ishimoto

Size: px
Start display at page:

Download "ishimoto"

Transcription

1 微 生物運動と流流体相互作 用 Locomotion of microorganisms and hydrodynamic interactions 石本健太 ( 京都 大学 白眉センター / 数理理解析研究所 ) Kenta Ishimoto (Hakubi Center & RIMS, Kyoto University)

2 遊泳微 生物 アメーバ バクテリア 精 子 ( ヒト ) ゾウリムシ ミジンコ 遊泳器鞭 毛繊 毛触 角 大きさ L ~ 50 µm 90~ 150 µm 1.5~ 3.5mm 速さ U ~ 50 µm/s ~ 500 µm/s ~ 3cm/s レイノルズ数 Re O(10-3 ) O(10-1 ) O(10 1 ) Re = & '() * = ( 慣性 力力 )/( 粘性 力力 )

3 支配 方程式 Navier-Stokes Newton, Navier-Stokes Newton 無次元化 変形の時間周期 ω 3 つの無次元量量 レイノルズ数 振動レイノルズ数 ストレステンソル 慣性モーメントテンソル ストークス数 ( 粒粒 子レイノルズ数 )

4 低レイノルズ数流流れ ストークス 方程式 慣性がゼロ = 低 Reynolds 数 線形性解は基本解の重ね合わせ境界条件で解が定まる + 力力とトルクの釣り合い 方程式は簡単だが境界条件の違いによって多様な 生物の世界が現れる

5 Stokes 方程式の基本解 Stokes 極局所的な 力力によって誘起される流流れ ポテンシャル流流れ ( 渦なし流流れ ) 速度度場の境界条件を満たすために必要 巽友正 流流体 力力学 多重極 一般解は基本解の重ね合わせで記述できる ボルボックスまわりの PIV* *Drescher et al., Phys. Rev. Lett. (2010)

6 遠 方での流流れ force dipole potential dipole force quadrupole pusher puller : 有限サイズ効果 : 前後の 非対称性 大腸菌まわりの PIV* *Drescher et al., PNAS (2011)

7 境界要素法 境界要素法 (BEM) 解を境界積分で表現線形 方程式を解く場合はかなり強 力力 Stokes 流流中の体積を保存する任意の変形物体に適応可能 * N: 境界要素の数 3N+6 次元の線形問題 力力 Stokes 極 生物表 面での境界条件 力力とトルクのつりあいの式 *Ishimoto & Gaffney, Phys. Rev. E (2014)

8 低レイノルズ数流流れ ストークス 方程式 慣性がゼロ = 低 Reynolds 数 線形性解は基本解の重ね合わせ境界条件で解が定まる + 力力とトルクの釣り合い 時間反転対称性時間依存項がない流流れは時間反転的 Physics and Astronomy

9 帆 立立 貝定理理 帆 立立 貝定理理 (scallop theorem)* ( 慣性が無視できる ) 微 生物は往復復運動 ( 時間反転的な変形 ) をする限り変形速度度に依らず移動できない G. I. Taylor Lecture on Low Reynolds Number National Committee for Fluid Mechanics E. M. Purcell, Am. J. Phys. (1977), Ishimoto & Yamada, SIAM J. Appl. Math. (2012)

10 精 子の遊泳 精 子鞭 毛の構造 human sperm, watery media Gaffney et al., Annu. Rev. Fluid Mech. (2011)

11 精 子 大競争 哺乳類の場合 ( 卵卵管 ) Figure from Coy et al., Reproduction (2012) Sperm selection 遊泳速度度? 遊泳効率率率? 高粘度度の環境? 走化性 ( 体外受精種 ) Sperm guidance* どのように卵卵を 見見つけるのか? 走化性 走熱性 走触性 走流流性ぜん動運動 繊 毛による輸送 Figure from Shiba et al., PNAS (2008) *J. Cosson, Flagellar Mechanics and Sperm Guidance (2015)

12 精 子の 走流流性 精 子は流流れに逆らって泳ぐ 100 年年以上前 (1872 年年 ) から 一様な流流れのもとで 流流れの上流流に泳ぐ哺乳類精 子が観察されている ( 精 子の 走流流性 ) ただし この性質が 生物の制御によるものか物理理学的な現象は決着はついていない Miki & Clapham, Curr. Biol. (2013) Kantsler et al., elife. (2014)

13 精 子の 走流流性のメカニズム in vivo での 走流流性の可能性マウスの卵卵管内の流流れの観測 (Miki & Clapham; 2013) いくつかの仮説 Bretherton & Rothschild (1971) - メカニズムは不不明 Roberts (1980) - 精 子の頭部が重いことが原因 Miki & Clapham (2013) - 鞭 毛のらせん運動 Kantsler et al. (2014) - 鞭 毛のらせん運動 + 壁 面への吸着 Miki & Clapham, Curr. Biol. (2013)

14 モデル精 子と問題設定 らせん運動をする鞭 毛のモデル ξ 2 ヒト精 子 : left- handed ( ) マウス精 子 : right- handed ( ) y z ξ 3 x ξ 1 X(s) α =0.2, kl=3π, B=0.2L, γ=0.1 Ishimoto & Gaffney, J. R. Soc. Interface (2015)

15 計算 手法 正則化 Stokes 極法 (RSM) for (singular) Stokelet for regularized Stokelet RSM 方程式 Cortez, SIAM J. Sci. Comput. (2001) 鞭 毛が楕円体である場合 無限平 面の no- slip 境界がある場合は正則化 Blake 極を 用いる Gillies et al., J. Fluid Mech. (2009), Ainley et al., J. Comput. Phys. (2008)

16 計算結果 30 cells, helical beating (α=+0.2; mouse) (a) N n x z y (b) background flow N x y Ishimoto & Gaffney, J. R. Soc. Interface (2015)

17 キラリティと 走流流性 0 x flow background flow 4 N 8 Blakelet, α=+0.2 Blakelet, α=-0.2 y y x ヒト精 子 ( 左巻きらせん, α=- 0.2) マウス精 子 ( 右巻きらせん, α=+0.2) At bottom, seen from above 流流れと垂直 方向運動はキラリティで決まる cf. Kantsler et al.(2014) 境界との流流体相互作 用は流流れと垂直 方向の運動を 大きくする作 用がある Ishimoto & Gaffney, J. R. Soc. Interface (2015)

18 境界の接触と 走流流性 human sperm (left-handed, α=-0.2) at bottom no-slip surface, seen from above different initial height: h=0.1, 0.15, 0.2 境界との接触による境界付近の安定的な遊泳によって上流流への遊泳が可能になる Ishimoto & Gaffney, J. R. Soc. Interface (2015)

19 鞭 毛の 非対称性と 走流流性 非対称性の 大きな CatSper- KO マウス精 子やウニ精 子は 走流流性を 示さない 3 次元性が 非対称性を上回る ( 運動が直進的 ) と 走流流性を 示す ξ 3 ξ 2 ξ 1 N T Γ 境界の上からの視点 Γ=0.5 直進性があれば 走流流性を 示す Ishimoto & Gaffney, J. R. Soc. Interface (2015)

20 走流流性 : 理理論論 (a) (b) n z background flow N N Jeffery の解 x y x y c: アスペクト 比 (surface- captured assumption) シア流流との相互作 用 上流流へ泳ぐ = 安定下流流へ泳ぐ = 不不安定 Kantsler et al., elife. (2014)

21 2 のまとめ 精 子の 走流流性 ( 流流れの上流流へ泳ぐ性質 ) に関して 流流体シミュレーションをはじめて 行行い 精 子の運動性 + 境界との相互作 用 + 流流れとの相互作 用 の複合的な流流体 力力学的な現象であることが分かった この結果は 最近実験的にも確かめられた * 走流流性を 示すためには精 子は 十分な直進性 + 境界付近での安定遊泳 ( 境界との接触 ) が必要である また 今回の計算から CatSper- KO マウスやウニの精 子が 走流流性を 示さないことも理理解できる * Zhang et al., Sci. Rep. (2016)

koboデスクトップアプリ ユーザーガイド

koboデスクトップアプリ ユーザーガイド 1 目... 4... 5 用... 6 用... 8 子 入... 10... 13 2 ... 13... 13 子... 16 子... 18... 19... 22 3 用 子 子 4 子 子 5 用 用 子 用 6 用 1. 2. 用 3. 4. 5. 面 行行 7 用 用 子 用 8 用 1. 2. 用 3. 4. 自 5. 9 子 入 方 見見 見見 入 入 入 子 子 子 10 見見

More information

用 2

用 2 木 子 用 2 用 女女 子 女女 子 身 長 力力 力力 力力 力力 3 身 長 力力 足 立立 止 力力 入 4 5 力力 骨 入 高 6 工 高 子 力力 高 支 7 小 入 見見 8 女女 子 力力 女女 子 女女 子 女女 子 見見 9 10 子 女女 子 入 女女 子 自 言 手 女女 子 子 11 女女 子 女女 子 人 12 人 力力 子 人 自 13 用 力力 自 人 用 入 14

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる 論文の内容の要旨 論文題目 転がり軸受における枯渇弾性流体潤滑とマクロ流れのマルチスケール連成解析手法の開発 氏名柴﨑健一 転がり軸受は, 転動体が, 外輪および内輪上の溝を転がることにより, 軸を回転自在に支持する機械要素であり, 長寿命化, 低摩擦化が強く求められている. 軸受の摩耗や焼付を防ぎ, 寿命を延ばすため, 通常は潤滑油またはグリースなどの潤滑剤が用いられる. 潤滑油は, 転がり接触する二表面間に表面粗さよりも厚い膜を形成し,

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

薄膜結晶成長の基礎3.dvi

薄膜結晶成長の基礎3.dvi 3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

E1-KRS_2

E1-KRS_2 大 力力 支 高 力力 自 高 音 一 二 高 音 生 一 小 小 自 見見 一 一 手 力力 音 音 立立 用 高 用 金金 方 用 高 生 用 一 一 自 車車 工 金金 工 力力 力力 用 高 力力 一 欠 高 音 生 入 力力 高 入 力力 入 力力 入 力力 力力 入 力力 入 力力 大 高 力力 一 欠 用 子 用 音 方 用 用 入 方 用 力力 用 音 音 色 一 目 大 力力 高

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

薄膜結晶成長の基礎4.dvi

薄膜結晶成長の基礎4.dvi 4 464-8602 1 [1] 2 (STM: scanning tunneling microscope) (AFM: atomic force microscope) 1 ( ) 4 LPE(liquid phase epitaxy) 4.1 - - - - (Burton Cabrera Frank) BCF [2] P f = (4.1) 2πmkB T 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp;

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

H. Kuninaka and H. Hayakawa Phys. Rev. Lett. 93, 543 (4) M. Y. Louge & E. Adams Phys. Rev. E 65, 33 () Y.Tanaka et. al. Europhys. Lett. 63, 46 (3) K. Okumura et. al. Europhys. Lett. 6, 37 (3) R +X h R

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

untitled

untitled N=1684 N=8703 N=1554 N=979 N=3911 N=530 N=1993 N=4982 N=929 N=2035 N=544 N=453 10 11 12 13 14 15 16 17 18 19 20 21 22 23 10 11 12 13 14 15 16 17 18 19 20 21 22 12 16 18 3657 0.0 5.0 10.0 15.0 20.0

More information

二次元コルモゴロフ流における局在乱流 (乱流を介在した流体現象の数理)

二次元コルモゴロフ流における局在乱流 (乱流を介在した流体現象の数理) 数理解析研究所講究録第 2007 巻 2016 年 22-27 22 二次元コルモゴロフ流における局在乱流 京都大学理学研究科物理学宇宙物理学専攻 蛭田佳樹 $\dagger$, 藤定義 Yoshiki Hiruta, Sadayoshi Toh Division of Physics and Astronomy, Graduate School of Science Kyoto University

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 中部 CAE 懇話会 流体伝熱基礎講座 第 3 回午後 名古屋工業大学大学院 創成シミュレーション工学専攻 後藤俊幸 粘性流体 H y U A F u(y,t) -F x 単位面積当たりのせん断応力 Newton 流体 t 線形関係 応力テンソル t ij 力 力の方向 面 ( 法線 ) z n=(0,0,1) t zz t yz t xz n=(0,1,0) y t yy t zy t xy t

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

Microsoft Word - Megalodon_JPN.doc

Microsoft Word - Megalodon_JPN.doc 目 用 用 8. 言 入 足 音 手 言 一 音 方 1. 2. Windows XP SP2 or higher / x64 / Vista / Vista64 3. 方 手 立 手 手 自 手 手 音 行 日 行 日 入 4. 音 金 工 音 力 大 入 力 皮 金 工 比 一 音 音 音 音 5. 用 日 見 力 日 行 音 音 音 力 力 行 一 音 音 音 音 音 音 音 音 手 方 音

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

機能不全 HDL の機能って何? 2015/2/2 機能不全 HDL(dysfunctional HDL) という言葉を見聞きした方は多いこと だろう だが HDL の機能について明快に答えられる人は どれほどいるのだろう か 血中 HDLコレステロール値と心血管疾患のリスクが反比例することは多くの

機能不全 HDL の機能って何? 2015/2/2 機能不全 HDL(dysfunctional HDL) という言葉を見聞きした方は多いこと だろう だが HDL の機能について明快に答えられる人は どれほどいるのだろう か 血中 HDLコレステロール値と心血管疾患のリスクが反比例することは多くの 機能不全 HDL の機能って何? 2015/2/2 機能不全 HDL(dysfunctional HDL) という言葉を見聞きした方は多いこと だろう だが HDL の機能について明快に答えられる人は どれほどいるのだろう か 血中 HDLコレステロール値と心血管疾患のリスクが反比例することは多くの臨床研究が示すところである 一方 ナイアシンを用いたAIM HIGH (Atherothrombosis

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical calculation method of the gradient as a differential

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

_第1回アドバイザー会議

_第1回アドバイザー会議 1 12 12 / D AA ) 2CAD /AA 12 /AA AAD#2 2A 2 2 A ( ( ~ 組み合わせ最適化問題を解くコヒーレント イジングマシン ~ 国 立立情報学研究所 宇都宮聖 子 ImPACT 量量 子 人 工脳を量量 子ネットワークでつなぐ 高度度知識識社会基盤の実現 第 1 回アドバイザー会議 背景 組み合わせ最適化問題 組み合わせ最適化問題 (NP- hard) : 現代社会における最も重要な問題

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

観測的宇宙論workshop.pptx

観測的宇宙論workshop.pptx 名古屋 大学宇宙論論研究室 嵯峨承平 ( 共同研究者 : 市來來淨與, 杉 山直 ) 2013/12/4 観測的宇宙論論 workshop 1/20 目次 1. イントロ 2. 2 次摂動論論 3. 重 力力波 ( 線形摂動 ) 4. 重 力力波 (2 次摂動 ) 5. まとめ 2/20 1. イントロ 非ガウス性 重 力力レンズ効果 2 次ドップラー効果 2 次重 力力波 磁場 Mode coupling

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

Microsoft Word - 力学12.doc

Microsoft Word - 力学12.doc 慣性モーメント. 復習 角運動量と角速度 L p υ, L 質点の角運動量 : ( ) ( ) 剛体の角運動量 L ( ) ρ ( ) ( ) d 注 ) この積分は普通の三重積分 d d d ( ) ( ) A B C A C B A B より ベクトル三重積の公式 ( ) ( ) ( )C ( ) L ( ) ( ) R 但し 慣性モーメント (oent of net): I R( ) ρ ;

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola (2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smolarkiwicz and Rotunno (1989) F r = 0.15 0.5 ( F r = u/nh,

More information

ゲートキーパー養成研修用テキスト(第3版)

ゲートキーパー養成研修用テキスト(第3版) 木 食 日 身 金金 金金 日 大 子 心 大 辛 心 心 食 生 心 生 - 123 - 方 自 辛 子 子 食 生 大 生 文 言 大 生 生 生 子 心 - 124 - 子 入 生 心 一 心 心 食 身 生 辛 行行 自 自 車車 - 125 - 手 一 辛 行行 自 心 金金 金金 大 金金 金金 金金 一 生 金金 子 自 - 126 - 支 方 大 目 食 心 父 見見 心 心 母 父

More information

研究背景 センサなどによって観測される情報の多くは時系列列データ たくさんの時系列列データの中から有益な情報を取得し その内容を理理解する 手法の開発が重要 取得された情報をより抽象度度の 高いレベルで表現 時系列列データの振る舞いを 言語で説明する 手法の開発 HandRight_x HandRi

研究背景 センサなどによって観測される情報の多くは時系列列データ たくさんの時系列列データの中から有益な情報を取得し その内容を理理解する 手法の開発が重要 取得された情報をより抽象度度の 高いレベルで表現 時系列列データの振る舞いを 言語で説明する 手法の開発 HandRight_x HandRi 高次元の時系列列データの潜在意味 解析に基づく 言語化 手法の開発 小林林 一郎郎 お茶茶の 水 女女 子 大学 研究背景 センサなどによって観測される情報の多くは時系列列データ たくさんの時系列列データの中から有益な情報を取得し その内容を理理解する 手法の開発が重要 取得された情報をより抽象度度の 高いレベルで表現 時系列列データの振る舞いを 言語で説明する 手法の開発 HandRight_x

More information

一 羽 田 木 行行 手 手 方

一 羽 田 木 行行 手 手 方 支 月 日 日 長 革 足 力力 生 手 革 日 長 木 人 日 生 青 生 日 力力 生 人 力力 生 方 力力 大 一 方 大 目 革 力力 日 羽 田 日 日 一 羽 田 木 行行 手 手 方 高 日 長 革 羽 田 羽 田 立立 日 一 日 大 入 羽 田 日 行行 首 玄 口 木 西 日 大 日 一 用 入 生 羽 田 羽 田 立立 日 一 日 大 入 手 自 用 人 手 自 力力 小 口

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

士 人 月 革 月 鹿鹿 身 鹿鹿 立立 月 鹿鹿 士 人 立立 月 人 士 人 月 田 田 立立 士 一 入 月 士 谷 口 入 月 士 入 月 田 立立 士 子 入 月 立立 月 立立 立立

士 人 月 革 月 鹿鹿 身 鹿鹿 立立 月 鹿鹿 士 人 立立 月 人 士 人 月 田 田 立立 士 一 入 月 士 谷 口 入 月 士 入 月 田 立立 士 子 入 月 立立 月 立立 立立 士 人 月 立立 士 月 士 人 月 日 谷 士 鹿鹿 山 田 田 田 西 田 田 八 立立 立立 士 金金 金金 士 人 月 革 月 鹿鹿 身 鹿鹿 立立 月 鹿鹿 士 人 立立 月 人 士 人 月 田 田 立立 士 一 入 月 士 谷 口 入 月 士 入 月 田 立立 士 子 入 月 立立 月 立立 立立 日 士 士 自 自 士 1 2 3 4 5 6 7 8 9 金金 金金 n 行行 n 大

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft Word 卒業論文2.doc

Microsoft Word 卒業論文2.doc 平成 6 年度 卒業論文 狭窄部を有する血管内の血流の有限要素解析 高知工科大学工学部知能機械システム工学科知能流体力学研究室 清水昌彦 目次 第 章緒言 - 本研究を行う背景と目的 - 血液の性質 -3 数値計算 - 有限要素法の概要 第 章基礎方程式 - 支配方程式 -- 連続の式 5 -- コーシーの運動方程式 6 --3 血液の構成方程式 6 - 無次元化 7 第 3 章解析手法 3- 有限要素解析

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

comment_site3

comment_site3 VS 1 2 3 4 5 6 2013 03 12 7 JK 8 1992 2012 2011 3 11 311 9 10 311 DVD Face Book 11 Face Book (3/2) 1970 1980 12 ( ) ) 13 compassion= compassion= Face Book 3.11 Face Book 14 3.11 Face Book 15 16 w Face

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

55-1

55-1 22 55 1 2003 yleigh-bénard Ekman Analysis of Ekman Layer in yleigh-bénard Convection with Rotation Study on resistance of cracks in asphalt concrete as base layer Shoji KOYAMA 1 yleigh-bénard RBC 3 DNS

More information

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

決 算 で 注 意 すべき 復 興 特 別 所 得 税 今 年 1 月 以 降 に 決 算 期 末 を 迎 える 事 業 年 度 の 法 人 税 の 申 告 では 所 得 税 と 復 興 特 別 所 得 税 の 切 り 分 けが 必 要 となります 今 年 1 月 以 降 に 決 算 期 末 を 迎

決 算 で 注 意 すべき 復 興 特 別 所 得 税 今 年 1 月 以 降 に 決 算 期 末 を 迎 える 事 業 年 度 の 法 人 税 の 申 告 では 所 得 税 と 復 興 特 別 所 得 税 の 切 り 分 けが 必 要 となります 今 年 1 月 以 降 に 決 算 期 末 を 迎 ニュースレター 2013 年 4 月 号 Apr. 2013 4 YOSHIKAWA TAX JOURNAL 決 算 で 注 意 すべき 復 興 特 別 所 得 税 注 目 トピックス 01 決 算 で 注 意 すべき 復 興 特 別 所 得 税 今 年 1 月 以 降 に 決 算 期 末 を 迎 える 事 業 年 度 の 法 人 税 の 申 告 では 復 興 特 別 所 得 税 の 税 額 控 除

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

Microsoft PowerPoint - 第3回MSBS研究会.pptx

Microsoft PowerPoint - 第3回MSBS研究会.pptx 2013 年 3 月 1 日第 3 回 MSBS 研究会 アーチェリー矢の空力特性 MSBS 風洞実験と飛翔実験 電気通信大学大学院宮嵜武 JAXA 杉浦裕樹 円柱境界層 理論解 ( 境界層近似 ): 円柱側面の境界層 ( べき級数解 ) Seban & Bond (1951) J. Aero. Sci. 18 先端部べき級数解 Kelly (1954) J. Aero. Sci. 21 修正版べき級数解

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

untitled

untitled 熱対流現象 山中透 2005 年 3 月 概要 流体を熱源に接触させ, 流体に温度傾度を与えたときを考える. 流体の温度傾度が小さいときは, 熱拡散のみが起こるが, 流体の温度傾度が閾値を越えると, 熱拡散だけでは温度傾度を解消できなくなって不安定となり, 対流が生じる. これをベナール対流とよぶ. ここでは, ベナール対流を記述する非線型方程式の線型安定性の解析によって, 流体が不安定化する条件を求め,

More information

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and 316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and K. R. Sreenivasan), Solid Mech. Appl., 129, Springer,

More information

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ

More information

PowerPoint Presentation

PowerPoint Presentation 量子流体力学および量子乱流 の理論的研究とその発展 大阪市立大理 小林未知数 坪田誠 9月12日 15日 研究集会 オイラー方程式250 年 発表内容 1. 2. 3. 4. 5. 量子流体 量子乱流のイントロダクション 理論研究の背景 量子流体を記述するGross-Pitaevskii方程式 数値計算結果 まとめ 量子流体 量子乱流 量子流体の舞台 超流動He バルクの液体4Heはラムダ温度T =

More information

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3 Kolmogorov Toward Large Deviation Statistical Mechanics of Strongly Correlated Fluctuations - Another Legacy of A. N. Kolmogorov - Hirokazu FUJISAKA Abstract Recently, spatially or temporally strongly

More information

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ ([5], [9]). 2. 3. * ( ) 2, 3 ([2, 4, ]) ẋ = v + m (h a (cl + x) h a (cl x)), v = v [ δ m (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ = w + m (h a (L + y) h a (L y)), ẇ = w [ δ m (v 2 + w 2 ) ] +

More information

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

PowerPoint Presentation

PowerPoint Presentation 1. 力のつりあい 力学の復習と準備 ベクトル (vector) B C A A B C この講義の資料では大抵の専門書や大学の教科書 論文等と同じくベクトル (vector) を太字のイタリックで書きます 矢印や縦線を追加した字で書いてもかまいません A 質点 (partcle, ass pont, ateral pont) 質点? 大きさは無視できるが 質量を無視できない仮想の物体 パチンコ玉

More information

D論研究 :「表面張力対流の基礎的研究」

D論研究 :「表面張力対流の基礎的研究」 D 論研究 : 表面張力対流の基礎的研究 定常 Marangoni 対流 及び非定常 Marangoni 対流に関する実験及び数値解析による検討 Si 単結晶の育成装置 Cz 法による Si 単結晶育成 FZ 法による Si 単結晶育成 気液表面 るつぼ加熱 気液表面 大きな温度差を有す気液表面では表面張力対流 (Marangoni 対流 ) が顕著 プロセス終了後のウエハ Cz 法により育成した

More information

             論文の内容の要旨

             論文の内容の要旨 論文の内容の要旨 論文題目 Superposition of macroscopically distinct states in quantum many-body systems ( 量子多体系におけるマクロに異なる状態の重ね合わせ ) 氏名森前智行 本論文では 量子多体系におけるマクロに異なる状態の重ねあわせを研究する 状態の重ね合わせ というのは古典論には無い量子論独特の概念であり 数学的には

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information