FC-200V_Users Guide_J

Size: px
Start display at page:

Download "FC-200V_Users Guide_J"

Transcription

1 SA1203-F J FC-200V RCA V02

2

3 A 1. O19(CLR) 2. fc All:EXE E 3. E(Yes) 4. A 1

4 E YesE Cancel COMP Payment End Date Mode 365 dn CI Periods/Y Annual Bond Date Date Date Input MDY PRF/Ratio PRF B-Even Quantity Digit Sep. Off Angle Deg Display Digits Norm1 Off ( A 2)+3E SHIFT 1 ALPHA S 2

5 1 S VARS Y} t 1a(S-MENU) 1(1-VAR) fcde REPLAY z Z Deg Rad 17 3

6 4 D

7 u u D 5

8 O FC-200V... 3LR44 6 D

9 7

10 Ans M A, B, C, D, X, Y

11 VARS Simple Interest: SMPL Compound Interest: CMPD Cash Flow: CASH Amortization: AMRT Conversion: CNVR Cost/Sell/Margin: COST Days Calculation: DAYS Depreciation: DEPR Bond:BOND Break-Even: BEVN Break-Even Point Calculation Margin Of Safety Degree of Operating Leverage Degree of Financial Leverage Degree of Combined Leverage QTY CONV π e

12 D

13 O 1A OFF VARS41 1. s u 2. c CONTRAST:EXE E u 3. d e 4. E 11

14 1 + A Y 1 11(sin) 1Y(INS) S Sn(A) S5(e) 3196 A { 12

15 A S 3 M STO RCL 39 1t(STO) t SI DMY

16 FIX Fix 17 SCI Sci 34 Disp 33 14

17 Simple Interest S 43 Compound Interest c 45 Cash Flow C 51 Amortization A 55 Compute m 29, 95 Statistics a 105 Conversion n 59 Cost/Sell/Margin o 61 Days Calculation D 63 Depreciation d 66 Bond b 70 Break-Even B 76 15

18 A Setup 2 s Set: E s s 1. s u u fce u u 17 Set 1. fc Set: E u u 17 16

19 A No. 1 Payment / 17 2 Date Mode 18 3 dn 18 4 Periods/Y 18 5 Bond Date 18 6 Date Input 19 7 PRF/Ratio 19 8 B-Even 19 9 Digit Sep Angle 20! Fix Sci 21 # Norm 21 $ 22 % CONTRAST 22 A fc E 1 PaymentCMPDAMRT u 1:Begin... 2:End fc Payment E :Begin2 2:End 17

20 2 Date ModeSMPLDAYS BOND u 1 1: : fc Date Mode E :3602 2:365 3 dncmpd u 1:CI... 2:SI fc dn E :CI2 2:SI 4 Periods/Y BOND u 1 1 Annual 1 Semi-Annual 1:Annual :Semi fc Periods/Y E :Annual2 2:Semi 5 Bond Date BOND u Date Term 1:Date... 2:Term... 18

21 1. fc Bond Date E :Date2 2:Term 6 Date InputDAYSBOND u MDYDMY 1:MDY :DMY fc Date Input E :MDY2 2:DMY 7 PRF/Ratio BEVN u PRF r% 1:PRF... 2:r % fc PRF/Ratio E :PRF2 2:r% 8 B-Even BEVN u Quantity Sales 1:Quantity... 2:Sales... 19

22 1. fc B-Even E :Quantity2 2:Sales 9 Digit Sep. COMP u Sci 1:Superscript '456 2:Subscript ,456 3:Off fc Digit Sep. E :Superscript2 2:Subscript3 3:Off 0 Angle u 1:Deg... 2:Rad... 3:Gra... π fc Angle E :Deg2 2:Rad3 3:Gra! Fix u 20

23 u! Sci # NormOff Fix Fix 2 1. fc Fix E Sci u Sci! Fix # NormOff 1 9, Sci Sci 4 1. fc Sci E 2. # Norm u u # Norm! SciOff Norm1 Norm2 Norm x, x Norm x, x Norm Norm2 1. fc Norm E 2. 1 Norm12 Norm2 21

24 $ CASH u DataEditorFREQ DataEditor 1:On... FREQ 2:Off... FREQ 1. fc E :On2 2:Off Editor % CONTRAST u 1. fc CONTRAST:EXE E 2. d e 3. E A 1. O19(CLR) 2. fc Setup:EXE E. 3. E(Yes) 4. A E Yes E Cancel COMP 22

25 E - 2 (5 4) 2 ( 3) 2(5+4)- 2*y3E A sin, cos, ' sin(, cos(, tan(, sin 1 (, cos 1 (, tan 1 (, sinh(, cosh(, tanh(, sinh 1 (, cosh 1 (, tanh 1 (, log(, ln(, e^(, 10^(, ^(, '(, 3 '(, Abs(, x ', Pol(, Rec(, Rnd( - sin 30 z 1. t 2. fc sin( E 3. 30)E - sin (sin) 2. 30)E 23

26 A ( 2 (5+4) 2 sin(30) 2 '(3) 20 A 2 π A E ) 30 A 14 ] ]d A (sin) I 89 I F

27 G G Ans 36 A + I 1Y(INS) A Y *13 Y 25

28 2 A d e Y Y **12 dd Y 1 369**12 ddd Y 26

29 A d e Y d e - sin 60cos 60 12(cos)60) dddy 11(sin) 12(cos)60) dddd 11(sin) A d e 27

30 EMath ERROR Syntax ERROR d e /0*2E ed d1 E eda 28

31 15 COMPm + - * / E *8-4*5E 132 A Norm1 3 Fix3 3 Sci

32 A E (2+3)* (4-1E E 1 2% ((%)E % *20 1((%)E /880 1((%)E *151((%)E 30

33 % *251((%)E % E -G*201((%)E 7 500g300g% (A%) % (A%) eeey8e % 480*25 1.(A%) 31

34 480/25 1.(A%) % 130*y4 1.(A%) 130/y4 1.(A%) 32

35 1 1 : 2 2 : E t 3. fc : E 4. 3*3 E Disp E Disp Disp 33

36 A f - 1+1E 2+2E 3+3E f f ` $c O 34

37 A d e E *3+2.5E A d YYYY -7.1E 35

38 VARS M A, B, C, D, X, Y 6 10(n, I, PV, PMT, FV, P/Y, C/Y, PM1, PM2, Dys) COMP( ) COMPm Ans A Ans Ans E l m 1m M t 1t STO 15 Ans Ans Ans A 36

39 Simple interest Mode"ALL:Solve" Answer Memory A Ans *4E /30E /Ans (x 2 )+4 14(x 2 )E 15(')E Ans 232 E Ans AAns G 37

40 A Ans GAns E 789-GE (x 2 )+4 14(x 2 )E 15(')G)+5E M A MM {} ( { }) m M {} ( { }) 1m(M ) M m 1m M E m 1m M E M M m1m M M M 38

41 M Sm(M) M - SMPL SIM SMPL 1. SMPL SI t(STO) 3. fc SI E 4. fc M: E 5. E(Yes) u # M M 0 M A A M m m ) *21m(M ) /3m 22 Sm(M)E 39

42 A t(STO) 3. fc M: E 4. E(Yes) M 0 M A, B, C, D, X, Y 6A, B, C, D, X, Y A n B o C D A A t(STO) 3. fc A: E 4. E(Yes) A Sn(A) A B Sn(A)*So(B)E 40 D d X ) Y t

43 - CMPDPMT A CMPD 1. fc PMT 2. 1t(STO) 3. fc A: E 4. E(Yes) u # A A - B C * t(STO) 3. fc B: E 4. E(Yes) 5. 5*8 6. 1t(STO) 7. fc C: E 8. E(Yes) 9. So(B)/SD(C)E VARS n, I, PV, PMT, FV, P/Y, C/Y, PM1, PM2, Dys VARS 41

44 VARS COMP A COMPVARS 1. 1t(VARS) 2. fc VARS E A VARS 1. O19(CLR) 2. fc VARS:EXE E 3. E(Yes) 4. A E Yes E Cancel VARS P/Y, C/Y... 1 n, I, PV, PMT, FV, PM1, PM2, Dys... 0 VARS VARS VARS 1. O19(CLR) 2. fc Memory:EXE E 3. E(Yes) 4. A E Yes E Cancel 42

45 Simple Interest: SMPL () A S A No. 1 Set* (Date Mode) Dys () I () 5% 4 PV () 10,000 * Date Mode 17 Date Mode A 1 SI SFV ufc 1 Set: E u ufc 2 Dys 120E ufc 3 I 5E ufc 4 PV 10000E 43

46 2. ufc ALL:Solve 3. l E ALL:Solve Solve l E A 2 SI 2 SI:Solve l 3 SFV 2 SFV:Solve l A VARS VARSDys, I, PV VARS VARS VARS COMP 44

47 A 365-day Mode 360-day Mode SI : Dys : PV : I % : SFV : SI' = Dys 365 PV i I% i = 100 SI' = Dys 360 PV i I% i = 100 SI = SI' SFV = (PV + SI') Compound Interest: CMPD 54 A c A No. 1 Set* 1 Payment End() 2 n 48() 3 I 4% 4 PV 1,000 5 PMT 300 F 45

48 No. 6 FV P/Y PMT 12 8 C/Y* 2 12 * 1 u Payment 17 Payment u dn CI 17 dn * A 1 Payment7 P/Y8C/Y 54 1 :FV ufc 1 Set: E u 2 End ufc 2 n 48E ufc 3 I 4E ufc 4 PV 1000E ufc 5 PMT 300E ufc 7 P/Y 12E ufc 8 C/Y 12E 46 F

49 u u y 2. ufc FV 3. l A n I :PV PMT :FV A n u P/Y 12 n 1. fc n u F 47

50 E n A 17dn A VARS VARSn, I, PV, PMT, FV, P/Y, C/Y VARS VARS VARS COMP 48 F

51 A u PV, PMT, FV, n I % G 0 I % = 0 PV = (PMT n + FV) PV + FV PMT = n FV = (PMT n + PV) PV + FV n = PMT = (1+ i S) 1 β α, β = (1 + i) ( Intg(n)) i γ PV = = { { α PMT β FV γ PMT = γ PV β FV α FV = γ PV α PMT β { (1+ is) PMT FV i } log (1+ is) PMT + PV i n = log (1+ i) (1+ i ) Frac (n)... dn : CI 1+ i Frac (n)... dn : SI 0... Payment : End S = 1... Payment : Begin { I %...(P/Y = C/Y = 1) 100 i = C/Y I % P/Y (1+ ) [C/Y ] D 49

52 u I % i i γ PV + α PMT + β FV = 0 { P/Y I% = C/Y (1+ i ) 1 i (P/Y = C/Y = 1) { } C/Y n : I % : PV : PMT : : FV P/Y C/Y : PMT : fc = 7 l 7 = 50 F

53 (Cash Flow: CASH) Discounted Cash Flow, DCF 4 NPVNet Present Value IRR Internal Rate of Return PBPPayback Period * NFVNet Future Value * PBPDPPDiscounted Payback Period I 0% PBPSPP :Simple Payback Period A C CF2 CF3 CF4 CF5 CF6 CF7 CF1 CF0 CF0 1 CF1, 2 CF2 A No. 1 I 3% 51

54 A CF0 1,000,000 CF1 100,000 CF2 450,000 CF3 500,000 CF4 400,000 A 1 NPV 1. 51I ufc 1 I 3E ufc Csh=D.Editor x E CASH D.Editor x DataEditor xy FREQ u E CF0 y u E CF1 u E CF2 u E CF3 u E CF4 2. E 52

55 3. ufc NPV:Solve 4. l E A 2 IRR u 3 IRR:Solve u IRR I 3 PBP u 3 PBP:Solve 4 NFV u 3 NFV:Solve A DataEditor DataEditor X X, Y X, FREQ X, Y, FREQ xyfreq 1-VAR Off 22 1-VAR 2-VAR 2-VAR 1-VAR 53

56 A VARS VARSI I I I COMP A u NPV CF1 CF2 CF3 NPV = CF (1+ i) (1+ i) 2 (1+ i) 3 CFn I % + i = (1+ i) n 100 n79 u NFV NFV = NPV (1 + i ) n u IRR IRR CF1 CF2 CF3 0 = CF (1+ i) (1+ i) 2 (1+ i) 3 CFn (1+ i) n NPV 0 IRR i 100 NPV 0NPV 0 IRR u PBP PBP = NPVn = Σ > 0) {0...(CF0 NPVn n... n k = 0 NPVn+1 NPVn CFk (1 + i) k n: NPVn 0, NPVn

57 Amortization: AMRT BAL PM2 INT PM1 PRN PM1 ΣINT PM1PM2 ΣPRN PM1PM2 A A a 1 c b 1... PM1... PM2... a PM1INT b PM1PRN c PM2 BAL 55

58 e 1 d d PM1PM2 ΣPRN e PM1PM2 ΣINT A No PM1... PM Set* 1 Payment End 2 PM1 PM PM2* 2 PM n* 3 5 I 2% 6 PV 10,000,000 7 PMT 1 92,000 8 FV* 3 9 P/Y PMT 12 0 C/Y* 4 12 * 1 Payment 17 Payment * 2 PM2PM1 * 3 * y 56 F

59 A 1 28 BAL , 2, 3, 5, 6, 7, 9, 0 ufc 1 Set: E u 2 End ufc 2 PM1 15E ufc 3 PM2 28E ufc 5 I 2E ufc 6 PV E ufc 7 PMT 92000E ufc 9 P/Y 12E ufc 0 C/Y 12E 2. ufc BAL:Solve 3. l E 57

60 A 2 15 PM1INT u 2 INT:Solve 3 15 PM1PRN u 2 PRN:Solve 4 15 PM1 28 PM2 ΣINT u 2 ΣINT:Solve 5 15 PM1 28 PM2 ΣPRN u 2 ΣPRN:Solve A VARS VARSPM1, PM2, n, I, PV, PMT, FV, P/Y, C/Y VARS VARS VARS COMP A a PM1INT INTPM1 = I BALPM1 1 i I (PMT sign) b PM1PRN PRNPM1 = PMT + BALPM1 1 i c PM2 BAL BALPM2 = BALPM2 1 + PRNPM2 58

61 d PM1PM2 ΣPRN PM2 Σ PRN = PRNPM1 + PRNPM PRNPM2 PM1 e PM1PM2 ΣINT PM2 Σ INT = INTPM1 + INTPM INTPM2 PM1 BAL0 = PV... Payment: End INT1 = 0, PRN1 = PMT... Payment: Begin A P/Y C/Y, I % I %' I%' = P/Y : C/Y : i = I%' 100 Conversion: CNVR APR EFF { } 100 [C / Y ] I% [P / Y ] (1+ ) [C / Y ] A Conversion n 59

62 A No. 1 n 6 2 I 3% A 1 APREFF 1. n I ufc 1 n 6E ufc 2 I 3E 2. ufc EFF:Solve 3. l E A 2 EFFAPR u 2 APR:Solve A VARS VARSn, I EFF APR I 60

63 VARS VARS VARS COMP A EFF = APR = n APR/ n 1 EFF n 1+ 1 n APR : % EFF : % n : Cost/Sell/Margin: COST 2 A o 61

64 A No. 1 CST 40 2 SEL MRG 60% A 1 MRG 1. 2 ufc 1 CST 40E ufc 2 SEL 100E 2. ufc 3 MRG 3. l A MRG CST SEL 2 CST (MRG SEL 2. 2CST 3 SEL MRG CST 2. 2SEL 62

65 A VARS VARSCST, SEL, MRG VARS A MRG CST = SEL SEL = CST MRG CST MRG(%) = SEL CST : SEL : MRG : Days Calculation: DAYS d1, d A D 63

66 A No. 1 Set* 1 Date Mode 365 / 2 d1* 2 3 d2* ) 4 Dys 173 * 1 u Date Mode 17 Date Mode u 360 d d2 311 * 2 u , u Date Input MDY DMY 17 Date Input A 1 Date Mode2d13 d24 Dys Dys 1. 2 ufc 1 Set: E u

67 ufc 2 d E ufc 3 d E 2. ufc 4 Dys 3. l A 2, 317 Date Mode d1, d2 Answer Memory 2 d1dysd2 u 1d2 Dys d2 3 d2dysd1 u 1d1 Dys d1 A VARS VARSd1, d2, Dys VARS VARS 65

68 VARS Dys COMP Depreciation: DEPR 4 SL FP : Straight-Line Method : Fixed Percent Method SYD : Sum-of-the- DB Year s Digits Method : Declining Balance Method A d A No. 1 n 6 2 I* 1 25 Factor PV 150,000 4 FV 0 5 j 3 6 YR1 2 * 1 FP DBFactor DB2002 Double Declining Balance 66

69 A 1 SL , 2, 3, 4, 5, 6 ufc 1 n 6E ufc 2 I 25E FPDB 2 I ufc 3 PV E ufc 4 FV 0E ufc 5 j 3E ufc 6 YR1 2E 2. ufc SL:Solve 3. l E A 2 25%FP u 2 FP:Solve 3 SYD u 2 SYD:Solve 4 2 Double Declining Balance u 1 I DB:Solve 67

70 A VARS VARSn, I, PV, FV VARS VARS VARS COMP A 4 Straight-Line Method (PV FV ) YR1 SL1 = u n 12 (PV FV ) SLj = n (PV FV ) 12 YR1 u n 12 SLn+1 = SL j : j n : PV : FV : j (YR1G12) : YR1 : 68

71 Fixed Percent Method I% YR1 FP1 = PV I% FPj = (RDVj 1 + FV ) 100 FPn+1 = RDVn (YR1G12) RDV1 = PV FV FP1 RDVj = RDVj 1 FPj RDVn+1 = 0 (YR1G12) FP j : j RDV j : j I % : Sum-of-the-Year s Digits Method n (n +1) Z = 2 YR1 n' = n 12 (Intg (n' ) +1) (Intg (n' )+2 Frac(n' )) Z' = 2 n YR1 SYD1 = (PV FV ) Z 12 n' j+2 SYDj = ( )(PV FV SYD1) ( jg1) Z' n' (n +1)+2 SYDn+1 = ( )(PV FV SYD1) Z' 12 YR1 (YR1G12) 12 RDV1 = PV FV SYD1 RDVj = RDVj 1 SYDj SYD j : j RDV j : j 69

72 Declining Balance Method I% YR1 DB1 = PV 100n 12 RDV1 = PV FV DB1 DBj = (RDVj 1 + FV ) RDVj = RDVj 1 DBj DBn +1 = RDVn RDVn+1 = 0 DB j : j RDV j : j I % : Bond:BOND A b I% 100n (YR1G12) (YR1G12) A No. Periods/Y 1 Set* 1 Bond Date 2 d1* 2 3 d2* 2 * 3 70 Annual 1/ Date n 3 5 RDV* 4 $100 $100 6 CPN* 5 3% F

73 No. 7 PRC* 6 $100 $ YLD 4% * 1 u Date Term 17 Bond Date u 11Annual 1 Semi-Annual 17 Periods/Y * 2 u , u Date Input MDY DMY 17 Date Input * 3 yield on calld2 call date * 4 yield of maturityrdv 100 * 5 CPN 0 * 6 $100 PRC INT CST d d y 71

74 A Date Mode / 17 Date Mode 17s A 1 Date PRC Date Mode 365 Bond DateDate Term14568 ufc 1 Set: E ufc Periods/Y E u 1 Annual ufc 1 Set: E ufc Bond Date E u 1 Date ufc 2 d E ufc 3 d E ufc 5 RDV 100E ufc 6 CPN 3E ufc 8 YLD 4E 72

75 2. ufc 7 PRC 3. l E A 2 Date YLD u 1YLDPRC YLD u y 3 Term PRC u 1 Bond Date 2 Term d1, d2nn 3 4 Term YLD u 1 Bond Date 2 Term d1, d2 nn 3 YLDPRC YLD 73

76 A VARS VARS n, d1, d2 n n COMP BOND VARS RDV, CPN, PRC, YLD A D A B d2 d1 PRC : $100 CPN: % YLD : % A M : N : Periods/Y Annual1 Semi- Annual2 : Bond Date Termn RDV: $100 D B INT : CST : : : 74

77 $100 PRC DateBond Date 1 CPN RDV + M A CPN PRC = + ( ) B YLD/100 D M 1+ ( ) D M 1 PRC = INT = TermBond Date YLD A CPN D M RDV YLD/100 (1+ ) M CPN N Σ k=1 CST = PRC + INT YLD/100 (1+ ) M M (N 1+B/D ) (k 1+B/D ) + A CPN D M CPN RDV n M PRC = Σ YLD/100 n k=1 YLD/100 k (1+ ) (1+ ) M M INT = 0 CST = PRC 75

78 Break-Even: BEVN 6 A B A Break-Even 6 BEV(Break-Even Point Calculation): MOS Margin Of Safety : DOL Degree of Operating Leverage : DFL Degree of Financial Leverage : DCL Degree of Combined Leverage : QTY CONV. Quantity Conversion : fc E 76

79 Break-Even Point Calculation 0 A BEV 1. B 2. fc BEV:EXE 3. E A No. 1 Set* 1 PRF/Ratio B-Even PRF Quantity 2 PRC VCU 50 4 FC 100,000 5 PRF * 2 400,000 r %* 2 40% 6 QBE * 3 10,000 SBE* 3 1,000,000 77

80 * 1 u PRF r % 17 PRF/Ratio u Quantity (Sales) 17 B-Even * 2 PRF/Ratio Ratio r % * 3 B-Even Sales SBE A 1 (QBE) ufc 1 Set: E ufc PRF/Ratio E u 1 PRF ufc 1 Set: E ufc B-Even E u 1 Quantity ufc 2 PRC 100E ufc 3 VCU 50E ufc 4 FC E ufc 5 PRF r % 0E 78

81 2. ufc 6 QBE 3. l A 2 SBE u 1 B-Even 2 Sales2 SBE 3 400,000QBE u 1 PRF ,000 SBE u 1 B-Even 2 SalesPRF SBE 5 40% QBE u 1 PRF/Ratio 2(r %r % %) SBE u 1 PRF/Ratio 2 r % B-Even 2 Sales r % 40 2 SBE 7 u

82 A BEV(Break-Even Point Calculation) VARS VARSPRC, VCU, FC, PRF, r %, QBE, SBE VARS BEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A PRF/Ratio: PRF QBE = SBE = PRF/Ratio: r % QBE = SBE = FC + PRF PRC VCU FC + PRF PRC VCU PRC PRC 1 1 QBE : FC PRC r% 100 FC r% 100 VCU VCU FC : PRF : PRC : VCU : SBE : r % : Margin Of Safety 80 PRC

83 A MOS 1. B 2. fc MOS:EXE 3. E A No. 1 SAL 1,200,000 2 SBE 1,000,000 3 MOS % A 1 MOS 1. 2 ufc 1 SAL E ufc 2 SBE E 2. ufc 3 MOS 3. l 81

84 A MOSSAL SBE A MOS VARS VARSSAL, SBE, MOS MOSVARS BEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A SAL SBE MOS = SAL SAL : SBE : MOS : Degree of Operating Leverage A DOL 1. B 2. fc DOL:EXE 3. E 82

85 A No. 1 SAL 1,200,000 2 VC 600,000 3 FC 200,000 4 DOL 1.5 A 1 DOL 1. 2 ufc 1 SAL E ufc 2 VC E ufc 3 FC E 2. ufc 4 DOL 3. l A DOLSAL VCFC 83

86 A DOL VARS VARSSAL, VC, FC, DOL DOL VARSBEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A SAL VC DOL = SAL VC FC SAL : VC FC : : DOL : Degree of Financial Leverage A 1. B 2. fc DFL:EXE 3. E A No. 1 EIT 400,000 2 ITR 80,000 3 DFL

87 A 1 DFL ufc 1 EIT E ufc 2 ITR 80000E 2. ufc 3 DFL 3. l A DFL EIT)ITR A VARS VARSEIT, ITR, DFL DFL VARSBEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A EIT DFL = EIT ITR EIT : ITR : DFL : 85

88 Degree of Combined Leverage A DCL 1. B 2. fc DCL:EXE 3. E A No. 1 SAL 1,200,000 2 VC 600,000 3 FC 200,000 4 ITR 100,000 5 DCL 2 A 1 DCL 1. 2 ufc 1 SAL E ufc 2 VC E ufc 3 FC E ufc 4 ITR E 86

89 2. ufc 5 DCL 3. l A DCLSAL VCFC ITR A DCL VARS VARSSAL, VC, FC, ITR, DCL DCL VARSBEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A DCL = SAL : VC : FC : ITR : SAL VC SAL VC FC ITR DCL: 87

90 QTY CONV A QTY CONV. 1. B 2. fc QTY CONV.:EXE 3. E A No. 1 SAL 100,000 2 PRC QTY VC 15,000 5 VCU QTY

91 A 1 QTY ufc 1 SAL E ufc 2 PRC 200E 2. ufc 3 QTY 3. l u QTY ufc 4 VC 15000E ufc 5 VCU 30E 89

92 2. ufc 6 QTY 3. l u 63 4 VC1 VCU 3 A QTY CONV. VARS VARSSAL, PRC, QTY, VC, VCU QTY CONV. VARSBEVNBEV, MOS, DOL, DFL, DCL, QTY CONV. A SAL = PRC QTY VC = VCU QTY SAL : PRC : QTY : VC : VCU : 1 90

93 SHORTCUT A SHORTCUT - 3%5 10% SHORTCUT1 - Payment End I: 3%PV:10,000 PMT: 500 P/Y12 C/Y12 1. c u 2. Payment I PV PMT P/Y C/Y u CMPD45 3. fc n 4. 1t(STO) STO u # 91

94 5. fc Shortcut1 E STO 6. E(Yes) u E SHORTCUT2 1 10% 1. m u 2. (FV (( PV) + ( PMT) n)) (( PV) + ( PMT) n) u FV, PV nvars 3. SHORTCUT2 u SHORTCUT1 4, 5, 6 Shortcut1 Shortcut2 SHORTCUT - 5 n Shortcut1 u n 2. 60E 3. fc FV l u 5 92

95 4. 2 Shortcut2 u 10% 5. E SHORTCUT n CASH DataEditor 34 A 1. O19 CLR 2. fc Shortcut:EXE E 3. 1 Shortcut12 Shortcut2 u u 1 Shortcut1 2 Shortcut2E Cancel 4. A 93

96 COMP1 Shortcut12 Shortcut2 FMEM1 FMEM2 A FMEM - FMEM1 sin 1 ( 1. t fc sin 1 ( E 2. 1t(STO) u # STO 3. fc FMEM1 E 4. E(Yes) u E A FMEM - FMEM1 sin 1 ( FMEM1 A 1. O19 CLR 2. fc FMEM:EXE E 3. 1 FMEM1 2 FMEM2 u u 1 FMEM1 2 FMEM2E Cancel 4. A 94

97 t Rnd(, sin(, cos(, tan(, x 2, '(, ^(, e^(, ln( 15 COMP m A A A { } {} { } {} { } {n} {m} { } ( ) ( ) 95

98 π e π e π e π S5 e sin(, cos(, tan(, sin 1 (, cos 1 (, tan 1 ( A sin({n}) - sin sin z 11(sin)30)E 1. t 2. fc sin 1 ( E )E A 96

99 Deg Rad Gra Angle20 1G DRG' π (Deg) Deg z (15(π)/2) 1G(DRG')2(r)E 501G(DRG') 3( g )E sinh(, cosh(, tanh(, sinh 1 (, cosh 1 (, tanh 1 ( A sinh({n}) - sinh t 2. fc sinh( E 3. 1)E 97

100 10^(, e^(, log(, ln(, A 10^( {n}... e^( log({n})... log 10 {n} log({m},{n})... log{m}{n} {m} ln({n})... loge{n} 1 log log t 2. fc log( E 3. 21)(,)16)E 1. t 2. fc log( E 3. 16)E 10 2 ln 90( loge 90) t 2. fc In( E 3. 90)E 3 e t 2. fc e^( E 3. 10)E 98

101 X 2, X 3, X 1, X^(, '(, 3 '(, x '( A {n} X 2... X 3, X 1 {m} X^({n}... {m} {n} '({n})... 3 '({n})... {m} x '({n}) ('2 1) ('2 1) 1 (1 1) t 2. fc 3 E 3. E 1. (t 2. fc '( E 3. 2)+1)(t 4. fc '( E 5. 2)-1)E 1. (1+1)t 2. fc ^( E )E 99

102 Rec Pol A Pol Pol( X, Y) Pol(, Rec( X: X Y: Y Rec Rec( r, θ) r: r θ : θ 1 '2, '2 z 1. t 2. fc Pol( E 3. 15(')2)1)(,) 15(')2))E θ 180 θ 180 θ Deg Rad Gra 17 Angle r θ 40 X Y 100

103 2 2, 30 z 1. t 2. fc Rec( E 3. 21)(,)30)E θ 17 Angle X, Y 40 X, Y A r X Pol ('2, '2) A {n}! - (5 3)! 1. (5+3) 2. t 3. fc! E 4. E!, Abs(, Ran#, npr, ncr, Rnd( {}{ } 0 101

104 A Abs Abs({n}) - Abs (2 7) 5 1. t 2. fc Abs( E )E A Ran# Ran# Ran# t 2. fc Ran# E 3. E E E 102

105 A nprncr {n} npr {m}, {n} ncr {m} n, r0 r n t 2. fc P E 3. 4E 1. 10t 2. fc C E 3. 4E A Rnd Norm Fix Sci Rnd({n}) Norm1 Norm2 11 Fix Sci /7*14E 1. s 2. fc Fix E E 5. E 103 FIX

106 FIX 200/7E FIX *14E FIX 200/7E FIX 10(Rnd)E FIX *14E 104

107 15 a A 1. a u 2. fc "1-VAR"w u u u (CASH)D.Editor x 105

108 3. u 10, 11, 12 10w 11w 12w 4. A u COMP 5. 1a S-MENU u 6. 5 Var u Var 106

109 7. 2 o u o 8. w u A 1-VAR X A+BX _+CX 2 ln X e^x e X, Y A B^X ab A X^B 1/X 107

110 afc w A 1a S-MENU 2 Data 1 11 FREQ 22 Off On FREQ FREQ FREQ FREQ 108

111 FREQ X Y FREQ 1 fc COMP A w 6 XY 0 109

112 1 22 OFF FREQ ON FREQ m, 1m M STO VARS u FREQ A u u u u f c d e 110

113 1. 2. w u Y u a S-MENU 3 Edit u Edit 3. 1 Ins u 111

114 1. 1 a S-MENU 3 Edit u Edit 2. 2 Del-A u A A 1a S-MENU 107 COMP 112

115 u u u VARS A 1a S-MENU 107 1Type 2Data 3Edit 4Sum 5Var 6MinMax Edit Sum Var MinMax 4Sum, 5Var, 6MinMax

116 7Reg Reg e ab Reg 1. a 2. fc 1-VAR E A Sum 1a(S-MENU)4(Sum) 1Σx 2 2Σx 2 A Var 1a(S-MENU)5(Var) 1n 2o 3xσn 4xσn 1 o = Σx n xσn = Σ (x o)2 n xσn 1 = Σ (x o)2 n 1 114

117 A MinMax 1a(S-MENU)6(MinMax) 1minX 2maxX A 1 x FREQ s 2. fc E 3. 1(On) 4. a 5. fc 1-VAR E 0w1w2w 3w4w5w6w 7w9w10w cec2wc2w2 w2w3w4w2w A1a(S-MENU) 4(Sum) 1(Σx 2 )w 115

118 1a(S-MENU)4(Sum) 2(Σx)w 2 1 1a(S-MENU)5(Var) 1(n)w 1a(S-MENU)5(Var) 2(o)w 1a(S-MENU)5(Var) 3(xσn)w 3 1 1a(S-MENU) 6(MinMax) 1(minX)w 1a(S-MENU) 6(MinMax)2(maxX)w 116

119 A 1. a 2. fc A+BX E y = A + BX Sum 1a(S-MENU)4(Sum) 1Σx 2 2Σx 3Σy 2 4Σy X2 X Y2 Y 5Σxy XY 6Σx 3 X3 7Σx 2 y {X2Y } 8Σx 4 X4 Var 1a(S-MENU)5(Var) 1n 2o X o = Σx n 3xσn X xσn = Σ (x o)2 n 117

120 4xσn 1 5p 6yσn 7yσn 1 X xσn 1 = Σ (x o)2 n 1 Y p = Σy n Y yσn = Σ (y p)2 n Y yσn 1 = Σ (y p)2 n 1 MinMax 1a(S-MENU) 6(MinMax) 1minX 2maxX 3minY 4maxY X X Y Y Reg 1a(S-MENU)7(Reg) 1A 2B A A = Σy B. Σx n B n B. Σxy Σx. Σy = n. Σx 2 (Σx) 2 118

121 3r 4m 5n r r = n. Σxy Σx. Σy {n. Σx 2 (Σx) 2 }{n. Σy 2 (Σy) 2 } x m = y A B y n = A + Bx - x y x 2 y 3 n ym x 1. s 2. fc E 3. 2(Off) a ce A+BX 1E1.2E1.5E 1.6E1.9E 2.1E2.4E 2.5E2.7E 3E 119

122 ce1e 1.1E1.2E 1.3E1.4E 1.5E1.6E 1.7E1.8E 2E A1a(S-MENU)7(Reg) 1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(r)E y 3 m y31a(s-menu) 7(Reg)4(m)E x 2 n 21a(S-MENU) 7(Reg)5(n)E A 1. a 2. fc _+CX 2 E y = A + BX + CX 2 120

123 SumVar MinMax 117 Reg 1a(S-MENU)7(Reg) 1A 2B A Σy n Σx n Σx 2 n A = B( ) C( ) B Sxy. Sx2 x 2 Sx 2 y. Sxx 2 B = Sxx. Sx 2x 2 (Sxx 2 ) 2 3C C Sx 2 y. Sxx Sxy. Sxx 2 C = Sxx. Sx 2x 2 (Sxx 2 ) 2 (Σx) Sxx 2 = Σx 2 n Sxy = Σxy (Σx. Σy) n Sxx 2 = Σx (Σx 3. Σx 2 ) n Sx 2 x 2 = Σx 4 (Σx 2 ) 2 n Sx 2 y = Σx 2 y (Σx 2. Σy) n 4m1 5m2 x1 m1 = B + B 2 4C(A y) 2C x2 m2 = B B 2 4C(A y) 2C 121

124 6n y n = A + Bx + Cx x 2 y 3n y m1 x1m2 x2 A1a(S-MENU) 7(Reg) 1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(C)E y 3 m1 31a(S-MENU) 7(Reg)4(m1)E y 3 m2 31a(S-MENU) 7(Reg)5(m2)E x 2 n 21a(S-MENU) 7(Reg)6(n)E 122

125 A 1. a 2. fc In X E y = A + BlnX 117 Σy B. Σlnx A = n n. Σ(lnx)y Σlnx. Σy B = n. Σ (lnx) 2 (Σlnx) 2 n r. Σ(lnx)y Σlnx. Σy = {n. Σ(lnx) 2 (Σlnx) 2 }{n. Σy 2 (Σy) 2 } y A B m = e n = A + Blnx - x y x 80 y 73 n y m x 1. s 2. fc E 3. 2(Off) 4. a 5. fc In X E 29E50E74E 103E118E 123

126 ce1.6e 23.5E 38E46.4E 48.9E A1a(S-MENU) 7(Reg)1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(r)E x 80 n 801a(S-MENU) 7(Reg)5(n)E y 73 m 731a(S-MENU) 7(Reg)4(m)E A e 1. a 2. fc e^x E 117 A = Σlny B exp(. Σx) B = y = Ae BX n n. Σxlny n. Σx. Σlny Σx 2 (Σx) 2 124

127 r = m = n. Σxlny Σx. Σlny {n. Σx 2 (Σx) 2 }{n. Σ(lny) 2 (Σlny) 2 } lny lna B n = Ae Bx - x y e x 16 y 20 n ym x 1. s 2. fc E 3. 2(OFF) 4. a 5. fc e^x E 6.9E12.9E 19.8E 26.7E 35.1E ce21.4e 15.7E 12.1E8.5E 5.2E A1a(S-MENU)7(Reg) 1(A)E 1a(S-MENU)7(Reg) 2(B)E 125

128 1a(S-MENU)7(Reg) 3(r)E x 16 n 161a(S-MENU) 7(Reg)5(n)E y 20 m 201a(S-MENU) 7(Reg)4(m)E A ab 1. a 2. fc A B^X E y = AB X 117 A = Σlny B exp(. Σx) n n B = exp(. Σxlny ) n. Σx. Σlny Σx 2 (Σx) 2 r = n. Σxlny Σx. Σlny {n. Σx 2 (Σx) 2 }{n. Σ(lny) 2 (Σlny) 2 } lny lna m = lnb n = AB x 126

129 - x y s 2. fc E 3. 2(OFF) 4. a 5. fc A B^X E ab x 15 y 1.02 n ym x y1e3e5e 10E ce0.24e4e 16.2E513E A1a(S-MENU) 7(Reg)1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(r)E x 15 n 151a(S-MENU) 7(Reg)5(n)E y 1.02 m a(S-MENU)7(Reg) 4(m)E 127

130 A 1. a 2. fc A X^B E y = AX B 117 A = Σlny B exp(. Σlnx) B = r = m = e n = Ax B n n. Σlnxlny n. Σlnx. Σlny Σ(lnx) 2 (Σlnx) 2 n. Σlnxlny Σlnx. Σlny {n. Σ(lnx) 2 (Σlnx) 2 }{n. Σ(lny) 2 (Σlny) 2 } ln y ln A B - x y x 40 y 1000 n ym x 1. s 2. fc E 3. 2(OFF) 4. a 5. fc A X^B E 28E30E33E 35E38E 128

131 ce2410e 3033E 3895E 4491E 5717E A1a(S-MENU) 7(Reg)1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(r)E x 40 n 401a(S-MENU) 7(Reg)5(n)E y 1000 m a(S-MENU)7(Reg) 4(m)E A 1. a 2. fc 1/X E y = A + X B

132 A = Σy B. Σx 1 n Sxy B = Sxx r = Sxy Sxx. Syy Sxx = Σ(x 1 ) 2 Syy = Σy 2 Sxy = Σ(x 1 )y B m = y A B n = A + x (Σy) 2 n (Σx 1 ) 2 n Σx. 1 Σy n - x y x 3.5 y 15 n ym x 1. s 2. fc E 3. 2(OFF) 4. a 5. fc 1/X E 1.1E2.1E 2.9E4E 4.9E 130

133 ce18.3e 9.7E6.8E 4.9E4.1E A1a(S-MENU) 7(Reg)1(A)E 1a(S-MENU)7(Reg) 2(B)E 1a(S-MENU)7(Reg) 3(r)E x 3.5 n 3.51a(S-MENU) 7(Reg)5(n)E y 15 m 151a(S-MENU) 7(Reg)4(m)E 131

134 1 Pol(, Rec( sin(, cos(, tan(, sin 1 (, cos 1 (, tan 1 (, sinh(, cosh(, tanh(, sinh 1 (, cosh 1 (, tanh 1 ( log(, ln(, e^(, 10^(, '(, 3 '( Abs( Rnd( 2 x 2, x 3, x 1, x!,, r, g, ^(, x '( % 3 ( ) 4 m, n, m1, m2 5 npr, ncr 6, π, e, 2π, 5A, πa :2' 3, Asin 30 7, 2 22 x D

135 2 2 = 4 ( 2) 2 = 4 1. y2 1. (y2) 2. t 2. t 3. fc 2 E 3. fc 2 E 4. E 4. E 6 1 2π (2π) /215(π)E 1/(215(π))E Stack ERROR D 133

136 DEG 0 x sin x RAD 0 x GRA 0 x DEG 0 x cos x RAD 0 x GRA 0 x DEG sin x x = (2n 1) 90 tan x RAD sin x x = (2n 1) π / 2 sin 1 x cos 1 x GRA 0 x 1 tan 1 x 0 x sinh x cosh x 0 x sinh 1 x 0 x cosh 1 x 1 x tanh x 0 x tanh 1 x 0 x log x / ln x 0 x sin x x = (2n 1) x x e x x 'x 0 x x 2 x /x x ; x G 0 3 'x x x! 0 x 69 x npr ncr Pol(x,y) Rec(r,θ ) 0 n , 0 r n n, r : 1 {n!/(n r)!} n , 0 r n n, r : 1 n!/r! n!/(n r)! x, y x 2 +y r θ: sinx D

137 ^(x y ) x 'y x 0: ylogx 100 x 0: y 0 x 0: y n, m, m n : 2n y log x 100 y 0: x G 0, /x logy 100 y 0: x 0 y 0: x 2n 1, 2n 1 m G 0; m, n : m /x log y 100 ^(x y ), x 'y, 3 ', x!, npr, ncr 1 P/Y C/Y PM1 PM2 d1 d2 j YR PM1 < PM BOND BOND 112 CMPD n u I Math ERROR D 135

138 I u PV, PMT, FV... Math ERROR u n 0... Math ERROR PV, PMT, FV u I Math ERROR CASH NPV u I Math ERROR IRR u IRR IRR Math ERROR u... Math ERROR DEPR u PV, FV, i%... Math ERROR u n Math ERROR u j n 1 (YR1 12)... Math ERROR u YR Argument ERROR BOND PRC u RDV 0, CPN 0... Math ERROR YLD u CPN 0 RDV 0, PRC 0... Math ERROR u CPN 0 RDV 0, PRC 0... Math ERROR Math ERROR Stack ERROR 136 D

139 A d e 28 A A d e 135 Math ERROR u u u 0 u u 133 D 137

140 Stack ERROR u u 133 Syntax ERROR u u Insufficient MEM u SHORTCUT 89 u I 89 I Argument ERROR u u 138 D

141 1 2 3 O O 4 1 A19(CLR) 2 fc All:EXE E 3 E(Yes) 4 A LR442TWO WAY POWER D 139

142 u k l u A O D

143 1. 1A(OFF) O k (1) O19(CLR) (2)fc All:EXE E (3)E(Yes) (4)A A 6 O G13LR C 40 C mm 105g D 141

FC-200V_J_Example

FC-200V_J_Example J FC-200V http://edu.casio.jp RCA501638-001V01 ... 2 1... 3 2... 5 3... 7 4... 8 5... 10 6... 11 7... 13 8... 15 9... 17 10... 19 11... 21 12... 24 13 NPV... 27 14 IRR... 29 15... 31 16... 35 17... 42

More information

fx-370ES_912ES_UsersGuide_J02

fx-370ES_912ES_UsersGuide_J02 Eng Eng 3 A Eng 1 1,234 Eng a 1234= W W 2 123 Eng a 123= 1W( ) S-D S-D π 72 A S-D π π nπ n d π c a b π c π ' f ' A S-D 1 A '5c6= f f f 73 2 π A 15(π)*'2c5= f 3 ' A!2e*!3= f 74 (CMPLX) 15 CMPLX N2 A u u

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

26.fx95MS_Etype_J-cover_SA0311D

26.fx95MS_Etype_J-cover_SA0311D P fx-95ms fx-100ms fx-570ms fx-912ms (fx-115ms) fx-991ms English Manual Readers! Please be sure to read the important notice on the inside of the front cover of this manual. J http://www.casio.co.jp/edu/

More information

fx-JP500

fx-JP500 SA1409-A JA fx-jp500 http://edu.casio.jp RJA531983-001V01 1. 2. 1 2 15 31 + 3 ... 1... 3... 5... 5... 5... 7... 8... 9... 11... 14... 15... 17... 19... 19... 21... 26... 27... 27... 29 n... 33 /... 34...

More information

fx-260A_Users Guide_J

fx-260A_Users Guide_J fx-260a http://edu.casio.jp J 1 5 2 Fl SD F0 COMP F4 DEG F5 RAD F6 GRA 3 F7 FIX F8 SCI F9 NORM COMP DEG, RAD, GRA COMP SD F0 SD SC FIX F9 SD DEG, RAD, GRA t SD COMP DEG RAD GRA COMP 23 4.5 53 23 + 4.5,

More information

fx-72F

fx-72F SA1310-A JA fx-72f http://edu.casio.jp RJA528451-001V01 A!j(CLR)d(All)w 11 14 25 SD/REG 45 PRGM 73 1 ! a s!s(sin 1 )bw b(contrast) fcde REPLAY 2 1. 2. 3 u u u u 4 u u 15 5 3 1 6 ...1... 1... 1... 2...3...6...9...

More information

6.fx570MS-Atype_J-cover_SA0403E

6.fx570MS-Atype_J-cover_SA0403E J fx-570ms fx-991ms CA 310029-001V06 http://www.casio.co.jp/edu/ Eng n 1 fx-95ms/fx-100ms/fx-570ms/ fx-912ms (fx-115ms)/fx-991ms 2 fx-570ms/fx-991ms COMP F 1 CMPLX F 2 SD F F 1 REG

More information

fx-JP700_fx-JP900

fx-JP700_fx-JP900 SA1412-A 1. 2. 1 2 15 31 + 3 ...1...3... 5... 5... 5...7...8... 9... 11...14... 15... 17... 18... 19... 21 QR fx-jp900... 25...26... 27...27... 29 n... 32 /...34... 35... 37... 38 fx-jp900...40 fx-jp900...

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 + 1 2 IT 1 *1 1 2 3 π i 1i 2i 3i πi i 2 1 *2 2 + 3 + 4i π ei 3 4 4 2 2 *1 *2 x 2 + 1 = x 2 + x + 1 = 2 3 1 2 2 2 2 *3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i 1 2 1 2 2 1 i r 3r + 4i 1

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

fx-991ES_J

fx-991ES_J J fx-991es RCA501267-001V01 http://www.casio.co.jp/edu/ A 19(CLR)3(All)=(Yes) 15 43 1 1 2 + -! A!2)+!3= 1 S sin 1 {D} s 1s(sin 1 )1= 1(Setup) fcde REPLAY 2 A a 16 z Z Deg Rad 16 3 4 u u 5 O fx-991es...

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

高等学校学習指導要領解説 数学編

高等学校学習指導要領解説 数学編 5 10 15 20 25 30 35 5 1 1 10 1 1 2 4 16 15 18 18 18 19 19 20 19 19 20 1 20 2 22 25 3 23 4 24 5 26 28 28 30 28 28 1 28 2 30 3 31 35 4 33 5 34 36 36 36 40 36 1 36 2 39 3 41 4 42 45 45 45 46 5 1 46 2 48 3

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

A Message From President 2

A Message From President 2 A Message From President 2 Top Information 3 Top Information 4 A View Point 5 Annual Report 2 Financial Highlight 7, 5, 12, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 1, 8, 6, 4, 2, 6 5, 2, 8 4, 1,5 6 3, 2, 1, 1, 5

More information

関数電卓 マニュアル

関数電卓 マニュアル 関数電卓 マニュアル EXE もくじ p EXE 電源の On/Off p3 EXE EXE S D 変換 p4 EXE リプレイ機能 p5 EXE 計算履歴 p6 EXE FUNCTION EXIT p7 EXE 微分 積分 p8 p9 EXE の計算 p0 EXE log の底の設定 p EXE 乗数 p EXE ソルブ機能 p3 EXE カルク機能 p4 EXE 内蔵公式 p5 EXE テーブルモード

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

Page

Page Page Page 1 BIS 200012 2 10 1-2 20003 3 4 1-1 1-2 * BIS CF CF CF PLAN DO BSPL BSPL SEE BS PL 5 6 1-3 PLAN DO SEE PLAN DO SEE PLAN DO SEE PLAN DO SEE BSPL BS PL 4 1-4 7 Coffee Break 2 BS PL CF) PLANDO SEE

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

EL5250

EL5250 EL-5250 SHARP EL-5250 1 2 3 4 5 6 7 8 x @ "... i ;... @ F... k ;... i Q... @ ; j @ s ; A k S @ s@ ` ;; 5 NORMAL MODE 0. πrœ 10_ 9 10 y zall DATA CL?z z YES [DEL] z z NO [ENTER]z NORMAL MODE 0. @ o 0 +

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

1 SHIMURA Masato polynomial irr.xirr EXCEL irr

1 SHIMURA Masato polynomial irr.xirr EXCEL irr 1 SHIMURA Masato 2009 12 8 1 2 1.1................................... 2 1.2 polynomial......................... 4 2 irr.xirr EXCEL 5 2.1 irr............................................. 5 2.2 d f, pv...........................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý

£Ã¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç (2018) - Â裱£²²ó  ¡Ý½ÉÂꣲ¤Î²òÀ⡤±é½¬£²¡Ý (2018) 2018 7 5 f(x) [ 1, 1] 3 3 1 3 f(x) dx c i f(x i ) 1 0 i=1 = 5 ) ( ) 3 ( 9 f + 8 5 9 f(0) + 5 3 9 f 5 1 1 + sin(x) θ ( 1 θ dx = tan 1 + sin x 2 π ) + 1 4 1 3 [a, b] f a, b double G3(double (*f)(),

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

4. 操作 ORDER 変数メニューの修整 VARS SORT ORDER 変数名をソートして表示 { X } ORDER 変数 X を最初に表示 0 TVARS ORDER 実数の変数を最初に表示 0 TVARS SORT ORDER 実数の変数をソートして最初に表示 5 TVARS ORDER

4. 操作 ORDER 変数メニューの修整 VARS SORT ORDER 変数名をソートして表示 { X } ORDER 変数 X を最初に表示 0 TVARS ORDER 実数の変数を最初に表示 0 TVARS SORT ORDER 実数の変数をソートして最初に表示 5 TVARS ORDER ORDER 変数メニューの修整 VARS SORT ORDER 変数名をソートして表示 { X } ORDER 変数 X を最初に表示 0 TVARS ORDER 実数の変数を最初に表示 0 TVARS SORT ORDER 実数の変数をソートして最初に表示 5 TVARS ORDER リストの変数を最初に表示 8 TVARS ORDER プログラムの変数を最初に表示 9 TVARS ORDER シンボルの変数を最初に表示

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x = 1 1 Octave GNU Octave Matlab John W. Eaton 1992 2.0.16 2.1.35 Octave Matlab gnuplot Matlab Octave MATLAB [1] Octave [1] 2.7 Octave Matlab Octave Octave 2.1.35 2.5 2.0.16 Octave 1.1 Octave octave Octave

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a <

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a < 22 9 8 5 22 9 29 0 2 2 5 2.............................. 5 2.2.................................. 6 2.3.............................. 8 3 8 4 9 4............................. 9 4.2 S(, a)..............................

More information