1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)
|
|
- うのすけ はしかわ
- 2 years ago
- Views:
Transcription
1 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h, ( 1 - h) ) の傾き= ( 1 h ) - ( 1 ) ( 1 - h) -1 ( 1) \ lim h = - lim h ( 1 - h) - ( 1) h ( 1 - ) - ( ) より, - 1 = より, - h ( 1 + h) - ( 1 - h) ( 1 + h) - ( 1) ì ( 1 - h) - ( 1) h = lim h = = h ( 1) + ( 1) ( 1) ( x) = x + x + x + 1より, ( 1) = + í- lim î h h ü ý þ 1
2 例題 極値を求める / 次数下げ ( x) = -x + 6x - x + 1 とおくと, ( x) = -x + 1x - 1 \ (- 1 ) = -16 <, ( ) = 8 > 1 ここで, ( x) = の解をa, b ( b ) また, 増減表は次のようになる x a b ( x) ( x) ( a ) ( b ) これと1より, 1 < a < < b よって, 最小値は ( a ) ( a ) = a より, - + 1a - 1 = 6 - a < とすると, a = \ + a + 1 ( a ) = -a + 6a - a + 1 = ( a - )( - a + 1a - 1) a = より, 最小値は,
3 例題 極値の条件から求める (1) 別解 ( x) = ax + bx cx より, ( x) = ax + bx + c ( x) = x =1, であることと ( x) の ( x) = a( x - 1)( x - ) ( x) = ax - ax + a + の解が 6 1 と の係数比較より, b = - a, c = 6a a ( x) ax = - ax + 6ax = ( x - x + x) \ 1 \ a a ( 1 ) + ( ) = 5 + = a より, a = \a = これと ( 1 ) + ( ) = よって, b = -, c = 1 1 x の係数が a であることより,
4 例題 多変数関数の最大 最小別解 変数の基本対称式を使って立式し解いてみた処理や計算が大変だということがわかりました 多変数関数では変数の多い基本対称式で始める方がいいのかもしれません 縦を x, 横を y とすると, 高さは 7 - ( x + y) ここで, x + y = とおくと, が満たすべき必要条件は, < < 7 1 直方体の表面積が であることより, [ xy + x{ 7 - ( x + y) } + y{ 7 - ( x + y) }] xy + x{ 7 - ( x + y) } + y{ 7 - ( x + )} = 15 -( x + y) + 7( x + y) + = 15 = \ y \ xy \ xy = xy = v とおくと, v = の右辺の判別式 D = - 6 = -11 < より, すべての実数 において v > が成り立つ また, x, y はt についての 次方程式 t - ( x + y) t + xy = すなわち t - t + v = の 実数解だから, 判別式 D = - v ³ \ v x + y あるいは, x >, y > より, ³ xy \ ³ v \ v,より, \ \ 6 1 1かつより, 6 1 よって, が満たすべき条件は, 6 v > はすべての実数 について成り立つが, v も満たさなければならず, 1 v であるためには, 6 でなければならない 1 よって, が満たすべき条件は, 6 となる
5 したがって, 直方体の体積の式は, = xy{ 7 - ( x y) } より, V v( - ) V + æ1 ö = 7 ç 6 è ø これとより, V = ( )( 7 - ) æ1 ö \ V = ç 6 è ø V = V = のとき, 16 =, よって, 増減表は次のようになる V V V æ1 ö ç 6 è ø 75 7 O
6 75 よって,V の最小値は, 最大値は 7 V = のとき, = または 6 = のとき = x + y =,より, v = xy = よって, x, y は, - t + = t の解である \ ( x, y) = ( 1,), (,1 ) また, このとき, 高さ = 7 - ( x + y) = = 6 のとき = x + y = 6,1より, v = xy = よって, x, y は, - 6t + = t の解である \( x, y) = (,) また, このとき, 高さ = 7 - ( x + y) = 1 以上より, 縦, 横, 高さは, その値の小さいものから並べると, 1,, 6
7 例題 1 接線の本数 補足 : 共有点を 1 つしかもたない 次関数の接線の式と接点 ( x) = ax + bx + cx d ( a ¹ ) の点 ( ( t) ) + ( x) = ( at + bt + c) x - at - bt d より, ( x) - g( x) = ax + bx - ( at + bt) x + at bt g + + ( x) - g( x) = x = をもつとき, ( x) - g( x) = a( x - t) = ax - atx + at x at が 重解 t - であるから, t, における接線の式 ( at + bt) x + at + bt º ax - atx + at x at ax + bx - - \ b = -at, t = のとき - bt = at b = より, ( x) = ax + cx + d ( x) cx d g = + 1 t ¹ のとき t g b - a ( a ¹ ) 上の点 (, d ) = より, ( x) = ax + bx + cx + d ( x) x - - b + ac b - 7a d = a 7a における接線 æ b b bc ö 上の点 ç -, - + d における接線 è a 7a a ø 1はにおいて, b = とした特殊な場合だから,に含まれる よって, ( x) = ax + bx + cx d ( a ¹ ) の接線 g( x) が ( x) + その接点と接線の式はそれぞれ æ b b bc ö ç -, - + d è a 7a a ø 一方, - b + ac a, g( x) = x - y = ( x) の変曲点の x 座標は, ( x) = ( x) = 6 ax + b より, x = - b a æ b b bc ö よって, 変曲点は, ç -, - + d è a 7a a ø したがって, y = と共有点を 1 つしか持たないとき, 7a b - 7a d を満たすから, 次関数 y = ( x) の変曲点における接線は y = ( x) と変曲点のみにおいて共有点をもつ 7
8 y 変曲点 O x 8
9 例題 1 次関数のグラフの形 (1) 別解 1: 必要条件を活かす ( x) = ax + bx - 18x + 11 ( x) = ax + bx - 18 とおくと, x = - のとき極大値をとることから, (- ) = \ a - b = 6 1 (- + t) + (- 1 t) 1 - の値はt の値にかかわらず一定だから, t = と t = 1 の場合において, (- 1 + ) + (- 1 - ) = ( ) + (- 1-1) (- 1) + (- 1) = ( ) + (- ) (- 1) = ( ) + (- ) \ \ \- a + b + 58 = 11-8a + b + 7 よって, (- + t) + (- 1 - t) a = b 1,より, a =, b = 6 つぎに, が成り立つ 1 であるための必要条件は, a =, b = 6 が与えられた条件が成り立つための十分条件であるかについて調べる a =, b = 6 のとき, ( x) = x + 6x - 18x + 11 ( x) = 6x + 1x - 18 = 6( x + )( x -1) より, 増減表は次のようになる x - 1 ( x) ( x) 65 1 よって, x = - のとき極大値, x = 1のとき極小値をとる また, (- 1 + t) + (- 1 - t) = ( t) + 6( t) - 18( t) ( t) + 6( t) - 18( t) よって, (- + t) + (- 1 t) = は t の値にかかわらず一定である 以上より, a =, b = 6 が与えられた条件が成り立つための必要十分条件である ゆえに, ( x) = x + 6x - 18x + 11 であり, x = 1のとき極小値をとる + 11
10 別解 ( x) = ax + bx + cx d y = g + が原点に関して対称であるとすると, g x + g - x 点 ( x, g( x) ) と点 (- x, g( - x) ) の中点は原点であるから, ( ) ( ) = すなわち g ( x) + g( - x) = \ g( x) = -g(- x) \ ax + bx + cx + d = ax - bx + cx - d これが任意の実数 x について成り立つから, b = d = よって, 原点に関して対称な 次関数は y = g( x) = ax + cx これを x 方向に p, y 方向に q 平行移動すると, 原点に対応する点は, 点 ( p, q) に移されるから, 点 ( p, q) に関して対称な 次関数が得られる これを y = h( x) とすると, h ( x) = g( x - p) + q より, y = h( x) = a( x - p) + c( x - p) + q また, y = h( x) は点 ( p, q) に関して対称であるから, ( p - x, h( p - x) ) と ( p + x, h( p + x) ) の中点は ( p, q) である h p + x + h p - x よって, ( ) ( ) = q 以上より, 点 ( p, q) に関して対称な 次関数を h( x) 実数 a ( ¹ ( p + x) + h( p - x) = q \ h y = とすると, a ) と c を用いて, y = h( x) = a( x - p) + c( x - p) + q また, h( p + x) + h( p - x) = q 問題の場合, (- + t) + (- 1 - t) y = ( x) は点 ( 1, (- 1) ) よって, ( x) º h( x) とすると, p = -1 \ h ( x) = a( x + 1) + c( x + 1) + q \ h ( x) = ax + ax + ( a + c) x + a + c + q \ h ( x) = ax + 6ax + a + c h (- ) = より, 1 a + c = 1 が t の値にかかわらず一定であることから, - に関して点対称である ( x) = ax + 6ax + a - 1a = a( x + x - ) = a( x + )( -1) \ h x よって, a > かつ = 1 x のとき関数 ( x) ( ( x) ) と表せる h º は極小値をもつ と表せる また, h ( x) = ax + ax + ( a + c) x + a + c + q = ax + ax - ax -11a + q, ( x) ( x) a =, q = ( x) = x + 6x \ x h º より, 1
11 補足 点 ( p, q) に関して対称な 次関数を h( x) 実数 a ( a ¹ ) と c を用いて, y = h( x) = a( x - p) + c( x - p) + q よって, h ( x) = 6a( x - p) より, h ( p) = y = とすると, と表せる これと y = h( x) = a( x - p) + c( x - p) + q 次関数 y = ( x) の点対称点の x 座標をa とすると, ( a ) = ( a ¹ ) が任意の 次関数を表すことから, となる 11
12 例題 1 接線 法線 補足 : 点 Q の x 座標の別の求め方 P ( t t + at), とすると, 直線 l : y = ( t + a) x - t 点 Q の x 座標をa ( a ¹ t) とすると, 点 Q は直線 l と曲線 C の交点だから, x = a は方程式 x + ax = ( t + a) x - t, すなわち x - t x + t = の解の 1 つである 他の解は点 P の x 座標 t であり, 点 P が接点であることから, x = t は重解である よって, 解と係数の関係より, t + t + a =, t + ta + ta = -t, t a = -t \a = -t \Q (- t, -8t - at) したがって, 点 Q を通る接線 m の傾きは, (- t ) + a = 1t + a l と m が直交することから, ( + a)( 1t + a) = -1 t \ 6t + 15at + a + 1 = 以下略 1
13 例題 16 複接線 接するとき重解 の別証明 ( x) と ( x) ( a) g( a) g が x = a で接するならば, = 1 かつ ( a) = g ( a) 1 より, ( x) g( x) = ( x a) p( x) ( x) - g ( x) = p( x) + ( x - a) p ( x) - - \ a これとより, ( a) - g ( ) = だから, p ( a) = \ p( x) = ( x - a) q( x), より, ( x) - g( x) = ( x - a) q( x) 1
PowerPoint プレゼンテーション
- = 4 = 4 = - y = x y = x y = x + 4 y = x 比例は y = ax の形であらわすことができる 4 - 秒後 y = 5 y = 0 (m) 5 秒後 y = 5 5 y = 5 (m) 5 0 = 05 (m) 05 5 = 5 (m/ 秒 ) 4 4 秒後 y = 5 4 y = 80 (m) 5-80 5 4 = 45 (m/ 秒 ) 5 v = 0 5
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )
微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (
頻出問題の解法 4. 絶対値を含む関数 4.1 絶対値を含む関数 絶対値を含む関数の扱い方関数 X = { X ( X 0 のとき ) X ( X <0 のとき ) であるから, 絶対値の 中身 の符号の変わり目で変数の範囲を場合分けし, 絶対値記号をはずす 例 y= x 2 2 x = x ( x
頻出問題の解法 4. 絶対値を含む関数 4.1 絶対値を含む関数 絶対値を含む関数の扱い方関数 X = { X ( X 0 のとき ) X ( X
公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si
公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係
2014年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G
2018年度 岡山大・理系数学
08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする
重要例題113
04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0
p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと
567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
2013年度 信州大・医系数学
03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,
2015年度 京都大・理系数学
05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ つの関数 y= si( x+ ) と y = six のグラフの 0 x の部分で囲まれる領域 を, x 軸のまわりに 回転させてできる立体の体積を求めよ ただし, x = 0 と x = は領域を囲む線とは考えない -- 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ次の つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ
< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂
公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法
二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま
二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -
2018年度 神戸大・理系数学
8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
2014年度 センター試験・数学ⅡB
第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (
05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が
05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos
2017年度 金沢大・理系数学
07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学
2017年度 長崎大・医系数学
07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,
2015年度 信州大・医系数学
05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部
木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお
緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A
2018年度 東京大・理系数学
08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母
2018年度 2次数学セレクション(微分と積分)
08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題
2010年度 筑波大・理系数学
00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0
数学の学び方のヒント
数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
20~22.prt
[ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
< 三角関数 指数関数 対数関数の極限 > si lim は ラジアン角 6 逆関数の微分 : f æ ö lim ç 788 ± è ø 自然対数の底 3 指数関数 対数関数のグラフからも分かるように > ときは lim + lim + lim log + lim log + + < <
数学 Ⅲ C 公式集 < 関数と極限 > 分数関数 c + のとき割り算の商と余りを利用して + r p + と変形できる このときグラフは 漸近線が, p の直角双曲線になる 無理関数 k f のグラフは k f のグラフで k > のとき 軸より上半分 k < のとき 軸より下半分 特に + や + は完璧にしておくこと 3 合成関数 f : が f g : が g f f g : ¾¾ ¾¾
< BD96CA E B816989A B A>
数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,
2015年度 金沢大・理系数学
05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と
2017年度 千葉大・理系数学
017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
2011年度 東京工大・数学
東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6
1999年度 センター試験・数学ⅡB
99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる
2017年度 信州大・医系数学
7 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 座標平面上の点 O(, ), A ( a, a ), B( b, b ), C( b, b) を考える さらに,, に対し, D( acos asi, asi + acos ), E( bcos bsi, bsi + bcos ) とおく () OA = OD を示せ () OA OC = かつ OA OB = OD OE ¹ であるとする
2015年度 岡山大・理系数学
5 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ を 以上の自然数とし, から までの自然数 k に対して, 番号 k をつけたカードをそれぞれ k 枚用意する これらすべてを箱に入れ, 箱の中から 枚のカードを同時に引くとき, 次の問いに答えよ () 用意したカードは全部で何枚か答えよ () 引いたカード 枚の番号が両方とも k である確率を と k の式で表せ () 引いたカード 枚の番号が一致する確率を
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある
数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図
数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル
2011年度 東京大・文系数学
東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)
高ゼミサポSelectⅢ数学Ⅰ_解答.indd
数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数
補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位
http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,
学習指導要領
(1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し
2014年度 九州大・理系数学
04 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( x) = x-sinx ( 0 x ) を考える 曲線 y = f ( x ) の接線で傾きが となるものを l とする () l の方程式と接点の座標 ( a, b) を求めよ () a は () で求めたものとする 曲線 y = f ( x ), 直線 x = a, および x 軸で囲まれた 領域を, x 軸のまわりに
2016年度 京都大・文系数学
06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,
学習指導要領
() いろいろな式 学習指導要領ア式と証明 ( ア ) 整式の乗法 除法 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 都立清瀬高校学力スタンダード 変数の 次式の展開や因数分解ができる ( 例 ) 次の式を展開せよ y ( 例 ) 次の式を因数分解せよ 8 7y
2017年度 京都大・文系数学
07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 曲線 y= x - 4x+ を C とする 直線 l は C の接線であり, 点 P(, 0) を通るもの とする また, l の傾きは負であるとする このとき, C と l で囲まれた部分の面積 S を求めよ -- 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 次の問いに答えよ ただし, 0.00 < log0
4STEP 数学 B( 新課程 ) を解いてみた 平面上のベクトル 6 ベクトルと図形 59 A 2 B 2 = AB 2 - AA æ 1 2 ö = AB1 + AC1 - ç AA1 + AB1 3 3 è 3 3 ø 1
平面上のベクトル 6 ベクトルと図形 A B AB AA AB + AC AA + AB AA AB + AC AB AB + AC + AC AB これと A B ¹, AB ¹ より, A B // AB \A B //AB A C A B A B B C 6 解法 AB b, AC とすると, QR AR AQ b QP AP AQ AB + BC b b + ( b ) b b b QR よって,P,
木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に
ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻
Chap2.key
. f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π
平成 30 年度入学試験問題 数学 注意事項試験開始後, 問題冊子及び解答用紙のページを確かめ, 落丁, 乱丁あるいは印刷が不鮮明なものがあれば新しいものと交換するので挙手すること 1. 試験開始の合図があるまで問題冊子を聞かないこと 試験開始後は, すべての解答用紙に受験番号 氏名を記入すること
平成 30 年度入学試験問題 数学 注意事項試験開始後, 問題冊子及び解答用紙のページを確かめ, 落丁, 乱丁あるいは印刷が不鮮明なものがあれば新しいものと交換するので挙手すること 1. 試験開始の合図があるまで問題冊子を聞かないこと 試験開始後は, すべての解答用紙に受験番号 氏名を記入すること 各志願者は, 下の表 に指示した問題を解答すること ただし, 教育学部に ついては志望するコース (
2019年度 千葉大・理系数学
9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,
座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に
立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,
1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使
/ 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数
解答例 ( 河合塾グループ株式会社 KEI アドバンスが作成しました ) 特別奨学生試験 ( 平成 29 年 12 月 17 日実施 ) 数 学 数学 2= 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 1 整理して (60 分 100 点 ) (2 3+ 2)(
解答例 ( 河合塾グループ株式会社 KEI アドバンスが作成しました ) 特別奨学生試験 ( 平成 9 年 月 7 日実施 ) 数 学 数学 = 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 整理して (60 分 00 点 ) 3+ ( 3+ )( 6 ) ( 与式 ) = = 6 + + 6 (3 + ) すなわち 5 6 (5 6 )(3+ ) = = 3 9 8 = 4 6
. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三
角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである
2014年度 千葉大・医系数学
04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と
学習指導要領
習熟度別クラス編成において 基礎クラスの学力スタンダード 表示は ( 基礎 ) と応用クラスの学力スタンダード 表示は ( 応用 ) を設定する () いろいろな式 ア式と証明 ( ア ) 整式の乗法 除法, 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 文字の 次式の展開や因数分解ができる
ポンスレの定理
ポンスレの定理. qution Section 定理 有本彰雄 東京都市大学 平成 年 月 4 日 定義. n 角形 P とは 平面上にあるn 個の点の順序列 ( p, p,, pn - ) のことである 各 pk は P の頂点と呼ばれる 記号法を簡単にするため便宜的に p n とする また 線分 p i i pp, i,,,, n - を P の辺と呼ぶ 定義. すべての頂点 p k が曲線 C
Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,
図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を
<8D828D5A838A817C A77425F91E6318FCD2E6D6364>
4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
2014年度 名古屋大・理系数学
04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
Microsoft Word - 漸化式の解法NEW.DOCX
閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は
2016年度 広島大・文系数学
06 広島大学 ( 文系 ) 前期日程問題 解答解説のページへ a を正の定数とし, 座標平面上において, 円 C : x + y, 放物線 C : y ax + C 上の点 P (, ) を考える - におけるC の接線 l は点 Q( s, t) でC に接してい る 次の問いに答えよ () s, t および a を求めよ () C, l および y 軸で囲まれた部分の面積を求めよ () 円 C
STEP 数学 Ⅰ を解いてみた から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長
STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp 図形と計量 三角形の面積 三角形の面積 の面積を S とすると, S in in in 解説 から直線 に下ろした垂線の足を H とすると, H in より, S H in H STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp から直線 に下ろした垂線の足を H とすると, H in(
学習指導要領
(1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる
FdData中間期末数学2年
中学中間 期末試験問題集( 過去問 ): 数学 年 方程式とグラフ [ 二元一次方程式 ax + by = c のグラフ ] [ 問題 ]( 後期中間 ) 二元一次方程式 x + y = 4 のグラフをかけ http://www.fdtext.com/dat/ [ 解答 ] 方程式の解を座標とする点の全体を, その方程式のグラフという 二元一次方程式 x + y = 4 の解は無数にあるが, 例えば,
数学○ 学習指導案
第 1 学年数学科数学 Ⅰ 学習指導案 1 単元名 二次方等式 二次不等式 2 単元の目標 二次方程式を因数分解や解の公式で導くことができるようにする 二次関数のグラフと 軸との共有点の個数を判別する方法を理解する 一次不等式や二次不等式の解法を 一次関数や二次関数のグラフを利用して理解する 二次不等式を含んだ連立不等式の解法を理解する 判別式をさまざまな事象の考察に応用することができるようにする
2015-2017年度 2次数学セレクション(複素数)解答解説
05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点
" 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な
1 " 数学発想ゼミナール # ( 改題 ) 直径を とする半円周上に一定の長さの弦がある. この弦の中点と, 弦の両端の各点から直径 への垂線の足は三角形をつくる. この三角形は二等辺三角形であり, かつその三角形は弦の位置にかかわらず相似であることを示せ. ( 証明 ) 弦の両端を X,Y とし,M を線分 XY の中点,, をそれぞれ X,Y から直径 への垂線の足とする. また,M の直径
代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1
代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用
学習指導要領
(1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には
< D8C6082CC90AB8EBF816989A B A>
数 Ⅰ 図形の性質 ( 黄色チャート ) () () () 点 は辺 を : に外分するから :=: :=: であるから :=: == () 点 は辺 を : に内分するから :=:=: = + %= また, 点 は辺 を : に外分するから :=:=: == =+=+= 直線 は の二等分線であるから :=: 直線 は の二等分線であるから :=: 一方, であるから, から, から :=: :=:
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
学習指導要領
(1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など
1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく
次関数 次関数の式 次の表は, ろうそくを燃やした時間 分と残りのろうそくの長さ cm の関係を表しています 次の問いに答えなさい ( 分 ) 0 5 0 5 (cm ) 0 () 上の表のをうめなさい () ろうそくは,5 分間に何 cm 短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか (5) ろうそくの長さ
1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =
/ 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
2013年度 九州大・理系数学
九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(
断面の諸量
断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G
Microsoft Word - K-ピタゴラス数.doc
- ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
学力スタンダード(様式1)
(1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ
教育課程 ( 数学 Ⅲ 数学 C) < ベクトル >( 数 B 数 C) 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, )
教育課程 数学 Ⅲ 数学 C < ベクトル > 数 B 数 C ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル : e e, 空間ベクトル : e e e,, 成分での計算ができるようにすること ベクトルの内積 : cos 平面ベクトル :,, のとき 空間ベクトル :,,,, 4 ベクトルの大きさ 平面上 : 空間上 : は 良く用いられる 5 m:
2015年度 2次数学セレクション(整数と数列)
05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,
1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0
/7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ
Σ(72回生用数ⅠA教材NO.16~30).spr
日々の演習 Σ( シグマ ) No. 16 16 ( ) 組 ( ) 番名前 ( ) 1 [ 改訂版 4STEP 数学 Ⅰ 問題 119] 関数 f0x 1 =3x-,g0x 1 =x -3x+1 について, 次の値を求 めよ f001 6 [ 改訂版 4STEP 数学 Ⅰ 例題 16] a は定数とする 関数 y=x -4ax 00(x(1 について, 次の問いに答えよ 最小値 m を求めよ (7)
長尾谷高等学校レポート 回目 全枚. 関数 f() = について, 次の各問いに答えよ ( 教科書 p6~7, 副読本 p97) () 微分係数 f ( ) を定義に従って求めよ ただし, 求める過程を必ず書くこと () グラフ上の (, ) における接線の傾きを求めよ. 関数 ( ) = 4 f
長尾谷高等学校レポート 回目 全枚 レポート作成にあたり諸注意. 数学 Ⅲ のレポートは 問題用紙と解答用紙に分かれています この用紙を含め 問題用紙は 提出する必要はありません もし提出用紙の表面に解答が書ききれない場合は 裏面を使用しても構いません ( 裏面の記述方法については後述 ). どの問題も 番号順に問題番号を書くことを忘れないでください また 解けなかった問題は 問題番号を書き 横に
学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を
(1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 向丘高校学力スタンダード 自然数 整数 有理数 無理数 実数のそれぞれの 集合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には をつけよ ただし
2014年度 東京大・文系数学
014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が
Microsoft Word - 断面諸量
応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則