2017 3

Size: px
Start display at page:

Download "2017 3"

Transcription

1 217 3

2

3 i

4 ii

5 iii

6

7 FSC FFSC FSC FFSC % +6 % ( ) FSC FFSC +6 % FSC FFSC FSC FFSC +6 % FSC FFSC +6 % e T = 25 C T = 55 C T = 55 C (.1 mm ) (1 mm ) (1 mm ) v

8 4.7 (1 mm ) (1 mm ) (1 mm ) (1 mm ) (1 mm ) / J ( ±1µm ) ( ±1µm ) ( ±1µm ) ( 2µm ) vi

9 vii

10 [1] [2 5] CPU 1996 CPU [6] 2 fθ CO2 UV-YAG 2 CO2 UV-YAG CO2 UV-YAG CO2 UV-YAG 1

11 / [7] PTP(Point to Point) CP(Continuous Path) 2 PTP CP PTP 1999 [8] [9] [1] PI DSP 22 [11 14] [15 17] 1mm ms.5ms ±5µm ±3µm [7, 8] 2

12 [18 2] [15] LMI Linear Matrix Inequality [16, 21 23] [21] [22] DC [16,23] 3

13 [24 29] [3] [31] [32,33] 2 [19] PSD(Position Sensitive Detector) [34,35] [36] [37] [2] (i) (ii) 2 2 (i) PWM 2 ±96V ( ) 24A 4

14 [15] (LMI) LMI [38] Matlab Compiler [39] LMI 3 (ii)

15 1.1: 3 (LMI) LMI 4 5 6

16 6 3 (i) (ii) (iii) (ii) 7 7

17

18 i u y s 2.1: 9

19 CPU f θ CO2 UV-YAG 2 CO2 UV-YAG CO2 UV-YAG 355nm CO2 1.6µ m UV-YAG : 1

20 2.2 DSP D/A R S i re f i V M i re f y enc 2.3 [Hz/unit] 1 1 Hz/unit 1/(22.2τ) τ µs P enc (s) = P mech (s) e τ d s (2.1), P mech P n P 1, P 2 P mech (s) = P n (s) + P 1 (s) + P 2 (s) (2.2) P n (s) = k e (2.3) s 2 P i (s) = k ei s 2 + 2ζ ei ω ei s + ω 2 ei (i = 1, 2) (2.4) P enc (s)

21 4 6 Experimental Model Gain [db] Phase [deg] Frequency [Hz/unit] 2.3: 2.1: k e k e ζ e k e ζ e ω e2 /ω e i re f y enc 2.4 y mir PSD(Position Sensitive Detector) P mir (s) = k m s k mi s 2 + 2ζ mi ω mi s + ω 2 e τ d s mi i=1 (2.5) 12

22 4 5 Encoder Mirror Gain[dB] Frequency[Hz/unit] 2.4: k ω ni ±6% : k m k m ζ m ω m1 /ω e1 1. k m ζ m ω m2 /ω e

23 y v, P v (s) = k v s 2 + 2ζ v ω v s + ω 2 v (2.6) ω v ±5% (2.1) (2.6) P enc (s) P v (s) 2.5 (2.6) 2.3 Gain [db] P enc (s) P v (s) Phase [deg] Frequency [Hz/unit] 2.5: 2.3: k v ζ v ω v /ω e

24 15

25

26 [4, 41] Final-State Control: FSC [15, 31] [42, 43] m 1 x[k + 1] = Ax[k] + Bu[k] (3.1) y[k] = Cx[k] (3.2) x[] x[n] N m u[k] (3.1) k k =, 1,, N 1 x[n] = A N x[] + ΣU (3.3) Σ = [ A N 1 B A N 2 B B ] (3.4) U = [ u[] u[1] u[n 1] ] T (3.5) 17

27 (A, B) N m (3.4) Σ Σ (3.3) U N m Σ U (3.3) U J = U T QU, Q > (3.6) 2λ J = U T QU + 2λ(X ΣU) X := x[n] A N x[] Q J Q > Q 1 (X ΣU) = (3.8) J U = 2QU 2ΣT λ T = (3.7) U = Q 1 Σ T λ T (3.8) X ΣQ 1 Σ T λ T = (3.9) (A, B) Σ ΣQ 1 Σ T (3.8) (3.1) λ T = (ΣQ 1 Σ T ) 1 X (3.1) U = Q 1 Σ T (ΣQ 1 Σ T ) 1 (x[n] A N x[]) (3.11) Q Q = I J N 1 J = U T U = u 2 [k] /(z 1) u c [k] u[k] 2 u c [k] k= 18

28 m P c (s) ẋ c (t) = A c x c (t) + B c u c (t) (3.12) y(t) = C c x c (t) (3.13) P c (s) τ P d [z] x d [k + 1] = A d x d [k] + B d u c [k] (3.14) y[k] = C d x d [k] (3.15) A d := e A cτ B d := τ y(kτ) u c (t) eact B c dt C d := C c x d [k] = x c (kτ) y[k] = u c (kτ + θ) = u c [k], θ < τ (3.16) (A c, B c ) (A d, B d ) P[z] x[k + 1] = Ax[k] + Bu[k] (3.17) y[k] = Cx[k] (3.18) x[k] := [ x T d [k], ut c [k] ] T B d A = A d 1, B = 1, C = [ C d ] (3.19) x d [] = x d [N] = x N u[k] 2 (3.17) (3.6) Q u c u c [] = u c [N] = x[] = (m+1) 1, x[n] = x N (3.2) FSC (Final-State Control) FSC 3.1 u c (t) Û c (ω) Û c (ω) = Nτ 19 u c (t)e jωt dt (3.21)

29 P[z] P d [z] u[k] 1 z 1 u c [k] H u c (t) P c (s) y(t) τ y[k] 3.1: ω i (i = 1,, l) N 1 l J ω = u 2 [k] + q i Û c (ω i ) 2 (3.22) k= i=1 1 FSC 2 u c (t) q i ω i (3.22) u u c (t) Û c (ω) u c (t) N 1 u c (t) = P i (t)u c [k] (3.23) k= P i (t) := 1, iτ t < (i + 1)τ, t < iτ or t (i + 1)τ (3.24) u c (t) Û c (ω) Nτ Û c (ω) = N 1 = k= kτ u c (t)e jωt dt (3.25) (k+1)τ ωτ 2 sin( = ω u c [k]e jωt dt (3.26) ) N 1 2 e jωτ/2 u c [k]e jωτk (3.27) k= Û c (ω) = Û 1 (ω) Û 2 (ω) (3.28) 2

30 Û 1 (ω) = Û 2 (ω) = ωτ 2 sin( ) 2 (3.29) ω N 1 u c [k]e jωτk (3.3) k= U c = [u c [],..., u c [N 1]] T N 1 Re[Û 2 (ω)] = u c [k] cos(kωτ) = S R U c (3.31) k= N 1 Im[Û 2 (ω)] = u c [k] sin(kωτ) = S I U c (3.32) k= S R (ω) = [cos(), cos(ωτ),, cos ((N 1)ωτ)] (3.33) S I (ω) = [sin(), sin(ωτ),, sin ((N 1)ωτ)] (3.34) Û 2 (ω) 2 = U T c ( S T R S R + S T I S I ) Uc (3.35) U c = Ω z U (3.36) Ω z = (3.37) (3.22) Û c (ω) 2 = Û 1 (ω) 2 U T Ω T z (S T RS R + S T I S I )Ω z U (3.38) J w = U T Q w U (3.39) 21

31 l Q w = I n + q i Q U (ω i ) (3.4) i=1 Q U (ω) = Û 1 (ω) 2 Ω T z (S T RS R + S T I S I )Ω z (3.41) (3.22) U (3.6) Q Q w FFSC (Frequency-shaped Final-State Control) [43] x[k] u[k] z[k] = C z x[k] + D z u[k] (3.42) z[k] z max (3.43) z[k] z max (3.3) (3.6) LMI [21] LMI [38] Matlab Compiler [39] LMI U A EQ U = b EQ (3.44) A INEQ U b INEQ (3.45) 22

32 U J = U T QU, Q > (3.46) A EQ A INEQ b EQ b INEQ (3.45) MATLAB quadprog [44] (3.3) (3.44) (3.6) (3.46) (3.42) k k =, 1,, N 1 z[] = C z x[] + D z u[] z[1] = C z A[] + C z Bu[] + D z u[1] (3.47). z[n 1] = C z A N 1 x[] + + D z u[n 1] Z = Φ z x[] + Ω z U (3.48) Z = [ z[],, z[n 1] ] T C z C z A Φ z =. C z A N 1 D z Ω z = C z B D z C z A N 2 B C z B D z (3.49) (3.5) (3.51) (3.43) U (3.45) Ω z U Z max Φ z x[] (3.52) Ω z U Z max + Φ z x[] (3.53) 23

33 Z max = z max [1,..., 1] T (3.3) (3.52), (3.53) J U 3.3 [45] Û A EQ Û = b EQ (3.54) A INEQ Û b INEQ (3.55) Û J = F T Û (3.56) A EQ A INEQ b EQ b INEQ (3.55) MATLAB linprog [44] (3.3) ˆΣÛ = x[n] A N x[] (3.57) ˆΣ = [ Σ N 1 ] (3.58) Û = [ U T z max ] T (3.59) N 1 = [,..., ] T N 24

34 (3.52),(3.53) Ω z U Z max Φ z x[] (3.6) Ω z U Z max Φ z x[] (3.61) ˆΩ z Û ˆΦ z (3.62) Ω z 1 N 1 ˆΩ z = (3.63) Ω z 1 N 1 ˆΦ z = Φ z x[] (3.64) Φ z 1 N 1 = [ 1,..., 1] T N F = [,..,, 1] T J J = F T U = z max (3.57) (3.62) J U z max [15] [46] FFSC: Frequency shaped Final-State Control [47] [48] 25

35 3.2: 2 [47] [46] [48] (1) (2) FSC Input C P mech e τ d s G r G r G r (s) = P mech (s)e τ d s (3.65) y r e C y G r G r G r e 26

36 3.4.2 FSC FFSC FSC [48] FFSC FSC [46] FSC FSC FSC (2.2) A n b n P mech [z] = A 1 b 1 A 2 b 2 c n c 1 c 2 (3.66) b n P n [z] = A n c n (3.67) P 1 [z] = A 1 b 1 c 1, P 2[z] = A 2 b 2 c 2 (3.68) P n [z], P 1 [z], P 2 [z] (2.3) (2.4) P n (s), P 1 (s), P 2 (s) τ P n [z], P 1 [z], P 2 [z] x n [k], x 1 [k], x 2 [k] x n [k]= x np, x 1[k]= x 1p, x 2[k]= x 2p (3.69) x nv x np, x nv x 1p, x 1v x 2p, x 2v 2 P mech x d x 1v x 2v x d [k] = [ x T n [k], x T 1 [k], xt 2 [k]] T (3.7) 27

37 1 z 1 FSC FSC x n [] x n [N] x d [] = x 1 [], x d[n] = x 1 [N] x 2 [] x 2 [N] (3.71) y r m x n [] = x 1 [] = x 2 [] = x n [N] = [r m ] T, x 1 [N] = x 2 [N] = N N = [s/unit] 1 [A/unit] r m = FFSC FFSC FFSC (3.22) ω i 2 ω i ±6% 5 q i ±6% 5 q i q i FFSC FSC FFSC 3.3 FSC FFSC 28

38 2 15 FFSC FSC 1 FSC/FFSC input [A/unit] Time [s/unit] 3.3: FSC FFSC 2 4 Gain [db] FFSC FSC Frequency [Hz/unit] 3.4: FSC FFSC 29

39 FFSC q i q i FSC FSC FSC N 6% +6% 1% y enc 3.5 [rad/unit] 1 FFSC FFSC y enc 3.5 FFSC FSC FSC FSC y enc 3.7 ±.8% 1.33 s/unit 1 rad/unit µrad ±.8% 3

40 Position [rad/unit] FSC Position [rad/unit] FFSC Time [s/unit] 3.5: 6 % +6 % ( ) 1µrad +6% % FSC y enc s/unit 1.94 s/unit FSC FFSC FFSC FSC FFSC y enc

41 2 4 Gain [db] FFSC FSC Frequency [Hz/unit] 3.6: FSC FFSC +6 % +6% FFSC 3.6 FFSC FSC FFSC % e 5[s/unit] 3.9 FFSC FSC 1[Hz/unit] FFSC FSC 1.39 s/unit 1.44 s/unit FFSC T T = 25 C T = 55 C 2 32

42 T = 25 C T = 55 C 2.5% 2 5 % FSC FFSC T = 25 C 3.1 T = 55 C 3.11 FSC T = 55 C FFSC T = 55 C FSC 1.57 s/unit 2.91 s/unit FFSC 1.39 s/unit 1.53 s/unit T = 55 C e 5[s/unit] 3.12 FFSC FSC 1[Hz/unit] FFSC FSC FFSC IC FFSC

43 FFSC FSC 1.2 Position [rad/unit] Time [s/unit] 3.7: FSC FFSC FFSC FSC 1.2 Position [rad/unit] Time [s/unit] 3.8: FSC FFSC +6 % 34

44 3.5 4 x 16 FFSC FSC 3 Power spectral density Frequency [Hz/unit] 3.9: FSC FFSC +6 % e 35

45 FFSC FSC 1.2 Position [rad/unit] Time [s/unit] 3.1: T = 25 C FFSC FSC 1.2 Position [rad/unit] Time [s/unit] 3.11: T = 55 C 36

46 3.5 4 x 16 FFSC FSC 3 Power spectral density Frequency [Hz/unit] 3.12: T = 55 C 37

47

48 4 4.1 CPU 5 µm.1mm 1mm.1mm 1mm.1mm 1mm.1mm.5mm 3.4 PWM 2 [24 29] 39

49 LMI Linear Matrix Inequality [16, 21 23] [21] [22] DC [16,23] 3.4 [15] i(t) i re f (t) 4.1 P c (s) K t J x p (t) x v (t) R L K e K(s) V M (t) V p K V p 4

50 P c (s) i re f (t) V M (t) 1 K t x v (t) 1 K(s) i(t) R+sL Js ±V P 1 s x p (t) K e 4.1: [21] i(t) i re f (t) i re f (t) V M (t) 1. K 2. K K i re f (t) i(t) u c (t) = i(t) = i re f (t) 3.4 i re f (t) = i(t) V M (t) i(t) x v (t) V M (t) = Ri(t) + L di(t) dt + K e x v (t) (4.1) V M (t) V p i(t) i re f (t) i(t) = i re f (t)

51 P[z] P d [z] u[k] 1 z 1 u c [k] H u c (t) K t Js x v (t) P c (s) 1 s x p (t) τ x p [k] 4.2: (4.1) V M (t) z vol [k] V M (τk) z vol [k] = Ru c [k] + L u c[k + 1] u c [k] τ + K e x v [k] (4.2) x v [k] = x v (τk) 4.2 u[k] u c [k] (4.2) z vol [k] = Ru c [k] + L τ u[k] + K ex v [k] (4.3) z vol [k] u c [k] x v [k] u[k] 4.3 P c (s) x c (t) [ x p (t), x v (t) ] T Pd [z] x d [k] x c (τk) P[z] x[k] x[k] = x d[k] u c [k] = x x p [k] c(τk) u c [k] = x v [k] (4.4) u c [k] z vol [k] z vol [k] = C vol x[k] + D vol u[k] (4.5) C vol = [ K e R ], D vol = L τ (4.5) (3.42) z vol [k] V p 4.2 (4.5) K z vol [k] V M (t) 42

52 P[z] P d [z] u[k] 1 z 1 u c [k] H u c (t) K t Js P c (s) x v (t) 1 s x p (t) τ x p [k] τ L τ R K e x v [k] z vol [k] 4.3: x[k] z cur [k] z vel [k] z cur [k] = C cur x[k] + D cur u[k] (4.6) z vel [k] = C vel x[k] + D vel u[k] (4.7) C cur = [ 1 ], D cur = (4.8) C vel = [ 1 ], D vel = (4.9) (3.42) z[k] (3.43) z max z[k] = [ z vol [k] z cur [k] z vel [k] ] T z max = [ z max vol z max z [k] z max cur z max vel ] T

53 (3.42) 4.2 P mech P mech (3.7) z vol [k] z cur [k] z vel [k] z vol [k] = C vol T x[k] + D vol u[k] z cur [k] = C cur T x[k] + D cur u[k] z vel [k] = C vel T x[k] + D vel u[k] T = A 5 m/s 1/2 36 V 72 V 3.1 mm 1 mm 1 mm Matlab R21a Optimization Toolbox.1 mm 1 mm 1 mm.1 mm 1 mm 1 mm N (3.22) ω i q i 3.4 ±6% 5 ω i q i ±6% 5 q i

54 15 1 No Voltage Constraint Voltage Constraint 72 V Voltage Constraint 36 V Voltage [V] Current [A] Velocity [m/s] Time [sample] 4.4: (.1 mm ) z vol [k] z cur [k] z vel [k] 4.6 1mm 351sample 4.7 1mm 36V 72V 36V 72V 76V 45

55 15 1 No Voltage Constraint Voltage Constraint 72 V Voltage Constraint 36 V Voltage [V] Current [A] Velocity [m/s] Time [sample] 4.5: (1 mm )

56 15 1 No Voltage Constraint Voltage Constraint 72 V Voltage Constraint 36 V Voltage [V] Current [A] Velocity [m/s] Time [sample] 4.6: (1 mm ) P = 1 Nτ Nτ i(t)(v p V M (t)) dt V M (t) V p ±V power 2V power V p

57 Voltage [V] No Voltage Constraint Voltage [V] Voltage Constraint 72 V Voltage [V] Voltage Constraint 36 V Time [sample] 4.7: (1 mm ) 146 V 146 V 16 V V p 36 V 72 V 52 V 88 V 162 V 4.8.1mm 1mm 1mm 48

58 Electricity Consumption [W] mm step 1 mm step 1 mm step Constraint Voltage [V] : V p 162 V 76 V 72 V 1 mm ±3 µm 4.1 V p 72 V 36 V 72 V V p 16 V 52 V, 88 V, 162 V 1 mm V 72 V 88 V 49

59 36 V 52 V 36 V 52 V V.1 mm 1 mm 4.4 5

60 1 8 V p = 162 V V p = 76 V V p = 72 V Positon [µm] Time [sample] : (1 mm ) V p = 162 V V p = 76 V V p = 72 V Positon [µm] Time [sample] 4.1: (1 mm ) 51

61 1 8 No Voltage Constraint at V p = 162 V Voltage Constraint 72 V at V p = 88 V Voltage Constraint 36 V at V p = 52 V Positon [µm] Time [sample] : (1 mm ) 5 Positon [µm] 5 No Voltage Constraint at V p = 162 V Voltage Constraint 72 V at V = 88 V p Voltage Constraint 36 V at V p = 52 V Time [sample] 4.12: (1 mm ) 52

62 / [3,31] [45] [3,31,45]

63 P d [z] P mir [z] y mir [k] u d [k] P nenc [z] r - C[z] y c P enc [z] y enc [k] 5.1: 2 P nenc [z] P enc [z] P mir [z] P nenc (s) P enc (s) P mir (s) τ C[z] u d r u d P nenc r P enc C P mir u d y c y mir 2 u d y enc y mir P nenc [z] x n [k + 1] = A n x n [k] + B n u d [k] (5.1) y n [k] = C n x n [k] (5.2) 54

64 P enc [z] x e [k + 1] = A e x e [k] + B e (u d [k] + y c [k]) (5.3) y enc [k] = C e x e [k] (5.4) P mir [z] x m [k + 1] = A m x m [k] + B m (u d [k] + y c [k]) (5.5) y mir [k] = C m x m [k] (5.6) C x c [k + 1] = A c x c [k] + B c (y n [k] y e [k]) (5.7) y c [k] = C c x c [k] + D c (y n [k] y r [k]) (5.8) x d [k + 1] = A d x d [k] + B d u d [k] (5.9) y[k] = C d x d [k] (5.1) y[k] = y enc[k] y mir [k], x d[k] = x n [k] x c [k] x e [k] x m [k] (5.11) A d = A n B c C n A c B c C e B e D c C n B e C c A e B e D c C e B m D c C n B m C c B m D c C e A m (5.12) B d = B n B e B m, C d = C e C m (5.13) 55

65 5.3 y enc y enc y mir y mir y mir 1 2 ±6% 1 { 6% 5%... %... +5% +6%} m/s 36V 18A x[k] u[k] (3.42) (3.45) y enc y mir ϵ k N ϵ 1 µm k 79 1mm (3.44) Q (3.45) (3.46) J y enc y enc y mir 5.5 y enc 1 µm y mir 5 µm y enc y mir 5.6 y mir 1 µm 56

66 4 Gain [db] Phase [deg] Frequency [Hz/unit] 図 5.2: エンコーダ応答の変動モデルの周波数特性 4 Gain [db] Phase [deg] Frequency [Hz/unit] 図 5.3: ミラー応答の変動モデルの周波数特性 57

67 5.4: 5.4 N 5m/s 36V 18A 1mm k N k N = k k + 4 k ϵ ϵ k N k 58

68 y enc error [µ m] y mir error [µ m] Time [step] 5.5: y enc error [µ m] y mir error [µ m] Time [step] 5.6: 59

69 Overshoot / Undershoot [ µ m] w/o Final state cond. N=k* N=k*+4 N=k* Time [step] 5.7: / 1 1 w/o Final state cond. N=k* N=k*+4 N=k*+8 Performance Index J Time [step] 5.8: J 1 µm k 1 µm 1mm k (3.6) J k J N k J 6

70 5.5 61

71

72 6 6.1 [34,35] [36] [37] [2] 3 C % 3.4 [3] [49] 63

73 m ( m N) z[m] Z m (3.47) Z m = z[m] = Σ m P m U + C z A m x (6.1) 64

74 Σ m = [ C z A m 1 B, C z AB, C z B, D z ] P m = [ I m O m (N m) ] (6.2) (6.3) U A eq,m U = B eq,m (6.4) A eq,m = Σ m P m, B eq,m = Z m C z A m x (6.4) U E(A, B, C z, D z, x, Z m, m) (6.1) Z m = z[m] U U E(A, B, C z, D z, x, Z m, m) (1) x N x N U U E(A, B, I,, x, x N, N) (6.5) k = m 1,..., m s Z mi = z[m i ], i = 1,..., s (6.6) U (6.6) U U E(A, B, C z, D z, x, Z mi, m i ) (6.7) i=1,...,s (6.7) A eq,m1 B eq,m1 A eq,m2. A eq,ms U = B eq,m2. B eq,ms (6.8) 65

75 6.2.2 m m N z[m] Z max,m (6.9) (6.9) (6.1) U (6.9) U A ineq,m U B ineq,m (6.1) Σ m P m A ineq,m = (6.11) Σ m P m B ineq,m = Z max,m C z A m x (6.12) Z max,m + C z A m x I(A, B, C z, D z, x, Z max,m, m) (6.13) U I(A, B, C z, D z, x, Z max,m, m) (6.14) (6.14) (3.52) U U I(A, B, C z, D z, x, Z max,mi, m i ) (6.15) i=1,...,n (6.15) k (6.15) A ineq,m1 B ineq,m1 A ineq,m2. A ineq,mn U B ineq,m2. B ineq,mn (6.16) (6.5) (6.15) J U U 66

76 z s [k] P enc [z] u[k] 1 z 1 u c [k] H P enc (s) τ y enc [k] P v1 [z] 1 z 1 u c [k] H P v1 (s) τ y v1 [k] P vi [z]. 1 z 1 u c [k] H P vi (s) τ y vi [k] P vn [z]. 1 z 1 u c [k] H P vn (s) τ y vn [k] 6.1: P s [z] P s (s) τ 1/(z 1) u c [k] u[k] u c [k] [21, 43] y s [k] z s [k] P s [z] 67

77 z s [k] x s [k + 1] = A s x s [k] + B s u[k] (6.17) y s [k] = C s x s [k] (6.18) z s [k] = C sz x s [k] + D sz u[k] (6.19) x s [k] = [ x T n [k] x T 1 [k] xt 2 [k] u c[k] ] T (6.2) x n [k] = x np x nv, x 1[k] = x 1p x 1v, x 2[k] = x 2p x 2v (6.21) x p, x v n, 1, P vi (s) (i = 1,..., n) n P vi [z] (i = 1,..., n) P vi (s) τ P s [z] y vi [k] P vi [z] x vi [k + 1] = A vi x vi [k] + B vi u[k] (6.22) y vi [k] = C vi x vi [k] (6.23) x vi [k] = [ x vpi [k] x vvi [k] u c [k] ] T (6.24) x vpi, x vvi P vi [z](i = 1,..., n) 1 n P v [z] x v [k + 1] = A v x v [k] + B v u[k] (6.25) z v [k] = [ y v1 [k] y vn [k] ] T (6.26) = C v x v [k] (6.27) A v = block diag(a v1,..., A vn ) B v = [ ] B T v 1,..., B T T v n C v = block diag(c v1,..., C vn ) x v = [ ] xv T 1,..., xv T T n 68

78 Y dir. 1st 2nd... P th hole Origin (r 1,) (r 2,) (r p,) X dir. X dir. 6.2: r p r 2 k 1 r 1 N 1 N 2 N p 6.3: Time 6.2 r i (i = 1, 2,..., p) X 6.3 r i N i N i + k i T on T on = {N 1,..., N 1 + k 1, N 2,..., N 2 + k 2,..., N p,..., N p + k p } (6.28) 69

79 r p 6.2 FSC k = k = N = N p + k p u[k] FSC U (a) P s [z] x x N U E f in = E(A s, B s, I, O, x, x N, N) P v [z] x v x vn U E v f in = E(A v, B v, I, O, x v, x vn, N) (b) r i r i N i N i + k i y s [k] r i U E re f = E(A s, B s, C s, O, x, r i, k) i=1,...,p k T on N i N i + k i y v [k] U E v re f = E(A v, B v, C v, O, x v, O, k) i=1,...,p k T on (c) z s [k] z s [k] Zmax s k N I zs = I(A s, B s, C sz, D sz, x, Zmax, s k) (6.29) k=,...,n FSC U E f in E v f in E re f E v re f I z s (6.3) U (3.6) 1 (6.3) 3.2 FSC 7

80 r p 6.2 FSC k = k = N = N p + k p u[k] FSC U (a) x x N U E f in = E(A s, B s, I, O, x, x N, N) (b) r i r i N i N i + k i y s [k] r i U E re f = E(A s, B s, C s, O, x, r i, k) i=1,...,p k T on (c) z s [k] z s [k] Zmax s k N I zs = I(A s, B s, C sz, D sz, x, Zmax, s k) (6.31) k=,...,n (d) 6.1 P vi u[k] y vi [k] k T on y vi [k] z v max, i = 1,..., n (6.32) U (6.32) z v [k] Zmax v (6.33) Zmax v = [1, 1,..., 1] T z v max R n (6.34) R n n (6.32) U I zv = I(A v, B v, C v,, x v, Zmax, v k) (6.35) k T on 71

81 x v x v [k] FSC U E f in E re f I zs I zv (6.36) U (3.6) n y vi [k] i = 1,..., n δy i, j [k] = y vi [k] y v j [k] ( < i < j n) (6.37) k T on z v max δy i, j [k] z v max, k T on (6.38) U (6.38) z v [k] = δy 1,2 [k] δy 1,3 [k]. δy 2,3 [k] δy 2,4 [k]. δy n 2,n 1 [k] δy n 1,n [k] = Tz v [k] (6.39) 72

82 T = z v [k] Z v max, k T on (6.4) Z v max = [1, 1,..., 1]z v max R n (6.41) n = n C 2 (6.42) U (6.4) U I zv = I(A v, B v, TC v,, x v, Zmax, v k) k T on (6.43) FSC U E f in E re f I zs I zv (6.44) U (3.6) X 1 mm sample µs ±5% 2.5% 5 73

83 mm FSC z s [k] 144 V 18 A 5 m/s (3.6) Q 1mm x x N z s [k] Z s max N 3.1 FSC N = 56 ±.1µm ±1µm 6.4(a) ±4µm ±5µm ±1µm u c y s z v 6.5 y s z v 4684 sample.37 Hz/unit 6 sample 6 sample 56 sample U 5 mm x x v x N x vn 1 mm z s [k] Zmax s N FSC 74

84 Processing time [sample] conventional method proposal method 1 proposal method 2 proposal method Processing accuracy of holes [µm] (a) 45 proposal method 2 proposal method 3 Processing time [sample] Processing accuracy of holes [µm] (b) 6.4: 75

85 uc[a] ys[mm] zv[µm] Laser on off Time [sample] 6.5: ( ±1µm ) N = u c y s z v sample ±1µm 4684 sample 38% 6.4(a) (a) ±1µm U U r i N i N i 1 mm r 1 = 1 1 3, r i+1 r i = (i = 1,..., p 1) 16 sample k i = 15 i = 1,..., p 76

86 1 uc[a] ys[mm] zv[µm] Laser on off Time [sample] 6.6: 1 ( ±1µm ) i). 1 x r 1 = 1 [mm] N = N 1 +k 1 x v z v max (6.36) N 1 1 N 1 ii). 2 1 N 1 2 N = N 2 +k 2 r 1 = r 2 = z v max (6.36) N 2 1 N 2 iii) ±1µm u c y s z v sample 4684 sample 92% 77

87 uc[a] ys[mm] zv[µm] Laser on off Time [sample] 6.7: 2 ( ±1µm ) ±.1µm ±1µm (a) N i i = 1,..., p 2 (6.44) z v max 6.8 z v max = 2 [µm] ±1µm 78

88 2 zv [µm] zv[µm] ys[mm] uc[a] ry[µm] Laser on off Time [sample] 6.8: 3 ( 2µm ) 2 z v max = 1 [µm] u c y s z v z v r y r ( y ) /2 r y [k] max (y v i [k]) min (y v i [k]) 1 i n 1 i n 6.8 z v z v z v sample sample 4%

89 1 4 Processing time [sample] 1 3 conventional method proposal method 1 proposal method 2 proposal method Hole pitch [mm] 6.9: ±1µm.1mm 3mm mm 1.5mm 2.5mm 3mm 2 3.1mm 2mm FSC

90 3 81

91

92

93 fθ 84

94 85

95

96 87

97

98 [1] (1992) [2] CO (23) [3] (26) [4] (26) [5] (27) [6] B. E. Rohr: Testing high-performance galvanometer-based optical scanners, Proc. SPIE, 2383, , (1995) [7] 93, 2, (211) [8]. (28) [9] [1] [11] R. P. Aylward: Advanced galvanometer based optical scanner design, Sensor Review, 23, 3, (23) [12] D. A. Sabo, D. Brunner and A. Engelmayer: Advantages of digital servo amplifiers for control of a galvanometer based optical scanning system, Proc. SPIE, 5873, (25) 89

99 [13] Lightning TM II Scan Heads [14], (26) [15] D (29) [16] D (21) [17],, : D, 131, 3, (211) [18] [19] H. W. Yoo, S. Ito, M. Verhaegen and G. Schitter: Transformation-based iterative learning control for non-collocated sensing of a galvanometer scanner, European Control Conference, (213) [2] D (211) [21] (21) [22] 37 9, (21) [23] IIC-9-41 (29) [24] R. Hanus, M. Kinnaert and J.-L. Henrotte Conditioning technique, a general anti-windup and bumpless transfer method, Automatica, 23, 6, (1987) [25] C. Bohn and D. P. Atherton: An analysis package comparing PID anti-windup strategies, IEEE Control Systems, 15, 2, 34 4 (1995) 9

100 [26] Y. Peng, D. Vrancic and R. Hanus Anti-windup, bumpless, and conditioned transfer techniques for PID controllers, IEEE Control Systems, 16, 4, (1996) [27] D (1999) [28] (1999) [29] 2 D (21) [3],,,, : D, 129, 7, (29) [31],,, : LMI 2 D, 131, 1, (211) [32],,, : 2 D, 133, 3, (213) [33],,, : D, 134, 2, (214) [34] [35] [36] [37] [38] / (211) 91

101 [39] MATLAB Compiler User s Guide, MathWorks (216) [4] N.C. Singer and W.P. Seering: Preshaping Command Inputs to Reduce System Vibration, Trans. of ASME, Journal of Dynamic Systems, Measurement, and Control, 112, (199) [41] L. Van den Broeck, G. Pipeleers, J. De Caigny, B. Demeulenaere, J. Swevers and J. De Schutter: A linear programming approach to design robust input shaping, 1th IEEE International Workshop on Advanced Motion Control, 8 85 (28) [42] T.Totani and H.Nishimura: Final-State Control Using Compensation Input, Trans. of SICE, 3, 3, (1994) [43] (27) [44] MATLAB Optimization Toolbox User s Guide, MathWorks (216) [45] U.Boettcher, R.A. de Callafon and F.E. Talke: Multiobjective Time Domain Input Shaping for Closed-Loop Discrete-Time Systems, IFAC, 2 25 (21) [46],, : D, 125, 5, (25) [47] M.Hirata and Y.Hasegawa: Vibration minimized trajectory design for information devices, SICE-ICASE International Joing Conference 26, (26) [48] D (28) [49], : C, 69, 682, (23) 92

102 [1],, : D [2] D [3] D [4] S.Ueda, Y.Kuroki and M.Hirata: Trajectory Design of Galvano Scanner Considering Voltage Constraint of Current Amplifier, Electrical Engineering in Japan [2] Selected Paper [1] S.Ueda, Y.Kuroki and M.Hirata: Trajectory Design Method for Voltage Saturation of a Current Amplifier, ASME 212 5th Annual Dynamic Systems and Control Conference joint with the JSME th Motion and Vibration Conference, Fort Lauderdale [2] H.Sekine, S.Ueda, M.Suzuki and M.Hirata: System identification of a galvano scanner using input-output data obtained from positioning control, European Control Conference Linz [1],,, 4,

103 [2],,, IIC , [3],,, IIC , [4],,,, 55, [5],, PWM, 56, [6],,,,, MEC [7],,, PWM, MEC ( ) [1], , [2], , [3], , [4], , ( ) [1] Computer-readable storage medium, generating method, generating apparatus, driving apparatus, processing apparatus, lithography apparatus, and method of manufacturing article, ,

104 ( ) [1] Mirror angular-positioning apparatus and processing apparatus, , ( ) [1] Mirror angular-positioning apparatus and processing apparatus, , ( ) [1] Mirror angular-positioning apparatus and processing apparatus, 4695,

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision

More information

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T analog-control-mod : 2007/2/4(8:44) E8 E8. PID DC. PID 2. DC PID 3. E8.2 DC PID C8 E8. DC PID E6 DC P M () K M ( T M ) (E8.) DC PID C8 E8. r e u E8.2 PID E8. PID analog-control-mod : 2007/2/4(8:44) 2 E8

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A Chapter 8 ( _x = Ax +Bu; y = Cx) 8.1 8.1.1 x(t) =e At x(0) + _x =Ax +Bu (8:1) Z t 0 e A(tÄú) Bu(ú)dú u(t) x(0) t x(t) t =kå (k + 1)Å x(t) x[k + 1] =e AÅ x[k] + Z t+å t { 8.1 { e A(t+ÅÄú) Bu(ú)dú (8:) {

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok VHDL-AMS 1-3 1200 Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuoka, Japan E-mail: tkato@mail.doshisha.ac.jp E-mail:

More information

OPA277/2277/4277 (2000.1)

OPA277/2277/4277 (2000.1) R OPA OPA OPA OPA OPA OPA OPA OPA OPA µ µ ± ± µ OPA ±± ±± ± µ Offset Trim Offset Trim In OPA +In -Pin DIP, SO- Output NC OPA Out A In A +In A A D Out D In D +In D Out A In A +In A A B Out B In B +In B

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

P361

P361 ΣAD -RFDAC - High-Speed Continuous-Time Bandpass ΣAD Modulator Architecture Employing Sub-Sampling Technnique with 376-8515 1-5-1 Masafumi Uemori Tomonari Ichikawa Haruo Kobayashi Department of Electronic

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

JAB RL504:201 JAB NOTE 4 2 January 25, A B

JAB RL504:201 JAB NOTE 4 2 January 25, A B JAB RL504:201 JAB NOTE 4 JAB RL504:201 2201125 1200025 200-0-25-1/- 2 201-01-25 JAB RL504:201 JAB NOTE 4 2 January 25, 201............... 6 5.1... 6 5.2... 6 5. A... 7 5.4 B... 7 5.5... 8 5.6... 9 5.7...

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

Microsoft PowerPoint - 02_資料.ppt [互換モード]

Microsoft PowerPoint - 02_資料.ppt [互換モード] db log db db db log log log db log log log4 y log4 log y log log y log4 log log log y log 4 log log log y log log log log y log log y log log y log y 5V.5 m db db log db db.893 - +..5.779-3 +3.43 db(.)

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

charpter0.PDF

charpter0.PDF Kutateladze Zuber C 0 C 1 r eq q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4] A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ µ µ LT1398/LT1399 V IN A R G 00Ω CHANNEL A SELECT EN A R F 3Ω B C 97.6Ω CABLE V IN B R G 00Ω EN B R F 3Ω 97.6Ω V OUT OUTPUT (00mV/DIV) EN C V IN C 97.6Ω R G 00Ω R F 3Ω 1399 TA01 R F = R G = 30Ω f = 30MHz

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk]

A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk] IIC 9 6 Proposal of Moving Difference Long Sampling Observer for Quantization Error Reuction Koichi Sakata, Hiroshi Fujimoto (Yokohama National University) Abstract High resolution encoers are employe

More information

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp) LMV851,LMV852,LMV854 LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifiers Literature Number: JAJSAM3 LMV851/LMV852/LMV854 8MHz CMOS EMI LMV851/LMV852/LMV854 CMOS IC 40 125 LMV851/

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1 Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i FDTD 17 2 7 03GD191 FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD 45 1 2 i 1 1 1.1 FDTD....................... 1 1.2 FDTD............................ 2 1.3

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information