ĝ (r, ) ˆF (r, ) T H + V Ĝ (r, ) H+ + V ˆF (r, ) T (47) Ĝ (r, ) ˆF (r, ) = ĝ (r, ) ˆf (r, ) e i r (48) 4

44 H+ + V = iσ D + µ + V iσ D + µ + V (49) H+ + V H + V (5) BdG H + V u u = E H + V v v (51) u = φ A φ B, v = φ A φ B + (5) K K Andreev BdG H ± + V u u = E (53) H ± + V v v BdG H ± V u u = E (54) H ± V v v BdG H ± Dirac Hamiltonian Dirac-Bogoliubov-de Gennes DBdG K K 43

45 44

46 1 P.G.de Gennes, Superconductivity of Metals and Alloys,Benjamin,New Yor, (1966),,, 4, 345 (7) 3 C.W.J.Beenaer, Phys.Rev.Lett.97, 677 (6) 4 T.Ando, J.Phys.Soc.Jpn.74, 777 (5) 5,, (7) 6 K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, M.I.Katsnelson, I.V.Grigorieva, S.V.Dubons, and A.A.Firsov, Nature (London) 438, 197 (5) 7 Y.Zheng, Y.W.Tan, H.L.Stormer, and P. Kim, Nature (London) 438, 1 (5) 8 M.Ohishi, M.Shiraishi, R.Nouchi, T.Nozai, T.Shinjo, and Y.Suzui, Jpn.J.Appl.Phys.46, L65 (7) 9 M.J.M.de Jong, and C.W.J.Beenaer, Phys.Rev.Lett.74, 1657 (6) 45

Andreev Josephson Night Club

Andreev Josephson Night Club Andreev Josephson Night Club email: asano@eng.hokudai.ac.jp 27 6 25 1 1 2 2 2 2.1...................................... 2 2.2 2......................... 3 2.3 Cooper.......................... 8 2.4.......................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information