example2_time.eps

Size: px
Start display at page:

Download "example2_time.eps"

Transcription

1 Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

2 Introduction ( ) Random Walk & Google Page Rank Agora on Aug / 67

3 Introduction Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

4 Introduction Σ ( ) Random Walk & Google Page Rank Agora on Aug / 67

5 Introduction Plan of Talk Google (Section 2) (Section ) (Section ) (Section ) (Section ) Google (Section 5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

6 Introduction Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

7 Google Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

8 Google Google Google (Section.) Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

9 Google Google Google (Section 2) Google S.Brin L.Page (999 ) L.Page ( ) Random Walk & Google Page Rank Agora on Aug / 67

10 Google (Section 2.)...,, ( ) Random Walk & Google Page Rank Agora on Aug / 67

11 Google (Section 2.) HyperText Mark up Language HTML Hyper Link... A B A B ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

12 Google (Section 2.) v, v 2, v 3, v v 2, v 3, v 2 v 3, v 3 v. v (Example 2.., P.5) v 2 v 3. (Definition 2..2, P. 5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

13 Google (Section 2.) (Definition 2..3, P. 6) v i r(v i ) r(v i ) = r(v j ) v j v j B vi (2.) B vi v i {r(v i )} (2.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

14 Google (Section 2.) Example 2..6 r = r 3, r 2 = 2 r, (2.2) (Example 2..6, P. 7) r 3 = 2 r + r 2, {r,r 2,r 3 } (2.2) r = k, r 2 = k/2, r 3 = k ( ) Random Walk & Google Page Rank Agora on Aug / 67

15 Google (Section 2.) Example (2.2) r r 3 = 0, 2 r + r 2 = 0, 2 r r 2 + r 3 = 0 (2.3) (0,0,0) (0,0,0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

16 Google (Section 2.) (2.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

17 Google (Section 2.2) t = n v i p i (n) v i t = n + ( ) Random Walk & Google Page Rank Agora on Aug / 67

18 Google (Section 2.2), p(v i ) = p i = lim n p i(n) v i. {p i (n)} {p i (n + )}. p i (n + ) = v j B vi v j p j(n) (2.4) ( ) Random Walk & Google Page Rank Agora on Aug / 67

19 Google (Section 2.2) Example 2.. p (n + ) = p 3 (n), p 2 (n + ) = 2 p (n), p 3 (n + ) = 2 p (n) + p 2 (n) (2.5) p (0) =, p 2 (0) = p 3 (0) = 0 t p 0 /2 /2 /4 /2 3/8 3/8 7/6 3/8 2/5 p 2 /2 0 /4 /2 /8 /4 3/6 3/6 7/32 /5 p 3 /2 /2 /4 /2 3/8 3/8 7/6 3/8 3/32 2/5 (p,p 2,p 3 ) = (2/5,/5,2/5) Example 2..6 ( ) Random Walk & Google Page Rank Agora on Aug / 67

20 Google (Section 2.2) Theorem (P. 9) {p i (n)} (2.4). i p i (n) n p i, {p i } p i = v j B vi v j p j (2.6), (2.6), (2.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

21 Google (Section 2.3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

22 Google (Section 2.3),,,, t = 0, ( ) Random Walk & Google Page Rank Agora on Aug / 67

23 ( ) Random Walk & Google Page Rank Agora on Aug / 67

24 (Section 3.) { ax + by = x, cx + dy = y, (3.),... a x + a 2 x a N x N = a, a 2 x + a 22 x a 2N x N = a 2,. a N x + a N2 x a NN x N = a N, ( ) Random Walk & Google Page Rank Agora on Aug / 67

25 (Section 3.) (3.), ax + by = x, cx + dy = y,, xy-, (3.).,. x = by dx ad bc, y = ay cx ad bc 2 ax + by = x, cx + dy = y, ax + by = x (3.). 3 ax + by = x, cx + dy = y,, (3.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

26 (Section 3.). ax + by = x, cx + dy = y ad bc = 0 ax + by = x, cx + dy = y a : b : x = c : d : y (3.) ad bc 0, (3.) 2 ad bc = 0 by dx = 0 ( ay cx = 0, ax + by = x (x, y) (3.). 3 ad bc = 0 by dx 0 ( ay cx 0), (3.). ( ) Random Walk & Google Page Rank Agora on Aug / 67

27 (Section 3.) ad bc 0 ( ) ( ) x ax + by y cx + dy xy- (x,y) (ax + by,cx + dy) (ax+by,cx+dy) = (x,y ) (x,y) (x,y) (3.) ad bc 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

28 (Section 3.2) N {x i } N i= x x =. x N x = (x i ) (Definition 3.2., P. 3) x i x i ( ) Random Walk & Google Page Rank Agora on Aug / 67

29 (Section 3.2) N x R N = x =. : x i R x N N (Definition 3.2.2, P. 3) R N, 0 0 (Definition 3.2.4, P. 3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

30 (Section 3.2) R 2 xy- xy- (x, y) ( x x = y) R 3 xyz- N R N ( ) Random Walk & Google Page Rank Agora on Aug / 67

31 (Section 3.2) R N x, y R N x + y x y x + y x =., y =. = x + y =. x N y N x N + y N a R, x R N x a x ax x =. = ax =. ax N x N (Definition 3.2.6, P. 4) ( ) Random Walk & Google Page Rank Agora on Aug / 67

32 (Section 3.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

33 (Section 3.2) R N W W W., 0 W. 2 W x, y W x + w W. 3 W x W a R ax W. R 2 xy- R 3 xyz- ( ) Random Walk & Google Page Rank Agora on Aug / 67

34 (Section 3.2, Example 3.2.9) x R 2 W = {ax : a R} xy-,, x ( ) {( )} a x = W = y = 2x 2 2a x, y R 3 x y W = {ax + by : a,b R} xyz-,, x, y x =, y = 0 W = a a + b 0 b x y + z = 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

35 (Section 3.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

36 (Section 3.2) R N k {x,... x k } a x + + a k x k = 0 = a = = a k = 0 (Definition 3.2., P. 5) {x,y} {x,y} ( ) Random Walk & Google Page Rank Agora on Aug / 67

37 (Section 3.2, Example 3.2.3) {x,y,z} ax + by + cz = 0 a, b, c 0 a 0, x = b a y c a z, x y z x z y ( ) Random Walk & Google Page Rank Agora on Aug / 67

38 (Section 3.2, Example 3.2.4) ( ) ( ) x =, y = 2 ( ) ( ) 2 x =, y = (y + 2x = 0) x =, y = 0 0 x =, y =, z = x =, y =, z = 3 (2x+y z = 0) 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

39 (Section 3.2) V k (dim V = k) V k V k + (Definition 3.2.5, P. 7) dim R N = N, R N N {x,...,x N } ( ) Random Walk & Google Page Rank Agora on Aug / 67

40 (Section 3.2) dim V = k V k (Definition 3.2.9, 8) R N 0 0 e =.,, e N =. 0 RN 0 R N ( ) Random Walk & Google Page Rank Agora on Aug / 67

41 (Section 3.2) dim V = k, {x,...,x k } x V x = a x + + a k x k ( ) Random Walk & Google Page Rank Agora on Aug / 67

42 (Section 3.2) R 2 (Example 3.2.2, P. 8) ( ( 0 e =, e 0) 2 = ) ( ( x =, x ) 2 = ) ( ( y =, y 0) 2 = ) ( ) 2 x = 3 x = 2e + 3e 2 = 5 2 x 2 x 2 = y + 3y 2 (Example , P. 8) ( ) Random Walk & Google Page Rank Agora on Aug / 67

43 (Section 3.2) R N x x x R N, x 2 x R N, k R, kx = k x 3 x, y R N, x + y x + y 4 x = 0 x = 0 (Definition , P. 9),, x 2 + y 2 ( ) Random Walk & Google Page Rank Agora on Aug / 67

44 (Section 3.2) (Example , P. 9) x = x + + x N, x 2 = x x N 2, x = max i=,...,n x i x = x 2 = x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

45 (Section 3.3, Definition 3.3.) N N N a a 2 a N a 2 a 22 a 2N A = = ( a ) a... a N =. a a N a n2 a N NN a ij A (i,j) k a k =. k a k a Nk l a l = ( ) a l a Nl l A = (a ij ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

46 (Section 3.3, Definition 3.3.3) A = (a ij ) a ii 0 E = O = ( ) Random Walk & Google Page Rank Agora on Aug / 67

47 (Section 3.3, Definition 3.3.4) N N A = (a ij ), B = (b ij ), A + B A + B = (a ij + b ij ) k R, N N A = (a ij ), ka ka = (ka ij ) ( ) ( ) 2 3 A =, B = ( ) ( ) A + B =, 3A = ( ) Random Walk & Google Page Rank Agora on Aug / 67

48 (Section 3.3) x = (x i ) R N N N A = (a ij ) Ax ( N ) Ax = a ik x k k= R N (Definition 3.3.5, P. 2) ( ) ( ) ( ) A =, x = Ax = ( ) ( ) ( ) a b x ax + by A =, x = Ax = c d y cx + dy ( ) Random Walk & Google Page Rank Agora on Aug / 67

49 (Section 3.3) N N A = (a ij ), B = (b ij ) AB ( N ) AB = a ik b kj k= N N (Definition 3.3.6, P. 2) ( ) ( ) a b x y A =, B = c d w z ( ) ( ) ax + bw ay + bz ax + cy bx + dy AB =, BA = cx + dw cy + dz aw + cz bw + dz ( ) ( ) A =, B = ( ) ( ) AB = BA = ( ) Random Walk & Google Page Rank Agora on Aug / 67

50 (Section 3.3) N N A = (a ij ), B = (b ij ) AB B = ( b b N ) AB = ( Ab Ab N ) N (Remark 3.3.2, P. 22) N N A = (a ij ) A T A T = (a ji ) (Definition 3.3.7, P. 2) ( ) a b A = c d A T = ( ) a c b d ( ) Random Walk & Google Page Rank Agora on Aug / 67

51 (Section 3.3, Example 3.3.3) { ax + by = x, cx + dy = y, (3.) A = ( ) a b, x = c d Ax = b ( ) x, b = y ( x y ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

52 (Section 3.4) N N A = (a ij ) R N x Ax R N (Definition 3.4., P. 23). A0 = 0. 2 x, y R N, λ, µ R,. (Proposition 3.4.2, P. 23) A(λx + µy) = λax + µay ( ) Random Walk & Google Page Rank Agora on Aug / 67

53 (Section 3.4, Example 3.4.4) ( ) 2 A = 3 4 ( )( ) ( ) 2 Ae = =, Ae = ( )( ) ( ) 2 2 8, Ax = = {x i }, ( )( ) 0 = ( ) 2 4 A, {Ax i } (Remark 3.4.5, P. 25) E Ex = x O Ox = 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

54 (Section 3.4, Example 3.4.7) ( ) 0 A = 0, x x, y y, ( ) 0 A = x 0 x Ax Ax x ( ) Random Walk & Google Page Rank Agora on Aug / 67

55 (Section 3.4, Example 3.4.8) θ ( ) cos θ sin θ A = sin θ cos θ Ax x θ ( ) Random Walk & Google Page Rank Agora on Aug / 67

56 (Section 3.4) N N A, AA = A A = E N N A A A (Definition 3.4.9, P. 26) A, ( ) Random Walk & Google Page Rank Agora on Aug / 67

57 (Section 3.4) ( ) a b A =, A c d = AA = ( ) x y z w ( ) ax + bz ay + bw = cx + dz cy + dw ( ) 0 0 ad bc 0 ( ) ( ) A x y a b = = z w ad bc c d ad bc = 0 (Example 3.4.0, P. 26) ( ) Random Walk & Google Page Rank Agora on Aug / 67

58 (Section 3.4) A N N A Ax = b x = A b (Theorem 3.4.4, P. 27) ( ) Random Walk & Google Page Rank Agora on Aug / 67

59 (Section 3.4, Example 3.4.5) { x + 2y = 3, 3x + 4y = 4 ( )( ) ( ) 2 x 3 = 3 4 y 4 ( ) ( ) ( )( )( ) x 2 2 x = 3 y y ( 2 = )( ) 3 = 4 ( ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

60 (Section 3.4) r(v i ) = r(v j ) v j v j B vi (2.) Ax = x,, ( ) Random Walk & Google Page Rank Agora on Aug / 67

61 (Section 3.5) ( ) a b 2 2 A = c d A. A A. 2 ad bc 0 ( ( a b 3 A a =, a c) 2 = d) A = (a a 2 ), {a, a 2 }. 4 A a = ( a b ), a 2 = ( c d ) ( ) a A =, {a a, a 2 }. 2 (Theorem 3.5., P. 28) ( ) Random Walk & Google Page Rank Agora on Aug / 67

62 (Section 3.5) 2 2 A = ( ) a b c d, det A det A = ad bc (Definition 3.5.2, P. 28) N N 3 3 deta = a a 22 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 a 3 a 22 a 3 a 2 a 2 a 33 a a 23 a 32 N N, aij N N! (Remark 3.5.3, P. 28) ( ) Random Walk & Google Page Rank Agora on Aug / 67

63 (Section 3.5) N N A = (a ij ), A. A A. 2 deta 0 3 A N a i =.. a i a Ni A = (a...a N ), {a,..., a N } 4 A N a j = ( ) a j a jn a A =.., {a,...,a N } a N (Theorem 3.5.4, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

64 (Section 3.5). dete = 2 (deta)(det B) = (det AB) 3 deta T = deta (Theorem 3.5.6, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

65 (Section 3.5) N N A N {a k } N k= A = ( ) a a N, {a k } N k= A (Definition 3.5.7, P. 29) N N A, A. A A. 2 ranka = N. (Theorem 3.5.8, P. 29) ( ) Random Walk & Google Page Rank Agora on Aug / 67

66 (Section 3.5) N N A f A : R N R N, x Ax ranka = N (det A 0 ) f A (R N ) = R N ranka < N (det A = 0 ) f A (R N ) R N deta = 0 Ax = b b f A (R N ) or b f A (R N ) ( ) Random Walk & Google Page Rank Agora on Aug / 67

67 (Section 3.5) N N A fa f A (R N ) f A Im f A Im A {x R N : f A (x) = 0} = {x R N : A(x) = 0} f A, kerf A kera (Definition 3.5.9, P. 30) N N A,. dimim A = ranka, 2 N dimkera = dimima. 3 deta 0 dim Im A = N, dimkera = 0. (Theorem 3.5., P. 30) ( ) Random Walk & Google Page Rank Agora on Aug / 67

68 (Section 3.5) Ax = b A, b R N, x = A b. 2 A. 2. b ImA,. 2.2 b ImA,. x 0, y ker A, x = x 0 + y, kera. (Theorem 3.5.3, P. 3) ( ) Random Walk & Google Page Rank Agora on Aug / 67

69 2 2 (Section 3.5) ( )( ) a b x c d y ( x = y ) ad bc 0, b R 2, x = A b. 2 ad bc = 0 ««a x 2. c y ««a x 2.2 c y.. x 0 «, x b x = x 0 + k. a (Corollary 3.5.4, P. 3) ( ) ( ) a b Im A, ker A c a ( ) Random Walk & Google Page Rank Agora on Aug / 67

70 2 2 (Section 3.5) (x,y ) ker A Im A ker A Im A (x,y ) ker A ker A ImA Im A a + d a + d = (cf. Example 3.5.5) (cf. Example 3.5.6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

71 2 2 (Section 3.5, Example 3.5.5) ( )( ) ( ) 2 x a = 2 y b deta = 0 {( )} {( kera = span, Im A = span 2 )} ( ) a b = Im A a = b b ( ) ( ) a x = + t a 2 kera 2x + y = 0, (a, a) a = b = 0 Ax = 0 0 = dim ker A ( ) Random Walk & Google Page Rank Agora on Aug / 67

72 ( ) Random Walk & Google Page Rank Agora on Aug / 67

73 (Section 3.6) (2.) Ax = x N N A, λ R x R N (x 0), λ A, Ax = λx (3.2) x, λ (Definition 3.6., P. 35) x A ( ) Random Walk & Google Page Rank Agora on Aug / 67

74 (Section 3.6) x λ = A(kx) = kax = k(λx) = λ(kx) for all k R kx (Remark 3.6.2, P. 35) ( ) Random Walk & Google Page Rank Agora on Aug / 67

75 (Section 3.6) Ax = tx t, x Ax tex = 0 2 (A te)x = 0 3 det(a te) 0 x = (A te) 0 = 0 det(a te) = 0 λ N N A, λ t N det(a te) = 0 (Theorem 3.6.4, P. 36) ( ) Random Walk & Google Page Rank Agora on Aug / 67

76 (Section 3.6) N t N + a n t n + + a t + a 0 = 0, N (Theorem 3.6.5, P. 36) N N A,, N. (Remark 3.6.6, P. 36), t N det(a te) = 0, N ( ) Random Walk & Google Page Rank Agora on Aug / 67

77 (Section 3.6, Example 3.6.7) ( ) 2 A =, 2 ( ) t 2 det(a te) = det = t 2 2t 3 = (t+)(t 3) 2 t, A, 3. ( ) 2 A =, 2 ( ) t 2 det(a te) = det = t 2 2t t, A + 2i, 2i. ( ) Random Walk & Google Page Rank Agora on Aug / 67

78 (Section 3.6, Example 3.6.7) 3 A = 3, 3 det(a te) = t 3 + 9t 2 24t + 6 = (t )(t 4) 2, A 4, 4,. ( ) Random Walk & Google Page Rank Agora on Aug / 67

79 (Section 3.6) det(a te) A A λ k, λ k, λ,...,λ j A, det(a te) = (t λ ) k (t λ j ) k j t λ i λ i (Definition 3.6.8, P. 37) ( ) Random Walk & Google Page Rank Agora on Aug / 67

80 (Section 3.6) λ R det(a λe) = 0, dim ker(a λe) > 0, ker(a λe) x dim ker(a λe), λ k dim ker(a λe) k = ( ) Random Walk & Google Page Rank Agora on Aug / 67

81 (Section 3.6, Example 3.6.0) ( ) 2 A =. {, 3} 2 ( ) ( 2 2 x A + E = x =, 2 2 y) 2x + 2y = 0. λ = ( ) x = ( ) λ = 3 x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

82 (Section 3.6, Example 3.6.0) ( ) 2 A =. { + 2i, 2i} 2 ( ) 2i 2 A ( + 2i)E = λ = + 2i ( 2 2i i x = ) ( ) i λ = 2i x = ( ) Random Walk & Google Page Rank Agora on Aug / 67

83 (Section 3.6) N N A,. A A T. 2 T, A T AT. (Theorem 3.6.2, P. 39) ( ) Random Walk & Google Page Rank Agora on Aug / 67

84 (Section 3.6) Ax = x (2.),. A, A 2 A x 3 (Problem 3.6.4, P. 40) ( ) Random Walk & Google Page Rank Agora on Aug / 67

85 n (Section 3.7, Example 3.7.) ( ) ( ) 3 A =, T =, B = T AT, A n. ( ) ( ) 0 0 B =, B 0 2 n = 0 2 n A n = (TBT ) n = TBT TB BT = TB n T B, 2 A T A T 2 A 2 T T AT, ( ) Random Walk & Google Page Rank Agora on Aug / 67

86 (Section 3.7) N N A,. λ i x i.,, T AT =. (Corollary 3.7.3, P. 4) T = ( x x N ) λ... λ N ( ) Random Walk & Google Page Rank Agora on Aug / 67

87 (Section 3.7) ( ) λ 0 L = 0 λ 2 λ λ 2 Ae = λ e, Ae 2 = λ 2 e 2, 2 2 A λ, λ 2 λ i a i Aa = λ a, Aa 2 = λ 2 a 2, (3.5) ( ) Random Walk & Google Page Rank Agora on Aug / 67

88 (Section 3.7) T = ( a b ) (3.5) AT = TL, T AT = L {a,a 2 }, A 3a a a2 2a2 ( ) Random Walk & Google Page Rank Agora on Aug / 67

89 (Section 3.7) ( ) cos θ sin θ A = cos θ ± isin θ = e sin θ cos θ ±iθ 2 2 e ±iθ : θ ( ) Random Walk & Google Page Rank Agora on Aug / 67

90 (Section 3.8) A.. A. 0.. A = ( ) Random Walk & Google Page Rank Agora on Aug / 67

91 (Section 3.8, Theorem 3.8.) A {λ i } N i= λ > λ 2 λ N. x 0 y k+ = Ax k, x k+ = y k+ y k+ x 0, x N λ. ( ) Random Walk & Google Page Rank Agora on Aug / 67

92 (Section 3.8) (Theorem 3.8.3, P. 44) N N A = (a ij ), B i = {z C : z a ii N j=,j i a ij }., A λ, N B i. ( ) Random Walk & Google Page Rank Agora on Aug / 67

93 (Section 3.8) N N A = (a ij ) (a ij 0), A λ C λ max i=,...,n. (Theorem 3.8.4, P. 45) N j= a ij ( ) Random Walk & Google Page Rank Agora on Aug / 67

94 ( ) Random Walk & Google Page Rank Agora on Aug / 67

95 (Section 4.) V, E : E e E, V o(e), t(e) V G = (V,E) V E o(e) e t(e) e (Definition 4.., P. 47) ( ) Random Walk & Google Page Rank Agora on Aug / 67

96 (Section 4.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

97 (Section 4.) G = (V,E), A G G. V,,...,N.., N V. 2 N N A G, e E, o(e) = i, t(e) = j a ji =, a ji = 0 (Definition 4..4, P. 48) ( ) Random Walk & Google Page Rank Agora on Aug / 67

98 (Section 4.) 2 (Example 4..5, P. 48) A G = ( ) Random Walk & Google Page Rank Agora on Aug / 67

99 (Section 4., Example 4..6) A G = , A G 2 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

100 (Section 4., Example 4..6) D,2 = D,2 A G2 D,2 = A G D,2 D,2 = E D,2 A G 2 D,2 = A G T A G2 T = A G ( ) Random Walk & Google Page Rank Agora on Aug / 67

101 (Section 4., Example 4..6) 0 N N A A G N aji =, j i G A G A = A G ( ) Random Walk & Google Page Rank Agora on Aug / 67

102 (Section 4.2, Definition 4.2.) G = (V,E) x, y x y G = (V,E) x, y x y ( ) Random Walk & Google Page Rank Agora on Aug / 67

103 (Section 4.2, Definition 4.2.3) G = (V,E) G x, y V G = (V,E) G x, y V G = (V,E) (Proposition 4.2.4, P. 50) ( ) Random Walk & Google Page Rank Agora on Aug / 67

104 (Section 4.2, Example 4.2.6) A G = , A2 G = A 3 G = A G + A 2 G + A 3 G = ( ) Random Walk & Google Page Rank Agora on Aug / 67

105 (Section 4.2, Example 4.2.6) A G2 = , A2 G 2 = A 3 G 2 = A G2 + A 2 G 2 + A 3 G 2 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

106 (Section 4.2, Example 4.2.6) A G3 = , A2 G 3 = A 3 G 3 = A G3 + A 2 G 3 + A 3 G 3 = ( ) Random Walk & Google Page Rank Agora on Aug / 67

107 (Section 4.2) G A G A G + A 2 G + + AN G G N G (Theorem 4.2.7, P. 52) ( ) A O N N X B C X X (Definition 4.2.8, P. 52) ( ) Random Walk & Google Page Rank Agora on Aug / 67

108 (Section 4.2) G G, G A G (Theorem 4.2.0, P. 53) 0 N N A A ( ) Random Walk & Google Page Rank Agora on Aug / 67

109 (Section 4.2, Example 4.2.9) A G = , A G 2 = A G3 = G G 2 G 3 ( ) Random Walk & Google Page Rank Agora on Aug / 67

110 ( ) Random Walk & Google Page Rank Agora on Aug / 67

111 (Section 4.3) G G = (V,E) (Example 4.3., P. 53) v v3 v2 t = n G t = n +, G i,, ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67

112 (Section 4.3) t = n v i p(n,i) p(n +,) 0 /2 /2 p(n, ) p(n +,2) = /2 0 /2 p(n, 2) (4.) p(n +,3) /2 /2 0 p(n, 3) π(n + ) = P G π(n) (4.2) ( ) Random Walk & Google Page Rank Agora on Aug / 67

113 (Section 4.3) π = (p i ) R N p + + p N =, 0 p i π (Definition 4.3.2, P. 54) N N P = (p ij ) P 0 pij N i= p ij = (Definition 4.3.4, P. 54) P G π, P P π (Proposition 4.3.5, P. 55) ( ) Random Walk & Google Page Rank Agora on Aug / 67

114 (Section 4.3) π(n + ) = P G π(n) π(0), n π(n), π(n), (Definition 4.3.3, P. 54) ( ) Random Walk & Google Page Rank Agora on Aug / 67

115 (Section 4.3, Definition 4.3.7) G = (V,E) P G i j p ji = /K K i i j p ji = 0 P G G P G π(n + ) = P G π(n) (4.4) G ( ) Random Walk & Google Page Rank Agora on Aug / 67

116 (Section 4.3) v v2 G P G A G v3 0 /2 /2 /2 0 /2 /2 / v v2 v3 0 /2 /2 0 0 /2 / v v2 v3 0 /2 /3 /2 0 /3 /2 /2 /3 0 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

117 (Section 4.3) N N P π(n + ) = P π(n) (Definition 4.3.3, P. 57) P 0 A 2 A G G G AG A G = A ( ) Random Walk & Google Page Rank Agora on Aug / 67

118 (Section 4.3) 0 3/4 /5 P = /3 0 4/5 2/3 /4 0 0 A = 0 0 v /3 3/4 v 2 2/3 /4 /5 v 3 4/5 ( ) Random Walk & Google Page Rank Agora on Aug / 67

119 (Section 4.3, Definition 4.3.5) P π(n + ) = P π(n) t = 0 π(0) t = n π(n) = P n π(0) π = P π π ( ) Random Walk & Google Page Rank Agora on Aug / 67

120 (Section 4.3) G π(n + ) = P G π(n), π = lim n π(n) π = PG π π P π = P π π P ( ) Random Walk & Google Page Rank Agora on Aug / 67

121 (Section 4.3) π(0), π = lim t π(t) (Problem 4.3.7, P. 58) ( ) Random Walk & Google Page Rank Agora on Aug / 67

122 (Section 4.3) P, π(0), (Problem 4.3.8, P. 58) (cf. Theorem 3.8., P. 44) π = lim n P n π(0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

123 (Section 4.4) N N A a ij 0 A (Definition 4.4., P. 59) P A λ(a) λ(a), > 0. 2 A µ, µ λ(a). 3 λ(a). 4 λ(a) x,. 5 λ(a),. ( Theorem 4.4.2, P. 59) ( ) Random Walk & Google Page Rank Agora on Aug / 67

124 (Section 4.4) P,. P,. 2 P µ µ. 3 P. (Theorem 4.4.3, P. 59), λ(p ) = ( ) Random Walk & Google Page Rank Agora on Aug / 67

125 (Section 4.4), λ(p ) λ(p ) > 0. 2 λ(p ) x,, λ(p ). 3 P, e = (,...,) T P T e = e. P T ( ) Random Walk & Google Page Rank Agora on Aug / 67

126 (Section 4.4) 4 µ µ n p ji = j= P T 5 P T P, P λ(p ) = 6, P x,, π =, π ( ) Random Walk & Google Page Rank Agora on Aug / 67

127 (Section 4.4) P, ( ) Random Walk & Google Page Rank Agora on Aug / 67

128 (Section 4.4) ( ) 0 P G = 0 ( ) π(0) = 0 = {, } π(2n) = ( ) π(2n + ) = 0 ( ) 0, (Example 4.4.4, P. 60) 2 {,e 2πi/3,e 2πi/3 } (Example 4.4.5, P. 6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

129 (Section 4.4) µ = µ Theorem 3.8. (P. 44) λ > λ 2 λ N, π = lim n P n π(0) µ µ < ( ) Random Walk & Google Page Rank Agora on Aug / 67

130 (Section 4.5),. P k i = gcd{k N : p (k) ii > 0} P k = p (k) ij, k i i i, (Definition 4.5., P. 62) P k i = k j (Proposition 4.5.2, P. 62) ( ) Random Walk & Google Page Rank Agora on Aug / 67

131 (Section 4.5) k i 2 P, k i = (Definition 4.5.4, P. 63) = 3 4 (Example 4.5.8, P. 63) (Example 4.5.0, P. 64) ( ) Random Walk & Google Page Rank Agora on Aug / 67

132 (Section 4.5) P, P {p ii },. (Theorem 4.5.5, P. 63) P, P λ λ = λ =., π(0), t, π. (Theorem 4.5.6, P. 63) ( ) Random Walk & Google Page Rank Agora on Aug / 67

133 (Section 4.5) P k, e 2πi/k. e 2πi/k = cos(2π/k) + isin(2π/k) k = 5 (Example 3.7.4, P. 43) ( ) Random Walk & Google Page Rank Agora on Aug / 67

134 (Section 4.6) P, π 2 π(0) lim P n π(0) n. (Theorem 4.6., P. 65) π = lim n P n π(0) ( ) Random Walk & Google Page Rank Agora on Aug / 67

135 (Section 4.6), Theorem 4.6., π. (Theorem 4.6.2, P. 66) ( ) Random Walk & Google Page Rank Agora on Aug / 67

136 (Section 4.6) ( ) Random Walk & Google Page Rank Agora on Aug / 67

137 Google Google ( ) Random Walk & Google Page Rank Agora on Aug / 67

138 Google Goolge (Section 5.) ( ) Random Walk & Google Page Rank Agora on Aug / 67

139 Google Goolge (Section 5.), G G H, (Definition 5.., P. 67) H (Remark 5..2, P. 67), (Example 5..3, P. 67) ( ) Random Walk & Google Page Rank Agora on Aug / 67

140 Google Goolge (Section 5.) G = (V,E) v, v v. (Example 5..3, P. 67) / H = / , π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

141 Google Goolge (Section 5.) S d = (di ) R N d i = { i, 0 i, S = N det, e =.. R N S = ( s s N ) s i = N e i, 0 i, ( ) Random Walk & Google Page Rank Agora on Aug / 67

142 Google Goolge (Section 5.) P P = H + S P Example 5..4 P / / / /2 0 /6 0 S = / /6 0,P = / /2 0 / / / / /6 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

143 Google Goolge (Section 5.), P H S P = H + S P P ( ) Random Walk & Google Page Rank Agora on Aug / 67

144 Google Goolge (Section 5.) T T = /N /N N eet =..... /N /N (Definition 5..5, P. 70) T ( ) Random Walk & Google Page Rank Agora on Aug / 67

145 Google Goolge Google (Section 5.) Google G(α) G(α) = αp + ( α)t 0 < α < (Definition 5..6, P. 70) α : ( ) Random Walk & Google Page Rank Agora on Aug / 67

146 Google Goolge Google (Section 5.) Example 5..4 (α = 9/0) / /2 0 /6 0 P = / /2 0 /6 0, T = / /6 0 G = 9 0 P + 0 T = ( ) Random Walk & Google Page Rank Agora on Aug / 67

147 Google Goolge Google (Section 5.) 0 < α < G(α) G(α) G(α) G(α) π π = lim n G n π(0) (Theorem 5..8, P. 70) Google G(α) (Definition 5..0, P. 7) ( ) Random Walk & Google Page Rank Agora on Aug / 67

148 Google Goolge (Section 5.) G( 9 0 ) = , π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

149 Google Goolge α (Section 5.) G(α) = αp + ( α)t α α d dα π (α), α 0 d dα π (α) (Remark 5.., P. 7) Google α = 0.85 ( ) Random Walk & Google Page Rank Agora on Aug / 67

150 Google (Section 5.2) G(α) /N 2 π(0) =.. /N R N 3 G n π(0) π n+ = G(α)π n (Theorem 3.8., P. 44) ( ) Random Walk & Google Page Rank Agora on Aug / 67

151 Google (Section 5.2) Theorem 3.8. π k π k π 0 λ 2 k. (Theorem 5.2.6, P. 74) λ G(α) λ = π k π O ( λ 2 k) ( ) Random Walk & Google Page Rank Agora on Aug / 67

152 Google (Section 5.2) ǫ > 0 ǫ N N n > N n a n a < ǫ {a n } n= a (Definition 5.2.2, P. 72) r < r n 0 ǫ > 0 n > log r ǫ = r n < ǫ (Example 5.2.3, P. 73) ( ) Random Walk & Google Page Rank Agora on Aug / 67

153 Google (Section 5.2, Example 5.2.4) ǫ = /000 = 0 3 n log r ǫ = 3log 0/log r r n r = 0.7 r = 0.8 r = 0.9 e-50 e-00 e-50 e-200 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

154 Google (Section 5.2) G(α) P {,λ 2,λ 3,...,λ N } G(α) = αp + ( α)t {,αλ 2,αλ 3,...,αλ N } G(α) α (Theorem 5.2.8, P. 75) λ 2 = 0.999, (0.999) k k k = 9899 α = 0.85 (0.85) k k k = 6 ( ) Random Walk & Google Page Rank Agora on Aug / 67

155 Google (Section 5.2) N N G π R N Gπ, O(N 2 ) (Proposition 5.2.9, P. 75) Intel Core i7 50Gflops ( 500 ) N = 55.5 (Remark 5.2.0, P. 75) (Remark 5.2.6, P. 77) N = : 800 (Proposition 5.2., P. 76) ( ) Random Walk & Google Page Rank Agora on Aug / 67

156 Google (Section 5.2) N N 0 O(N),, 0 (Definition 5.2.2, P. 76) H Google G G π ( α Gπ = αhπ + (e T π) N d + α ) N e O(N) (Proposition 5.2.4, P. 76), (Proposition 5.2.5, P. 76) ( ) Random Walk & Google Page Rank Agora on Aug / 67

157 Google (Section 5.2) G(α) π(n + ) = Gπ(n), α π(k) π = O(α k ) π(k + ) π(k) ( α)ǫ π(k) π ǫ (Remark 5.2.8, P. 78) ( ) Random Walk & Google Page Rank Agora on Aug / 67

158 Google (Section 5.3, Example 5.3.) / /2 0 / H = / /3 0 0 /2, d = /2 0 / / ( ) Random Walk & Google Page Rank Agora on Aug / 67

159 Google (Section 5.3, Example 5.3.) 0 /6 / P = H + /2 /6 / dt e = /2 / /6 /3 0 0 /2 0 /6 0 /2 0 /2 0 /6 0 /2 0 α = π = ( ) Random Walk & Google Page Rank Agora on Aug / 67

160 Google (Section 5.3, Example 5.3.) Page rank v v2 v3 v4 v5 v ( ) Random Walk & Google Page Rank Agora on Aug / 67

161 Google (Section 5.3, Example 5.3.) Iteration count - Error e-06 e-08 e-0 e-2 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

162 Google (Section 5.3, Example 5.3.2) N = 5757, = 2445, = 4.25 ( ) Random Walk & Google Page Rank Agora on Aug / 67

163 Google (Section 5.3, Example 5.3.2) Iteration count - Error e-05 e-06 e-07 e-08 e-09 e ( ) Random Walk & Google Page Rank Agora on Aug / 67

164 Google (Section 5.3, Example 5.3.2) 000 Elasped time ( ) Random Walk & Google Page Rank Agora on Aug / 67

165 Goolge Google 0 0 ( ) Random Walk & Google Page Rank Agora on Aug / 67

166 Google, Google (?) ( ) Random Walk & Google Page Rank Agora on Aug / 67

167 ( ) Random Walk & Google Page Rank Agora on Aug / 67

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

入試の軌跡

入試の軌跡 4 y O x 7 8 6 Typed by L A TEX ε [ ] 6 4 http://kumamoto.s.xrea.com/plan/.. PDF Ctrl +L Ctrl + Ctrl + Ctrl + Alt + Alt + ESC. http://kumamoto.s.xrea.com/nyusi/qdai kiseki ri.pdf 6 i i..................................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information